
In Langford, Pineau, editors, Proceedings of the 29th International Conference on Machine Learning,
pp. 655--662, Omnipress, New York, NY, USA, 2012.

PAC Subset Selection in Stochastic Multi-armed Bandits

Shivaram Kalyanakrishnan1 shivaram@yahoo-inc.com

Ambuj Tewari2 ambuj@cs.utexas.edu

Peter Auer3 auer@unileoben.ac.at

Peter Stone2 pstone@cs.utexas.edu

1Yahoo! Labs Bangalore, Bengaluru Karnataka 560071 India
2Department of Computer Science, The University of Texas at Austin, Austin Texas 78701 USA
3Chair for Information Technology, University of Leoben, Leoben 8700 Austria

Abstract

We consider the problem of selecting, from
among the arms of a stochastic n-armed
bandit, a subset of size m of those arms
with the highest expected rewards, based on
efficiently sampling the arms. This “sub-
set selection” problem finds application in
a variety of areas. In the authors’ previ-
ous work (Kalyanakrishnan & Stone, 2010),
this problem is framed under a PAC setting
(denoted “Explore-m”), and corresponding
sampling algorithms are analyzed. Whereas
the formal analysis therein is restricted to
the worst case sample complexity of algo-
rithms, in this paper, we design and ana-
lyze an algorithm (“LUCB”) with improved
expected sample complexity. Interestingly
LUCB bears a close resemblance to the well-
known UCB algorithm for regret minimiza-
tion. The expected sample complexity bound
we show for LUCB is novel even for single-
arm selection (Explore-1). We also give a
lower bound on the worst case sample com-
plexity of PAC algorithms for Explore-m.

1. Introduction

We consider the Explore-m problem introduced pre-
viously by the authors (Kalyanakrishnan & Stone,
2010). The problem is that of selecting, from among
the arms of a stochastic n-armed bandit, a subset of
size m of those arms with the highest expected re-
wards, based on efficiently sampling the arms. This
subset selection problem finds application in a vari-

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

ety of areas, such as simulation, industrial engineering,
on-line advertising, and also within certain stochastic
optimization techniques. Explore-m generalizes Ex-

plore-1, a PAC setting introduced by Even-Dar et al.
(2006) for selecting the (single) best arm.

The authors’ previous work introduces the Halving

algorithm for Explore-m (Kalyanakrishnan & Stone,
2010). While this algorithm improves upon the sam-
ple complexity of a uniform sampling strategy, its
sample complexity is identical across different bandit
instances—therefore not implementing the intuition
that in bandit instances where the highest m and the
lowest n − m means of the arms are separated by a
relatively large margin, fewer samples should suffice
for reliably identifying the best arms. In other words,
while the Halving algorithm is sufficient for achieving
a PAC guarantee in the worst case, we are apt to won-
der if on “easier” bandit instances, a sampling algo-
rithm can finish any earlier. The question we confront
is akin to one addressed by Schuurmans & Greiner
(1995), who show in the context of supervised learn-
ing that while preserving a PAC correctness guarantee
over an entire class of problems, often it is possible
to improve efficiency on a given problem instance by
sequentially adapting based on the samples observed.

As the first contribution of this paper, we present
the LUCB algorithm for Explore-m, which meets
the relevant PAC requirement, and enjoys an ex-
pected sample complexity bound that increases with
a natural measure of problem complexity. The algo-
rithm maintains a clear separation between its stop-
ping rule and sampling strategy, therein contrasting
with previous elimination-based approaches for explo-
ration (Even-Dar et al., 2006; Mnih et al., 2008). In
elimination-based algorithms, it becomes difficult to
ensure low sample complexity on runs in which erro-
neous eliminations occur. By contrast, LUCB deter-

PAC Subset Selection in Stochastic Multi-armed Bandits

mines the entire set of m arms to select (or n − m

to reject) only at termination. Consequently we can
analyze LUCB’s sample complexity separately from
its correctness, and guarantee a low expected sam-
ple complexity (including runs on which mistakes are
made). We believe such a bound is novel even for the
single-arm case, and that the confidence bounds-based
sampling approach of LUCB—again novel for a PAC
setting—is a natural means for achieving the bound.
Note that the worst case sample complexity of LUCB

can be kept to within a constant factor of Halving’s.1

The second contribution of this paper is indeed a lower
bound on the worst case sample complexity of PAC
algorithms for Explore-m. This lower bound shows
that the worst case sample complexity of the Halving

algorithm is optimal up to a constant factor.

In Section 2, we review Explore-m and introduce
relevant terminology. In Section 3, we describe and
analyze the LUCB algorithm. Section 4 presents our
lower bound, and Section 5 serves as the conclusion.

2. Problem Setting and Terminology

Below we review the Explore-m problem
(Kalyanakrishnan & Stone, 2010) and introduce
terms related to problem complexity.

Stochastic multi-armed bandits. We consider an
arbitrary instance of an n-armed bandit, n ≥ 2; let its
arms be numbered 1, 2, . . . , n. Each sample (or “pull”)
of arm a yields a reward of either 0 or 1, generated ran-
domly from a fixed Bernoulli distribution with mean
pa ∈ [0, 1].2 Indeed each bandit instance is completely
determined by the distributions corresponding to its
arms. For simplicity of notation we assume an index-
ing of the arms such that

p1 ≥ p2 ≥ . . . ≥ pn. (1)

Naturally the learner is unaware of this indexing. The
random variables generating rewards for the arms are
mutually independent. Arm a is defined to be (ǫ,m)-
optimal, ∀ǫ ∈ (0, 1), ∀m ∈ {1, 2, . . . , n − 1}, iff

pa ≥ pm − ǫ. (2)

1The Adapt algorithm presented in the authors’ previ-
ous work (Kalyanakrishnan & Stone, 2010) does not have
a PAC guarantee as claimed therein. The authors regret
the erroneous claim, and thank Gergely Neu for bringing it
to their attention. LUCB was conceived to be a provably-
correct and provably-efficient replacement for Adapt.

2Hoeffding’s inequality is the sole concentration bound
used in the analysis of LUCB (Section 3): therefore, it is
trivial to extend the algorithm and its analysis to bandits
having reward distributions with known, bounded ranges.

We find it convenient to denote as Arms the set of all
arms in our n-armed bandit instance; by Top the m

arms with the highest mean rewards; and by Bot the
n − m arms with the lowest mean rewards.

Arms
def
= {1, 2, . . . , n},

T op
def
= {1, 2, . . . ,m}, and

Bot
def
= {m + 1,m + 2, . . . , n}.

We see from (1) and (2) that every arm in Top is (ǫ,m)-
optimal. Hence, there are at least m (ǫ,m)-optimal
arms. Let Good be the set of all (ǫ,m)-optimal arms,
and let the set Bad contain all the remaining arms. In
general: m ≤ |Good| ≤ n and 0 ≤ |Bad| ≤ (n − m).

EXPLORE-m problem. A bandit instance may be
sampled sequentially in rounds. On each round t ∈
{1, 2, . . . }, an algorithm for Explore-m must either
(1) select an arm at to sample, or (2) terminate and
return an m-sized subset of Arms. The outcome of
each sampling is a pair of the form (arm, reward),
where the reward is drawn as an independent sample
from the distribution associated with the arm. We
refer to the sequence of outcomes up to (and excluding)
round t as the history at round t: during each round t,
this history is available to the algorithm. Note that we
do not require the m arms returned by the algorithm
to be in any particular order.

For δ ∈ (0, 1), an algorithm A is defined to be (ǫ,m, δ)-
optimal, iff for every bandit instance: (1) with proba-
bility 1, A terminates in a finite number of rounds, and
(2) with probability at least 1− δ, every arm returned
by A is (ǫ,m)-optimal. Note that Explore-1, for
which (ǫ, 1, δ)-optimal algorithms are to be designed,
matches the formulation of Even-Dar et al. (2006).

The sample complexity of algorithm A during a ter-
minating run is the total number of pulls it performs
before termination. Assume that with probability 1, A
indeed terminates in a finite number of rounds. Then,
for a given bandit instance B, the worst case sample
complexity of A is the maximum sample complexity
among its runs on B, and the expected sample com-
plexity the average over all its runs on B. The (over-
all) worst case sample complexity of an algorithm is
its maximum worst case sample complexity across all
bandit instances.

Problem complexity. Before proceeding, we define
quantities to describe the complexity of the Explore-
m problem for a bandit instance. Intuition suggests
that the problem must be easier if the mean rewards
of the arms are more separated. We denote by ∆i,j

the separation between the means of arms i and j:

∆i,j
def
= pi − pj .

PAC Subset Selection in Stochastic Multi-armed Bandits

We find it convenient to use additional shorthand for
the separation of arms in Top from arm m + 1, and
the separation of arms in Bot from arm m.

∆a
def
=

{

∆a,m+1 if 1 ≤ a ≤ m,

∆m,a if m + 1 ≤ a ≤ n.

Observe that ∆m = ∆m+1 = pm −pm+1. Let c denote
the mid-point of the means of arms m and m + 1; it is
easy to establish a relationship between pa, ∆a, and c.

c
def
=

pm + pm+1

2
.

∀a ∈ Arms :
∆a

2
≤ |pa − c| ≤ ∆a. (3)

For γ ∈ [0, 1], we denote the larger of ∆a and γ as
[∆a ∨ γ], and aggregate over all the arms to derive a
complexity measure Hγ .

[∆a ∨ γ]
def
= max{∆a, γ}.

Hγ def
=

∑

a∈Arms

1

[∆a ∨ γ]
2 .

Theorem 6 will show that the expected sample
complexity of LUCB1 (an instance of LUCB) is

O
(

Hǫ/2 log
(

Hǫ/2

δ

))

. Thus, the main attribute of

LUCB1 is its improved expected sample complexity
on bandit instances for which Hǫ/2 is relatively small
(in practice we expect to mostly encounter such in-
stances). By contrast, the Halving algorithm uni-
formly has a sample complexity of O

(

n
ǫ2 log

(

m
δ

))

over
all bandit instances: therefore it is inefficient except
on those instances for which Hǫ/2 ≈ n

ǫ2 .

3. LUCB Algorithm

The algorithm we introduce in this paper for subset
selection naturally decomposes into two elements: (1)
a stopping rule that maps the set of histories to the set
{STOP,CONTINUE}, and (2) a sampling strategy
that maps the set of histories to Arms. The algorithm
is initialized by sampling each arm once. On every sub-
sequent round, the algorithm evaluates the stopping
rule. If it must stop, it returns the m-sized subset of
arms with the highest empirical means (assume some
fixed rule exists for breaking ties). Otherwise it pulls
an arm according to the sampling strategy, and con-
tinues. We name our algorithm “LUCB” based on the
centrality of lower and upper confidence bounds in its
stopping rule and sampling strategy.

3.1. Stopping Rule

The stopping rule under LUCB is of an intuitive form.
During round t, let ut

a denote the number of times

arm a has been sampled, and let p̂t
a be the empirical

mean of the rewards from arm a. The key element
of our stopping rule is a confidence bound β(ut

a, t),
which is a positive number interpreted to be a high-
probability bound on the deviation of the empirical
mean of arm a from its true mean. In particular the
lower confidence bound for arm a during round t is
given by p̂t

a−β(ut
a, t), and the upper confidence bound

is given by p̂t
a + β(ut

a, t).

During round t, let Hight be the set of m arms with
the highest empirical averages, and Lowt be the set of
n−m arms with the lowest empirical averages. Among
the arms in Hight, let ht

∗ be the arm with the lowest
lower confidence bound; among the arms in Lowt, let
lt∗ be the arm with the highest upper confidence bound:

ht
∗

def
= argmin

h∈Hight

{p̂t
h − β(ut

h, t)}, and

lt∗
def
= argmax

l∈Lowt

{p̂t
l + β(ut

l , t)}.

Our stopping rule is to terminate iff

“

p̂t
lt
∗

+ β(ut
lt
∗

, t)
”

−
“

p̂t
ht
∗

− β(ut
ht
∗

, t)
”

< ǫ.

If the algorithm does stop, then Hight is returned. We
show that if β(u, t) is sufficiently large, then LUCB

guarantees a low mistake probability (Section 3.3 pro-
vides a concrete choice of β).

Theorem 1. Let S : Set of histories → Arms be an
arbitrary sampling strategy, and let β : {1, 2, 3, . . . } ×
{1, 2, 3, . . . } → (0,∞) be a function such that

∞
X

t=1

t
X

u=1

exp
`

−2uβ (u, t)2
´

≤ δ

n
. (4)

Then, if LUCB(n, m, ǫ, δ, S, β) terminates, the
probability that it returns a non-(ǫ,m)-optimal arm
(an arm in Bad) is at most δ.

Proof. We employ a standard argument using confi-
dence bounds. If indeed some arm b in Bad is returned,
then LUCB must have terminated during some round
t such that b is present in Hight (and by implica-
tion, some arm i in Top is present in Lowt). Since
pi − pb > ǫ, from the termination rule, we infer that
p̂t

b > pb + β(ut
b, t) or p̂t

i < pi − β(ut
i, t): that is, b or i

has violated its upper or lower confidence bound, re-
spectively. Hence, the algorithm’s mistake probability
is upper-bounded by the probability of the event that
there exist t, b, i, ut

b, and ut
i such that p̂t

b > pb+β(ut
b, t)

or p̂t
i < pi −β(ut

i, t). Regardless of the sampling strat-
egy, note that ut

b and ut
i have to be between 1 and t−1.

Applying Hoeffding’s inequality along with the union
bound and (4), we obtain the desired result.

PAC Subset Selection in Stochastic Multi-armed Bandits

3.2. Greedy Sampling Strategy

Whereas Theorem 1 applies to every sampling strat-
egy, we show that it is economical to use a sampling
strategy that is greedy with respect to the stopping
rule. In particular during round t, the arms h∗

t and l∗t
can be construed as the arms that are most likely to
lead to a mistake: naturally it would then be advisable
to sample these arms instead of others. Implementing
this very intuition, our sampling strategy is as follows:3

During round t: sample arms ht
∗ and lt∗.

Below we introduce some infrastructure for our anal-
ysis. Then, in Lemma 2, we establish that indeed ht

∗
and lt∗ are good candidates for sampling. Subsequently
in Section 3.3, we concretely pick a function, β1, as a
confidence bound, and formally bound the expected
sample complexity of the resulting algorithm, which
we denote LUCB1.

Recall that c
def
= pm+pm+1

2 . During round t, let us parti-
tion the set of arms into three sets: Abovet, which com-
prises arms whose lower confidence bounds fall above c;
Belowt, which comprises arms whose upper confidence
bounds fall below c; and Middlet, the remainder.

Abovet def
= {a ∈ Arms : p̂t

a − β(ut
a, t) > c}.

Belowt def
= {a ∈ Arms : p̂t

a + β(ut
a, t) < c}.

Middlet def
= Arms \

`

Abovet ∪ Belowt´ .

We expect that by and large, arms in Top will be
in Abovet or Middlet, while arms in Bot will be in
Belowt or Middlet. Let CROSSt

a denote the event
that arm a does not obey such an expectation (and let
CROSSt denote that some arm has “crossed”).

CROSSt
a

def
=

(

a ∈ Belowt if a ∈ Top,

a ∈ Abovet if a ∈ Bot.

CROSSt def
= ∃a ∈ Arms : CROSSt

a.

Now, let us define a “needy” arm as one in Middlet

with a confidence bound greater than ǫ
2 : let NEEDY t

a

be the event that arm a is needy during round t.

NEEDY t
a

def
=
`

a ∈ Middlet´ ∧
“

β
`

ut
a, t
´

>
ǫ

2

”

.

Additionally let TERM t denote the event that during
round t, the stopping rule will lead to termination:

TERM t def
=
“

p̂t
lt
∗

+ β
`

ult
∗

, t
´

”

−
“

p̂t
ht
∗

− β
`

uht
∗

, t
´

”

< ǫ.

3Observe that we sample two arms every round (from
round n+1 onwards). Thus, the sample complexity of our
algorithm is at most twice the number of rounds.

The following key lemma shows that if CROSSt

does not occur, and LUCB does not terminate dur-
ing round t, then either ht

∗ or lt∗ is a needy arm.

Lemma 2. ¬CROSSt ∧ ¬TERM t

=⇒ NEEDY t
ht
∗

∨ NEEDY t
lt
∗

.

Proof. In our proof below, we reduce notational clutter
by dropping the suffix t in our variables. Additionally
we use the shorthand β[a] for β(ut

a, t). To prove the
lemma, we prove the following statements.

¬CROSS ∧ ¬TERM

=⇒ (h∗ ∈ Middle) ∨ (l∗ ∈ Middle) . (5)

¬TERM ∧ (h∗ ∈ Middle) ∧ (l∗ /∈ Middle)

=⇒ β[h∗] >
ǫ

2
. (6)

¬TERM ∧ (h∗ /∈ Middle) ∧ (l∗ ∈ Middle)

=⇒ β[l∗] >
ǫ

2
. (7)

¬TERM ∧ (h∗ ∈ Middle) ∧ (l∗ ∈ Middle)

=⇒
“

β[h∗] >
ǫ

2

”

∨
“

β[l∗] >
ǫ

2

”

. (8)

If neither of h∗ and l∗ is in Middle, then these arms
have to be in Above or Below. We prove (5) by consid-
ering four mutually exclusive cases. Recall that h∗ has
the lowest lower confidence bound in High; l∗ has the
highest upper confidence bound in Low; and p̂h∗

≥ p̂l∗ .

(Case 1) (h∗ ∈ Above) ∧ (l∗ ∈ Above) ∧ ¬TERM

=⇒ (h∗ ∈ Above) ∧ (l∗ ∈ Above)

=⇒ (∀h ∈ High : h ∈ Above) ∧ (l∗ ∈ Above)

=⇒ |{a ∈ Arms : a ∈ Above}| ≥ m + 1

=⇒ ∃j ∈ Bot : j ∈ Above

⇐⇒ ∃j ∈ Bot : CROSSj =⇒ CROSS.

(Case 2) (h∗ ∈ Above) ∧ (l∗ ∈ Below) ∧ ¬TERM

=⇒ (p̂h∗
− β[h∗] > c) ∧ (p̂l∗ + β[l∗] < c)

∧ (p̂l∗ + β[l∗] − p̂h∗
+ β[h∗] > ǫ)

=⇒ (p̂l∗ + β[l∗] − p̂h∗
+ β[h∗] < 0)

∧ (p̂l∗ + β[l∗] − p̂h∗
+ β[h∗] > ǫ) ⇐⇒ φ.

(Case 3) (h∗ ∈ Below) ∧ (l∗ ∈ Above) ∧ ¬TERM

=⇒ (h∗ ∈ Below) ∧ (l∗ ∈ Above)

=⇒ (p̂h∗
+ β[h∗] < c) ∧ (p̂l∗ − β[l∗] > c)

=⇒ p̂h∗
< p̂l∗ ⇐⇒ φ.

(Case 4) (h∗ ∈ Below) ∧ (l∗ ∈ Below) ∧ ¬TERM

=⇒ CROSS. {Similar to Case 1.}

Similarly, we show (6) by proving two disjoint cases
(for Case 1 we use that p̂h∗

≥ p̂l∗).

(Case 1) ¬TERM ∧ (h∗ ∈ Middle) ∧ (l∗ ∈ Above)

=⇒ (p̂l∗ + β[l∗] − p̂h∗
+ β[h∗] > ǫ)

∧ (p̂h∗
− β[h∗] < c) ∧ (p̂l∗ − β[l∗] > c)

=⇒ (p̂h∗
− β[h∗] < c) ∧ (p̂h∗

+ β[h∗] > c + ǫ)

=⇒ β[h∗] >
ǫ

2
.

PAC Subset Selection in Stochastic Multi-armed Bandits

(Case 2) ¬TERM ∧ (h∗ ∈ Middle) ∧ (l∗ ∈ Below)

=⇒ (p̂l∗ + β[l∗] − p̂h∗
+ β[h∗] > ǫ)

∧ (p̂h∗
+ β[h∗] > c) ∧ (p̂l∗ + β[l∗] < c)

=⇒ (p̂h∗
+ β[h∗] > c) ∧ (p̂h∗

− β[h∗] < c − ǫ)

=⇒ β[h∗] >
ǫ

2
.

The proof for (7) is similar. To complete the proof of
the lemma, we prove (8):

¬TERM ∧ (h∗ ∈ Middle) ∧ (l∗ ∈ Middle)

=⇒ ¬TERM =⇒ p̂l∗ + β[l∗] − p̂h∗
+ β[h∗] > ǫ

=⇒ β[h∗] + β[l∗] > ǫ.

=⇒
“

β[h∗] >
ǫ

2

”

∨
“

β[l∗] >
ǫ

2

”

.

The above lemma shows that if no arm has crossed and
no arm is needy, then the LUCB algorithm must stop.
Next we consider a specific confidence bound, β1, for
which we bound the probability of arms crossing or
staying needy for long.

3.3. LUCB1

We define Algorithm LUCB1 to be an instance of
LUCB that uses the stopping rule from Section 3.1
and the greedy sampling strategy in Section 3.2, while
using the following confidence bound:

β1(u, t)
def
=

s

1

2u
ln

„

k1nt4

δ

«

, where k1 =
5

4
.

Note that β1 satisfies the requirement on β in (4). In
the remainder of this section, we bound the expected
sample complexity of LUCB1 (Lemma 5 implies that
with probability 1, LUCB1 terminates in a finite num-
ber of rounds, and thus, is (ǫ,m, δ)-optimal).

Lemma 3. Under LUCB1: P{CROSSt} ≤ δ
k1t3 .

Proof. The proof follows directly from the definition
of CROSSt, and with applications of Hoeffding’s in-
equality and the union bound (over arms, and over the
possible number of pulls for each arm).

For sufficiently large t, we define u∗
1(a, t) as an

adequate number of samples of arm a such that
β1(u

∗
1(a, t), t) is no greater than [∆a ∨ ǫ

2]:

u∗
1(a, t)

def
=

&

1

2
ˆ

∆a ∨ ǫ
2

˜2 ln

„

k1nt4

δ

«

’

.

The following lemma then shows that the probability
that arm a remains needy despite being sampled for
more than 4u∗

1(a, t) rounds is small.

Lemma 4. Under LUCB1:

P{∃a ∈ Arms :
`

ut
a > 4u∗

1(a, t)
´

∧ NEEDY t
a} ≤ 3δHǫ/2

4k1nt4
.

Proof. Consider an arm a in Arms. If ∆a ≤ ǫ
2 , we

obtain for ut
a > 4u∗

1(a, t) that β1(u
t
a, t) < ǫ

4 , which
implies ¬NEEDY t

a . Now, let us consider the case
that ∆a > ǫ

2 , which is less trivial. Without loss of
generality, we may assume that a ∈ Top. Then, by
substituting for β1, and using (3), we get:

P{
`

ut
a > 4u∗

1(a, t)
´

∧ NEEDY t
a}

≤ P
˘`

ut
a > 4u∗

1(a, t)
´

∧
`

a ∈ Middlet´¯

≤ P
˘`

ut
a > 4u∗

1(a, t)
´

∧
`

p̂t
a − β1

`

ut
a, t
´

< c
´¯

≤
∞
X

u=4u∗

1
(a,t)+1

exp
“

−2u
`

pa − c − β1

`

ut
a, t
´´2
”

≤
∞
X

u=4u∗

1
(a,t)+1

exp

0

@−2u

∆a

2
−
s

1

2u
ln

„

k1nt4

δ

«

!2
1

A

≤
∞
X

u=4u∗

1
(a,t)+1

exp

„

−2∆2
a

“√
u −

p

u∗
1(a, t)

”2
«

≤ 3δ

4∆2
ak1nt4

. (9)

The derivation for the last step is in Kalyanakrishnan’s
Ph.D. thesis (2011, see Appendix B.2). From (9):

P{∃a ∈ Arms :
`

ut
a > 4u∗

1(a, t)
´

∧ NEEDY t
a}

≤ 3δ

4k1nt4

X

a∈Arms,∆a> ǫ
2

1

∆2
a

≤ 3δHǫ/2

4k1nt4
.

We now combine the results of Lemma 3 and Lemma 4
to upper-bound the probability that LUCB does not
terminate beyond a certain number of rounds T ∗

1 .

Lemma 5. Let T ∗
1 =

⌈

146Hǫ/2 ln
(

Hǫ/2

δ

)⌉

. For every

T ≥ T ∗
1 , the probability that LUCB1 has not termi-

nated after T rounds of sampling is at most 4δ
T 2 .

Proof. Let T =
⌈

T
2

⌉

. We define two events, E1 and

E2, over the interval {T , T + 1, . . . , T − 1}:
E1

def
= ∃t ∈ {T , T + 1, . . . , T − 1} : CROSSt, and

E2
def
= ∃t ∈ {T , T + 1, . . . , T − 1} ∃a ∈ Arms :

`

ut
a > 4u∗

1(a, t)
´

∧ NEEDY t
a .

We show that if neither E1 nor E2 occurs, then
LUCB1 must necessarily terminate after at most T

rounds. If the algorithm terminates after some t ≤ T

rounds, there is nothing left to prove. Consider the
case that the algorithm has not terminated after T

rounds, and neither E1 nor E2 occurs. In this case,
let #rounds be the number of additional rounds of
sampling, up to round T . Applying Lemma 2, we get:

PAC Subset Selection in Stochastic Multi-armed Bandits

#rounds =

T−1
X

t=T

1

h

NEEDY t
ht
∗

∨ NEEDY t
lt
∗

i

≤
T−1
X

t=T

X

a∈Arms

1
ˆ`

a = ht
∗ ∨ a = lt∗

´

∧ NEEDY t
a

˜

=

T−1
X

t=T

X

a∈Arms

1
ˆ`

a = ht
∗ ∨ a = lt∗

´

∧
`

ut
a ≤ 4u∗

1(a, t)
´˜

≤
T−1
X

t=T

X

a∈Arms

1
ˆ`

a = ht
∗ ∨ a = lt∗

´

∧
`

ut
a ≤ 4u∗

1(a, T)
´˜

=
X

a∈Arms

T−1
X

t=T

1
ˆ`

a = ht
∗ ∨ a = lt∗

´

∧
`

ut
a ≤ 4u∗

1(a, T)
´˜

≤
X

a∈Arms

4u∗
1(a, T).

It is seen that T ≥T ∗
1 =⇒ T > 2+8

∑

a∈Arms u∗
1(a, T)

(Kalyanakrishnan, 2011, see Appendix B.3). Thus, if
neither E1 nor E2 occurs, the total number of rounds
for which LUCB1 lasts is at most T + #rounds ≤
⌈

T
2

⌉

+
∑

a∈Arms 4u∗
1(a, T) < T . Consequently the

probability that LUCB1 has not terminated after T

rounds can be upper-bounded by P{E1 ∨E2}. Apply-
ing Lemma 3 and Lemma 4, we obtain:

P{E1 ∨ E2} ≤
T−1
X

t=T

„

δ

k1t3
+

3δHǫ/2

4k1nt4

«

≤
„

T

2

«„

8δ

k1T 3

«„

1 +
3Hǫ/2

2nT

«

<
4δ

T 2
.

Lemma 5 directly yields a bound on the expected sam-
ple complexity, and a related high-probability bound.

Theorem 6. The expected sample complexity of

LUCB1 is O
(

Hǫ/2 log
(

Hǫ/2

δ

))

.

Corollary 7. With probability at least 1− δ, LUCB1

terminates after O
(

Hǫ/2 log
(

Hǫ/2

δ

))

rounds.

Proof. From Lemma 5, it follows that the ex-
pected sample complexity of LUCB1 is at most

2
(

T ∗
1 +

∑∞
t=T∗

1
+1

4δ
t2

)

< 292Hǫ/2 ln
(

Hǫ/2

δ

)

+ 16. The

corollary follows trivially from Lemma 5.

To the best of our knowledge, the expected sample
complexity bound in Theorem 6 is novel even for the
m = 1 case. For Explore-1, Even-Dar et al. (2006,
see Remark 9) do provide a high-probability bound
that essentially matches our bound in Corollary 7.
However, their elimination algorithm could incur high
sample complexity on the δ-fraction of the runs on
which mistakes are made—we think it unlikely that
elimination algorithms can yield an expected sample
complexity bound smaller than Ω

(

Hǫ/2 log
(

n
ǫδ

))

.

4. Worst Case Sample Complexity

Lower Bound

We note that it is easy to restrict the worst case (and
therefore, the expected) sample complexity of LUCB1

to O
(

n
ǫ2 log

(

m
δ

))

by running it with δ′ = δ
2 , and

if it does not terminate after O
(

n
ǫ2 log

(

m
δ

))

rounds,
restarting and running Halving instead (again with
δ′ = δ

2). Under such a scheme, the mistake probability
is at most δ; the expected sample complexity is within
a constant factor of LUCB’s; and the worst case sam-
ple complexity within a constant factor of Halving’s.

The remainder of this section is devoted to proving
that indeed the worst case sample complexity of Halv-

ing is optimal up to a constant factor. Section 4.2.1
in our proof is based on a similar proof provided by
Mannor & Tsitsiklis (2004, see Section 3) for m = 1.
In Section 4.2.2 we present a novel way to aggregate er-
ror terms from different bandit instances, which is key
for getting an Ω (log (m)) dependence in our bound.

Theorem 8. For 0 < ǫ ≤
√

1
32 , 0 < δ ≤ 1

4 , m ≥
6, n ≥ 2m, and every (ǫ,m, δ)-optimal algorithm A,
there is a bandit instance on which A has a worst case
sample complexity of at least 1

18375 · n
ǫ2 ln

(

m
8δ

)

.

To prove the theorem, we consider two sets of bandit
instances (Im−1 and Im), and an (ǫ,m, δ)-optimal al-
gorithm A. We show that if A has a low worst case
sample complexity on instances in Im−1, it must have
a high mistake probability on some instance in Im,
thereby contradicting that it is (ǫ,m, δ)-optimal. In
this section, we drop the convention that arms are in-
dexed in non-increasing order of their means. Also, we
index the arms 0, 1, . . . , n − 1.

4.1. Bandit Instances

For l = m−1,m, let Il be the set of all l-sized subsets
of arms, excluding arm 0; that is:

Il
def
={I ⊆ {1, 2, . . . , n − 1} : |I| = l}.

For I ⊆ {1, 2, . . . , n − 1} we define by

Ī
def
={1, 2, . . . , n − 1} \ I

the set of remaining arms, again excluding arm 0. For
each I ∈ Im−1 ∪ Im, we associate an n-armed bandit
instance BI , in which each arm a yields rewards from
a Bernoulli distribution with mean as follows:

pa =

8

<

:

1/2 if a = 0,
1/2 + 2ǫ if a ∈ I,
1/2 − 2ǫ if a ∈ Ī .

Observe that every instance in Im−1 and Im has ex-
actly m (ǫ,m)-optimal arms. In the former case, arm 0

PAC Subset Selection in Stochastic Multi-armed Bandits

is among these (ǫ,m)-optimal arms, while in the latter,
it is not. We build on the intuition that it is difficult
for an algorithm to recognize this distinction without
sampling the arms a sufficiently large number of times.

4.2. Bound

To derive our bound, we make the following assump-
tion, and then proceed to establish a contradiction.

Assumption 9. Assume there is an (ǫ,m, δ)-optimal
algorithm A that for each bandit problem BI , I ∈
Im−1, has sample complexity of at most C n

ǫ2 ln
(

m
8δ

)

,
where C = 1

18375 .

We denote by PI the probability distribution that re-
sults from the bandit problem BI and possible random-
ization of the sampling algorithm A. Also we denote
by SA the set of arms that A returns, and by Ti the
number of times algorithm A samples arm i before
terminating. Then, for all I ∈ Im−1,

PI {SA = I ∪ {0}} ≥ 1 − δ, (10)

since A is (ǫ,m, δ)-optimal. From the bound on the
sample complexity, we have for all I ∈ Im−1 that

EI

"

n−1
X

i=0

Ti

#

≤ C
n

ǫ2
ln
“m

8δ

”

. (11)

4.2.1. Changing PI to PI∪{j}

Consider a fixed I ∈ Im−1. From (11) we get that
there are at most n

4 arms j ∈ Ī with EI [Tj] ≥
C 4

ǫ2 ln
(

m
8δ

)

. Thus, there are (since n ≥ 2m) at least

n − m − n
4 ≥ (n−m)

2 arms j ∈ Ī with EI [Tj] <
4C
ǫ2 ln

(

m
8δ

)

. For these arms, Markov’s inequality gives

PI

Tj ≥ 16C

ǫ2
ln
“m

8δ

”

ff

<
1

4
. (12)

Let T ∗ def
= 16C

ǫ2 ln
(

m
8δ

)

and ∆
def
= 2ǫT ∗ +

√
T ∗. Also, let

Kj denote the sum of rewards received for arm j.

Lemma 10. Let I ∈ Im−1 and j ∈ Ī. Then,

PI

{

Tj ≤ T ∗,Kj ≤ Tj

2
− ∆

}

≤ 1

4
.

Proof. Let Kj(t) denote the sum of rewards of arm j
after t trials of arm j. Kolmogorov’s inequality gives

PI

{

min1≤t≤T∗

(

Kj(t) − t
(

1
2 − 2ǫ

))

≤ −
√

T ∗
}

≤ 1
4 .

Thus:

PI

Tj ≤ T ∗, Kj ≤ Tj

2
− ∆

ff

≤ PI

min
1≤t≤T∗

„

Kj(t) −
t

2

«

≤ −2ǫT ∗ −
√

T ∗

ff

≤ 1

4
.

Lemma 11. Let I ∈ Im−1 and j ∈ Ī. Let W be some
fixed sequence of outcomes (or “run”) of algorithm A
with Tj ≤ T ∗ and Kj ≥ Tj

2 − ∆. Then:

PI∪{j} {W} > PI {W} · exp(−32ǫ∆).

Proof. We need to bound the decrease in the proba-
bility of observing the outcome sequence W when the
mean reward of arm j is changed. Since the mean re-
ward of arm j is higher in the bandit problem BI∪{j},
the probability of W is decreased the most when in
W , only few 1-rewards are received for arm j. Thus,

PI∪{j} {W}

≥ PI {W} (1
2

+ 2ǫ)

„

Tj
2

−∆

«

· (1
2
− 2ǫ)

„

Tj
2

+∆

«

(1
2
− 2ǫ)

„

Tj
2

−∆

«

· (1
2

+ 2ǫ)

„

Tj
2

+∆

«

= PI {W}
„ 1

2
− 2ǫ

1
2

+ 2ǫ

«2∆

> PI {W} · exp(−32ǫ∆)

since
(

1
2
−2ǫ

1
2
+2ǫ

)2∆

> exp(−32ǫ∆) for 0 < ǫ ≤ 1√
32

.

Lemma 12. If (12) holds for I ∈ Im−1 and j ∈ Ī,
then for any set W of sequences of outcomes W ,

PI∪{j} {W} >

„

PI {W} − 1

2

«

· 8δ

m
.

In particular,

PI∪{j} {SA = I ∪ {0}} >
2δ

m
. (13)

Proof. In this proof, we use the explicit notation TW
j

and KW
j to denote the number of trials and number

of 1-rewards, respectively, of arm j for some fixed
sequence of outcomes W . By applying Lemma 11,
Lemma 10, and (12) in sequence, we get:

PI∪{j} {W} = PI∪{j} {W : W ∈ W}

≥ PI∪{j}

n

W : W ∈ W, T W
j ≤ T ∗, KW

j ≥ T W
j − ∆

o

≥ PI

n

W :W ∈W,T W
j ≤T ∗,KW

j ≥T W
j −∆

o

·exp(−32ǫ∆)

≥
„

PI

n

W : W ∈ W, T W
j ≤ T ∗

o

− 1

4

«

· exp(−32ǫ∆)

≥
„

PI {W : W ∈ W} − 1

2

«

· exp(−32ǫ∆)

>

„

PI {W} − 1

2

«

· 8δ

m
.

The last step follows from the observation that for
δ ≤ 1

4 , m ≥ 6, and C = 1
18375 , we have 32ǫ∆ <

ln
(

m
8δ

)

. To obtain (13), observe from (10) that
PI {SA = I ∪ {0}} ≥ 1 − δ ≥ 3

4 .

PAC Subset Selection in Stochastic Multi-armed Bandits

4.2.2. Summing over Im−1 and Im

Now we present the main innovation in our proof for
generalizing the lower bound from Explore-1 to Ex-

plore-m. We carefully aggregate error terms over
bandit instances in Im−1 and Im to show that if As-
sumption 9 is true, then some bandit instance in Im

must exhibit a mistake probability in excess of δ. First
we obtain the following inequality.

X

J∈Im

PJ {SA 6= J}

≥
X

J∈Im

X

j∈J

PJ{SA = {J ∪ {0}} \ {j}}

=
X

J∈Im

X

j∈J

X

I∈Im−1

1[I ∪ {j} = J] · PJ{SA = I ∪ {0}}

=
X

J∈Im

n−1
X

j=1

X

I∈Im−1

1[I ∪ {j} = J] · PJ{SA = I ∪ {0}}

=
X

I∈Im−1

X

J∈Im

n−1
X

j=1

1[I ∪ {j} = J] · PJ{SA = I ∪ {0}}

=
X

I∈Im−1

X

J∈Im

X

j∈Ī

1[I ∪ {j} = J] · PJ{SA = I ∪ {0}}

=
X

I∈Im−1

X

j∈Ī

X

J∈Im

1[I ∪ {j} = J] · PJ{SA = I ∪ {0}}

=
X

I∈Im−1

X

j∈Ī

PI∪{j}{SA = I ∪ {0}}.

Next we note that for I ∈ Im−1, (13) holds for at least
n−m

2 arms j ∈ Ī. Summing the corresponding errors
for these arms yields

X

J∈Im

PJ {SA 6= J} >
X

I∈Im−1

n − m

2
· 2δ

m

=

n − 1

m − 1

!

n − m

m
δ =

n − 1

m

!

δ = |Im|δ.

Hence, in contradiction to Assumption 9, there exists
a bandit instance J ∈ Im with PJ {SA 6= J} > δ.

5. Conclusion

We have addressed the problem of subset selection,
which generalizes the problem of single-arm selection.
Under a PAC setting, we have presented the LUCB

algorithm and provided a novel expected sample com-
plexity bound for subset (and single-arm) selection.
We have also given a worst case sample complexity
lower bound for subset selection.

It is interesting to note the similarity between the
LUCB and UCB (Auer et al., 2002) algorithms. Sam-
pling greedily with respect to suitable lower and up-
per confidence bounds, LUCB achieves the best-known
PAC bounds; being greedy with respect to upper con-
fidence bounds alone, UCB yields minimal cumulative

regret. It would be worthwhile to investigate if there
is a deeper connection between these two algorithms
and their respective settings.

We conjecture that the expected sample complexity of
(ǫ,m, δ)-optimal algorithms for Explore-m is at least
Ω

(

Hǫ/2 log
(

1
δ

))

, which would indicate that Hǫ/2 is in-
deed an appropriate measure of problem complexity.
However, at present we are unaware of a way to im-

prove the O
(

Hǫ/2 log
(

Hǫ/2

δ

))

upper bound achieved

by LUCB1, unless Hǫ/2 is provided as input to the
algorithm. On a closely-related exploration problem,
Audibert et al. (2010) also observe that a tighter up-
per bound can be achieved if the problem complexity
(a quantity similar to Hǫ/2) is known beforehand.

Acknowledgments

A major portion of Shivaram Kalyanakrishnan’s con-
tribution to this paper was made when he was a grad-
uate student in the Department of Computer Science,
The University of Texas at Austin. The authors are
grateful to anonymous reviewers for their comments.
Peter Stone is supported in part by NSF (IIS-0917122),
ONR (N00014-09-1-0658), and FHWA (DTFH61-07-
H-00030).

References

Audibert, Jean-Yves, Bubeck, Sébastien, and Munos,
Rémi. Best arm identification in multi-armed bandits.
In Proc. COLT 2010, pp. 41–53. Omnipress, 2010.

Auer, Peter, Cesa-Bianchi, Nicolò, and Fischer, Paul.
Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2–3):235–256, 2002.

Even-Dar, Eyal, Mannor, Shie, and Mansour, Yishay. Ac-
tion elimination and stopping conditions for the multi-
armed bandit and reinforcement learning problems.
JMLR, 7:1079–1105, 2006.

Kalyanakrishnan, Shivaram. Learning Methods for Sequen-
tial Decision Making with Imperfect Representations.
PhD thesis, Department of Computer Science, The Uni-
versity of Texas at Austin, December 2011.

Kalyanakrishnan, Shivaram and Stone, Peter. Efficient se-
lection of multiple bandit arms: Theory and practice. In
Proc. ICML 2010, pp. 511–518. Omnipress, 2010.

Mannor, Shie and Tsitsiklis, John N. The sample complex-
ity of exploration in the multi-armed bandit problem.
JMLR, 5:623–648, 2004.

Mnih, Volodymyr, Szepesvári, Csaba, and Audibert, Jean-
Yves. Empirical Bernstein stopping. In Proc. ICML
2008, pp. 672–679. ACM, 2008.

Schuurmans, Dale and Greiner, Russell. Sequential PAC
learning. In Proc. COLT 1995, pp. 377–384. ACM, 1995.

