
Generalized Domains for Empirical Evaluations
in Reinforcement Learning

Shimon Whiteson s.a.whiteson@uva.nl

Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

Brian Tanner btanner@cs.ualberta.ca

Department of Computing Science, University of Alberta, Edmonton, Canada

Matthew E. Taylor taylorm@usc.edu

Computer Science Department, University of Southern California, Los Angeles, CA

Peter Stone pstone@cs.utexas.edu

Department of Computer Sciences, University of Texas at Austin, Austin, TX

Abstract

Many empirical results in reinforcement
learning are based on a very small set of envi-
ronments. These results often represent the
best algorithm parameters that were found
after an ad-hoc tuning or fitting process. We
argue that presenting tuned scores from a
small set of environments leads to method
overfitting, wherein results may not gener-
alize to similar environments. To address
this problem, we advocate empirical evalu-
ations using generalized domains: parame-
terized problem generators that explicitly en-
code variations in the environment to which
the learner should be robust. We argue that
evaluating across a set of these generated
problems offers a more meaningful evaluation
of reinforcement learning algorithms.

1. Introduction

The field of reinforcement learning (RL) aims to de-
velop algorithms for solving sequential decision prob-
lems (SDPs), in which an autonomous agent strives to
maximize a scalar reward signal by choosing actions
in response to observations in a series of timesteps.
At each timestep, the environment generates observa-
tions and a reward in response to the action emitted
by the agent. The agent’s behavior is determined by
its policy, a mapping from sequences of observations
to actions.

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

Since many challenging tasks can be framed as RL
problems (e.g., robot control, game playing, and sys-
tem optimization), improving the effectiveness of RL
algorithms also advances the progress of artificial intel-
ligence. Advances in the theory of RL have provided
several algorithms with both asymptotic and online
performance guarantees. However, these guarantees
typically apply to very general classes of SDPs (e.g.,
all finite Markov decision processes (MDPs)) and thus
the resulting methods do not exploit the structure of
any specific problems.

RL has also been successfully applied to very special-
ized settings, including backgammon (Tesauro, 1994),
elevator control (Crites & Barto, 1998), and helicopter
control (Ng et al., 2004). However, these applications
often require so much domain knowledge that it is diffi-
cult to generalize to wider classes of problems. Finding
the middle ground, i.e., methods that exploit problem
structure but that are robust at least to qualitatively
similar tasks, has proven more difficult in practice.

We believe that good empirical methodologies are im-
portant for addressing this problem, as history sug-
gests that they can make it easier to devise practical
machine learning methods. For example, the ability to
share real data sets, as in the Machine Learning Repos-
itory at the University of California, Irvine (Asuncion
& Newman, 2007), has enabled researchers to directly
compare disparate methods on common benchmarks.
These comparisons have helped researchers develop
increasingly practical methods and thus contributed
to supervised learning’s indispensable role in a broad
range of real-world applications, such as spam filter-
ing (Bratko et al., 2006), fraud detection (Bolton &
Hand, 2002), and bioinformatics (Mitra et al., 2008).



Generalized Domains for Empirical Evaluations in Reinforcement Learning

We believe that the RL community can make a similar
transition if we make a commitment to robust empir-
ical evaluation.

A good empirical methodology should be able to de-
termine when a method is not robust, i.e., when its
performance is poor outside of the specific conditions
and data on which it was trained. Since the learning
process can be thought of as fitting free model param-
eters, this brittleness is often referred to as overfitting.
The most well-known form is data overfitting, in which
learning is overfit to a small sample of training data,
e.g., in supervised learning. However, overfitting can
also occur at a higher level. In particular, in method
overfitting (Falkenauer, 1998), the learning method it-
self, rather than the specific function it learns, is over-
fit to a particular problem, sometimes with the goal of
beating benchmark scores in the literature.

In this paper, we claim that method overfitting is a se-
rious concern for empirical studies of RL algorithms.
In particular, we argue that some of the distinguish-
ing characteristics of RL make it especially important
to devise empirical methodologies that address method
overfitting. We also propose a simple solution, an eval-
uation framework based on generalized domains, which
was originally developed for use in the 2008 RL Com-
petition. Generalized domains allow experimenters to
explicitly encode the scope of variation to which the
RL algorithms should be customized. Instead of trying
to avoid overfitting, the objective is to fit the general-
ized domain as well as possible.

2. Method Overfitting in RL

The application of RL methods requires many im-
plementation choices, including exploration strategies,
basis-function selection, learning rates, decay sched-
ules, etc. To be precise, we denote each particular
set of implementation choices as a separate algorithm.
Under this definition, even a simple RL method like
table-lookup Sarsa(0) (Rummery & Niranjan, 1994)
affords a multitude of possible learning algorithms, be-
cause there are many possible values for parameters
such as the initial value function, the learning rate,
and the exploration strategy. Fitting an RL method
to a particular task typically involves selecting appro-
priate values for these parameters.

The fitting process may involve knowledge-engineering
strategies like expert interviews, creating simulation
models of the environment, evaluating various ideas
under controlled conditions, etc. Fitting may be a
laborious manual effort, an automated procedure, or
both. Regardless, it is likely to be expensive. A man-

ual effort requires human resources while automated
fitting requires repeated experimentation, which costs
time, money, and productivity, especially if the en-
vironment is a physical system or an expensive sim-
ulation. Thus, it is clear why method overfitting is
undesirable: if the algorithm is too brittle, it will need
to be extensively refit for each problem instance, mul-
tiplying the costs described above.

While this is a concern for any machine learning
method, we believe that method overfitting is partic-
ularly damaging in RL because RL methods are typi-
cally designed to work well on-line. Hence, they strive
to maximize the reward they accrue while they are
learning, not just to discover a good policy at the
end of learning. To perform well on-line, the agent
must be able to efficiently explore an unknown envi-
ronment. However, a method-overfit algorithm can be
customized to the environment, reducing or eliminat-
ing the need for effective exploration. Such a method
will likely perform poorly in other problems, neces-
sitating a refitting process that will be expensive in
terms of on-line reward, as it will require experiment-
ing with suboptimal parameter settings.

Hence, while a supervised learning algorithm that is
method-overfit may still be useful (e.g., because only
CPU cycles are needed to find a good parameter set-
ting), an RL algorithm that is method-overfit has
failed in a fundamental way since it cannot perform
well on-line. Therefore, we believe that a good empiri-
cal methodology for assessing the on-line performance
of RL methods must address method overfitting.

Unfortunately, the methodologies currently in com-
mon use do not do so. Many empirical evaluations
presented in RL measure performance only on a few
SDPs. Usually, the authors perform an ad-hoc fitting
process and report results for the specialized algorithm
that performs best for each individual SDP. This well-
intentioned procedure obscures the cost of creating the
fitted algorithm and hides its potential brittleness to
other qualitatively similar SDPs of interest.

Consider, as an extreme example, the well-known
Mountain Car problem (Sutton, 1996), a task for
which the optimal policy is already known due to
extensive previous research. Using the standard
paradigm of testing methods on particular SDPs, one
could evaluate an algorithm based on an extreme form
of method overfitting: a “learning algorithm” that em-
ploys the optimal policy from the first episode and
never changes it. No other algorithm could possibly
perform better on this task. If the evaluation were
valid, then we should conclude the algorithm is an ex-
cellent RL method. However, the opposite is obviously



Generalized Domains for Empirical Evaluations in Reinforcement Learning

true, since the algorithm cannot learn at all and would
fail catastrophically on almost any other task. Clearly,
this form of evaluation does not capture an aspect of
the problem that we know to be important.

3. Generalized Domains for RL

One way to guard against method overfitting is to use
an evaluation framework that measures performance,
not on a single SDP, but on some class of SDPs of in-
terest. As a result, an RL algorithm will receive a high
score only if it is capable of robust learning across that
class. Depending on the goals of the researcher, this
class may be broad, (e.g., all possible finite MDPs), or
narrow, (e.g., helicopter control under specific condi-
tions but with different wind settings). In either case,
using a class of SDPs allows researchers to explicitly
specify what kind of robustness is expected from the
algorithm. Within that class, algorithms must be ro-
bust to perform well. Outside of it, method overfitting
can occur and is even encouraged if it leads to better
performance within the class.

The idea of devising classes of problem instances
is not new: the idea has been used successfully in
other areas of computer science like combinatorial auc-
tions (Leyton-brown et al., 2000), as well as within
RL (Bhatnagar et al., 2009; UMass, 2009; Kalyanakr-
ishnan & Stone, 2009). Here, we propose a simple for-
malism for this approach called generalized domains.
A generalized domain G = 〈Θ,P〉 consists of:

• Θ, a (possibly infinite) set of SDPs. Each element
θ ∈ Θ fully specifies the dynamics and reward
structure, therefore defining a particular SDP.

• P(Θ): A probability distribution over the set of
possible SDPs.

In a typical evaluation procedure, an algorithm is eval-
uated over a set of independent runs. For each run,
a particular SDP is sampled from P. Some perfor-
mance metric, e.g., cumulative reward accrued during
the run, is then averaged across all the runs.

Generalized domains were originally designed for the
2008 RL Competition1, for which the authors were
among the organizers. The competition was an inter-
national event in which RL researchers compared the
performance of their methods on a suite of challeng-
ing domains. Generalized domains were used to try to
make these comparisons more rigorous and to encour-
age participants to submit methods that learn on-line
and are not merely hard-coded for particular competi-

1http://2008.rl-competition.org

tion events. Generalized domains are also being used
in the 2009 RL Competition2.

To excel in a generalized domain, a learner must be ro-
bust to the variation represented by Θ and P. Except
in degenerate cases, no fixed policy will perform well
across many settings in Θ. Consequently, for strong
performance, substantial learning is required to be suc-
cessful. However, learning algorithms are still subject
to method overfitting outside of Θ. Just as a non-
learning agent preloaded with a policy customized for
Mountain Car may fail on other tasks, a learning agent
customized to a generalized version of Mountain Car
may fail on other generalized tasks. In other words,
the goal is not to cope with an arbitrary, unknown P
but to perform robustly for a given P.

In this respect, the generalized domain framework
strikes an intermediate pose between single-task evalu-
ations and more elaborate models of learning in multi-
ple domains (Baxter, 2000; Wilson et al., 2007), which
require robustness to an arbitrary P. While such mod-
els are of theoretical interest, it is not clear how to
turn them into frameworks for empirical evaluations
because, in practice, the learner’s knowledge of P can-
not be easily controlled. As researchers get more ex-
perience with a benchmark, they learn more about P
and can develop algorithms that are customized to it
and not robust to other values of P.

By contrast, in generalized domains, the only robust-
ness required is within P, which can be reliably mea-
sured since the agent, no matter how customized to
P, has no way of predicting which specific SDP it will
face in a given run. While method overfitting is not
eliminated, it no longer interferes with the validity of
the evaluations, since any type of robustness that is
deemed important can be ensured by proper design
of Θ and P. If algorithms are proposed that approach
the ceiling of possible performance on a generalized do-
main, more challenging generalized domains can easily
be devised by enlarging Θ. The strategy of using new
and expanded benchmarks as a defense against method
overfitting is consistent with similar suggestions that
have been made for the UCI database (Gent, 1999).

4. Future Work

The generalized domain framework proposed here pro-
vides one simple way to measure a method’s robust-
ness on a range of SDPs. However, the task remains
to identify suitable generalized domains that encour-
age robustness with respect to dimensions of particu-
lar interest to researchers or that vary substantially in

2http://2009.rl-competition.org



Generalized Domains for Empirical Evaluations in Reinforcement Learning

real-world problems. We believe this effort ought to be
a priority of the RL community and we plan to focus
on it in future work.

In particular, we are interested in two different strate-
gies for developing RL benchmarks. In the top-down
approach, the goal is to design general-purpose meth-
ods, i.e., off-the-shelf methods that work well on a
broad range of problems and provide a useful baseline
when considering a new task. Generalized domains
can aid this approach by providing a framework for
evaluating learning algorithms across disparate tasks.

By contrast, the bottom-up approach is motivated by
the belief that direct progress towards general algo-
rithms may be difficult in practice and that perfor-
mance improvements are more easily achieved by iden-
tifying important subclasses of problems and develop-
ing specialized methods for them. For example, Lane
and Smart (2005) write that “a profitable approach
for the future is to cleave RL into a number of sub-
disciplines, each studying important ‘special cases.’
By doing so, we will be able to take advantage of
the properties of these cases in ways that our current
(PO)MDP frameworks are unable to.” Generalized do-
mains can be used to formalize these sub-classes, which
can begin as highly specific tasks and be gradually
broadened as much as possible.

Regardless of whether a top-down or bottom-up ap-
proach is employed, we believe that generalized do-
mains have a useful role to play in specifying bench-
marks, guarding against overfitting, and facilitating
the development of increasingly practical methods for
reinforcement learning.

References

Asuncion, A., & Newman, D. (2007). UCI machine
learning repository.

Baxter, J. (2000). A model of inductive bias learning.
Journal of Artificial Intelligence Research, 12, 149–
198.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., &
Lee, M. (2009). Natural actor-critic algorithms. Au-
tomatica. To appear.

Bolton, R., & Hand, D. (2002). Statistical fraud de-
tection: a review. Statistical Science, 17, 235–255.

Bratko, A., Filipic, B., Cormack, G., Lynam, T., &
Zupan, B. (2006). Spam filtering using compression
models. Journal of Machine Learning Research, 7.

Crites, R. H., & Barto, A. G. (1998). Elevator

group control using multiple reinforcement learning
agents. Machine Learning, 33, 235–262.

Falkenauer, E. (1998). On method overfitting. Journal
of Heuristics, 4.

Gent, I. P. (1999). A response to “On method overfit-
ting”. Journal of Heuristics, 5, 109–111.

Kalyanakrishnan, S., & Stone, P. (2009). An empirical
analysis of value function-based and policy search
reinforcement learning. AAMAS ’09: Proceedings
of the 8th international conference on Autonomous
agents and multiagent systems. To appear.

Lane, T., & Smart, W. (2005). Why (PO)MDPs lose
for spatial tasks and what to do about it. Proceed-
ings of the ICML 2005 Workshop on Rich Represen-
tations for Reinforcement Learning.

Leyton-brown, K., Pearson, M., & Shoham, Y. (2000).
Towards a universal test suite for combinatorial auc-
tion algorithms. In ACM Conference on Electronic
Commerce (pp. 66–76).

Mitra, S., Datta, S., Perkins, T., & Michailidis, G.
(2008). Introduction to machine learning and bioin-
formatics. Chapman & Hall.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V.,
Schulte, J., Tse, B., Berger, E., & Liang, E. (2004).
Inverted autonomous helicopter flight via reinforce-
ment learning. Proceedings of the International
Symposium on Experimental Robotics.

Rummery, G., & Niranjan, M. (1994). On-line Q-
learning using connectionist systems (Technical Re-
port CUED/F-INFENG/TR 166). Cambridge Uni-
versity.

Sutton, R. (1996). Generalization in reinforcement
learning: Successful examples using sparse coarse
coding. Advances in Neural Information Processing
Systems 8 (pp. 1038–1044).

Tesauro, G. (1994). TD-gammon, a self-teaching
backgammon program achieves master-level play.
Neural Computation, 6, 215–219.

UMass (2009). Reinforcement learning repository
at UMass, Amherst : Random MDP generators.
http://www-all.cs.umass.edu/rlr/domains.html.

Wilson, A., Fern, A., Ray, S., & Tadepalli, P. (2007).
Multi-task reinforcement learning: a hierarchical
bayesian approach. ICML ’07: Proceedings of the
24th international conference on Machine learning
(pp. 1015–1022).


