# Data-efficient Policy Evaluation through Behavior Policy Search

#### Josiah Hanna<sup>1</sup> Philip Thomas<sup>2</sup> Peter Stone<sup>1</sup> Scott Niekum<sup>1</sup>

<sup>1</sup>University of Texas at Austin

<sup>2</sup>University of Massachusetts, Amherst

August 8th, 2017

Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum Data-efficient Policy Evaluation through Behavior Policy Search

# **Policy Evaluation**









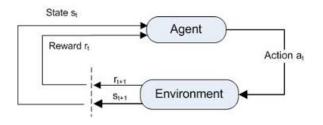
Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum Data-efficient Policy Evaluation through Behavior Policy Search



Demonstrate that importance-sampling for policy evaluation can outperform on-policy policy evaluation.

- Demonstrate that importance-sampling for policy evaluation can outperform on-policy policy evaluation.
- Show how to improve the behavior policy for importance-sampling policy evaluation.

- Demonstrate that importance-sampling for policy evaluation can outperform on-policy policy evaluation.
- Show how to improve the behavior policy for importance-sampling policy evaluation.
- **3** Empirically evaluate (1) and (2).



- Finite-horizon MDP.
- Agent selects actions with a *stochastic* policy,  $\pi$ .
- The policy and environment determine a distribution over trajectories, *H* : *S*<sub>0</sub>, *A*<sub>0</sub>, *R*<sub>0</sub>, *S*<sub>1</sub>, *A*<sub>1</sub>, *R*<sub>1</sub>, ..., *S*<sub>L</sub>, *A*<sub>L</sub>, *R*<sub>L</sub>

### Policy performance:

$$\rho(\pi) := \mathbb{E}\left[\sum_{t=0}^{L} \gamma^{t} R_{t} \middle| H \sim \pi\right]$$

### Policy performance:

$$\rho(\pi) := \mathbb{E}\left[\sum_{t=0}^{L} \gamma^{t} R_{t} \middle| H \sim \pi\right]$$

Given a target policy,  $\pi_e$ , estimate  $\rho(\pi_e)$ .

### Policy performance:

$$\rho(\pi) := \mathbb{E}\left[\sum_{t=0}^{L} \gamma^{t} R_{t} \middle| H \sim \pi\right]$$

Given a target policy,  $\pi_e$ , estimate  $\rho(\pi_e)$ .

• Let  $\pi_e \equiv \pi_{\theta_e}$ 

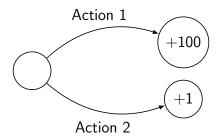
Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum

Given a dataset  $\mathcal{D}$  of trajectories where  $\forall H \in \mathcal{D}$ ,  $H \sim \pi_e$ :

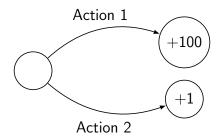
$$\mathsf{MC}(\mathcal{D}) \coloneqq \frac{1}{|\mathcal{D}|} \sum_{H_i \in \mathcal{D}} \sum_{t=0}^{L} \gamma^t R_t^{(i)}$$

Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum

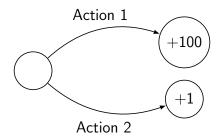
UT Austin



Target policy  $\pi_e$  samples the high-rewarding first action with probability 0.01.



- Target policy  $\pi_e$  samples the high-rewarding first action with probability 0.01.
- Monte Carlo evaluation of  $\pi_e$  has high variance.



- Target policy  $\pi_e$  samples the high-rewarding first action with probability 0.01.
- Monte Carlo evaluation of  $\pi_e$  has high variance.
- Importance-sampling with a behavior policy that samples either action with equal probability gives a *low variance* evaluation.

# Importance-Sampling Policy Evaluation<sup>1</sup>

Given a dataset  $\mathcal{D}$  of trajectories where  $\forall H_i \in \mathcal{D}$ ,  $H_i$  is sampled from a behavior policy  $\pi_i$ :

$$\mathsf{IS}(\mathcal{D}) \coloneqq \frac{1}{|\mathcal{D}|} \sum_{H_i \in \mathcal{D}} \underbrace{\prod_{t=0}^{L} \frac{\pi_e(A_t|S_t)}{\pi_i(A_t|S_t)}}_{\text{re-weighting factor}} \sum_{t=0}^{L} \gamma^t R_t^{(i)}$$

#### <sup>1</sup>Precup, Sutton, and Singh (2000)

Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum Data-efficient Policy Evaluation through Behavior Policy Search UT Austin

### Importance-Sampling Policy Evaluation<sup>1</sup>

Given a dataset  $\mathcal{D}$  of trajectories where  $\forall H_i \in \mathcal{D}$ ,  $H_i$  is sampled from a behavior policy  $\pi_i$ :

$$\mathsf{IS}(\mathcal{D}) \coloneqq \frac{1}{|\mathcal{D}|} \sum_{H_i \in \mathcal{D}} \underbrace{\prod_{t=0}^{L} \frac{\pi_e(A_t|S_t)}{\pi_i(A_t|S_t)}}_{\text{re-weighting factor}} \sum_{t=0}^{L} \gamma^t R_t^{(i)}$$

For convenience:

$$\mathsf{IS}(H,\pi) \coloneqq \prod_{t=0}^{L} \frac{\pi_e(A_t|S_t)}{\pi(A_t|S_t)} \sum_{t=0}^{L} \gamma^t R_t$$

<sup>1</sup>Precup, Sutton, and Singh (2000)

Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum

We cannot analytically determine this policy.

Requires  $\rho(\pi_e)$  be known!

We cannot analytically determine this policy.

- Requires  $\rho(\pi_e)$  be known!
- Requires the reward function be known.

We cannot analytically determine this policy.

- Requires  $\rho(\pi_e)$  be known!
- Requires the reward function be known.
- Requires deterministic transitions.

At each iteration, *i*:

**1** Choose behavior policy parameters,  $\theta_i$ , based on all observed data  $\mathcal{D}$ .

At each iteration, *i*:

**1** Choose behavior policy parameters,  $\theta_i$ , based on all observed data  $\mathcal{D}$ .

2 Sample *m* trajectories,  $H \sim \theta_i$  and add to a data set  $\mathcal{D}$ .

At each iteration, *i*:

**1** Choose behavior policy parameters,  $\theta_i$ , based on all observed data  $\mathcal{D}$ .

- 2 Sample *m* trajectories,  $H \sim \theta_i$  and add to a data set  $\mathcal{D}$ .
- **3** Estimate  $\rho(\pi_e)$  with trajectories in  $\mathcal{D}$ .

### **Behavior Policy Gradient**

**Key Idea:** Adapt the behavior policy parameters,  $\theta$ , with gradient descent on the mean squared error of importance-sampling.

$$\boldsymbol{\theta}_{i+1} = \boldsymbol{\theta}_i - \alpha \frac{\partial}{\partial \boldsymbol{\theta}} \operatorname{MSE}[\operatorname{IS}(\boldsymbol{H}_i, \boldsymbol{\theta})]$$

**Key Idea:** Adapt the behavior policy parameters,  $\theta$ , with gradient descent on the mean squared error of importance-sampling.

$$\boldsymbol{\theta}_{i+1} = \boldsymbol{\theta}_i - \alpha \frac{\partial}{\partial \boldsymbol{\theta}} \operatorname{MSE}[\operatorname{IS}(\boldsymbol{H}_i, \boldsymbol{\theta})]$$

MSE[IS(H, θ)] is not computable.

 <sup>∂</sup>/<sub>∂θ</sub> MSE[IS(H, θ)] is computable.

Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum Data-efficient Policy Evaluation through Behavior Policy Search

# Behavior Policy Gradient Theorem

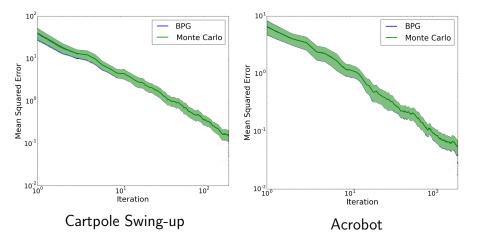
#### Theorem

$$\frac{\partial}{\partial \boldsymbol{\theta}} \mathsf{MSE}(\mathsf{IS}(H, \boldsymbol{\theta})) = \mathbf{E}_{\pi_{\boldsymbol{\theta}}} \left[ -\operatorname{IS}(H, \boldsymbol{\theta})^2 \sum_{t=0}^{L} \frac{\partial}{\partial \boldsymbol{\theta}} \log \left( \pi_{\boldsymbol{\theta}}(A_t | S_t) \right) \right]$$

Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum

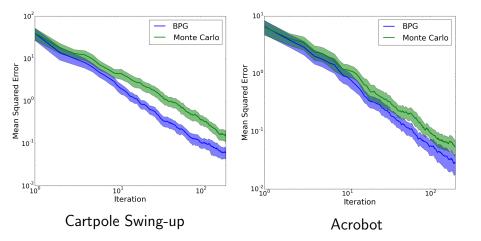
UT Austin

# **Empirical Results**



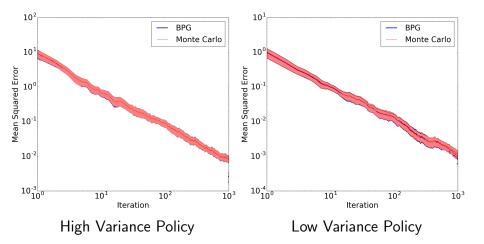
Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum Data-efficient Policy Evaluation through Behavior Policy Search

# **Empirical Results**

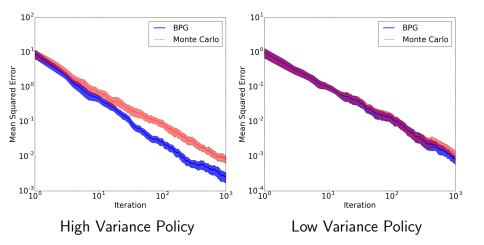


UT Austin

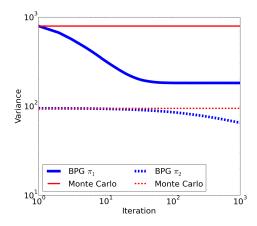
### GridWorld Results



### GridWorld Results



### Variance Reduction



Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum

- Investigated an extension to the doubly-robust off-policy estimator.<sup>2</sup>
- Investigated where BPG is most effective empirically.

#### <sup>2</sup>[Jiang and Li(2016), Thomas and Brunskill(2016)]

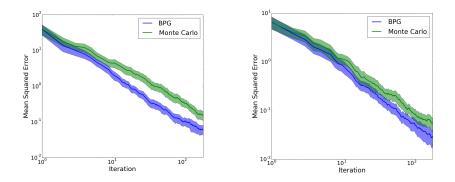
Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum Data-efficient Policy Evaluation through Behavior Policy Search

- Behavior policy search makes off-policy evaluation more accurate than on-policy evaluation.
- Behavior Policy Gradient is an effective behavior policy search method.

### Can behavior policy search improve policy improvement?

- Can behavior policy search improve policy improvement?
- 2 Are there better measures of a good behavior policy?

- Can behavior policy search improve policy improvement?
- Are there better measures of a good behavior policy?
- Is the final behavior policy found by BPG applicable to other target policies?



#### Thanks for your attention! Questions?

Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum

Nan Jiang and Lihong Li.

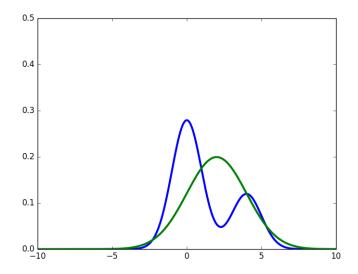
Doubly robust off-policy evaluation for reinforcement learning.

arXiv preprint arXiv:1511.03722, 2016.

P.S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning.

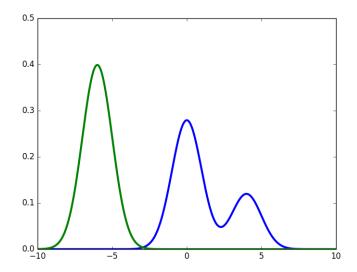
arXiv preprint arXiv:1604.00923, 2016.

### Prior Work: Importance Sampling



Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum Data-efficient Policy Evaluation through Behavior Policy Search UT Austin

### Prior Work: Importance Sampling



Josiah Hanna, Philip Thomas, Peter Stone , Scott Niekum Data-efficient Policy Evaluation through Behavior Policy Search UT Austin