
In IEEE International Conference on Robotics and Automation (ICRA 2010),
Anchorage, Alaska, May 2010.

Generalized Model Learning for Reinforcement Learning on a

Humanoid Robot

Todd Hester, Michael Quinlan, and Peter Stone

Department of Computer Science

The University of Texas at Austin

Austin, TX 78712

{todd,mquinlan,pstone}@cs.utexas.edu

Abstract—Reinforcement learning (RL) algorithms have long
been promising methods for enabling an autonomous robot
to improve its behavior on sequential decision-making tasks.
The obvious enticement is that the robot should be able
to improve its own behavior without the need for detailed
step-by-step programming. However, for RL to reach its full
potential, the algorithms must be sample efficient: they must
learn competent behavior from very few real-world trials. From
this perspective, model-based methods, which use experiential
data more efficiently than model-free approaches, are appealing.
But they often require exhaustive exploration to learn an
accurate model of the domain. In this paper, we present an
algorithm, Reinforcement Learning with Decision Trees (RL-
DT), that uses decision trees to learn the model by generalizing
the relative effect of actions across states. The agent explores
the environment until it believes it has a reasonable policy.
The combination of the learning approach with the targeted
exploration policy enables fast learning of the model. We
compare RL-DT against standard model-free and model-based
learning methods, and demonstrate its effectiveness on an
Aldebaran Nao humanoid robot scoring goals in a penalty kick
scenario.

I. INTRODUCTION

As the tasks that we desire robots to perform become

more complex, and as robots become capable of operating

autonomously for longer periods of time, we will need to

move from hand-coded solutions to having robots learn so-

lutions to problems on their own. Recently, various machine

learning techniques have been used to learn control policies

and optimize parameters on robots such as helicopters [1],

[2] and Sony Aibos [3], [4].

While there has been a great deal of progress in the

machine learning community on value-function-based re-

inforcement learning (RL) methods [5], most successful

learning on robots, including all of the above references,

has used policy search methods. In value-function-based

reinforcement learning, rather than learning a direct mapping

from states to actions, the agent learns an intermediate data

structure known as a value function that maps states (or

state-action pairs) to the expected long term reward. Value-

function-based learning methods are appealing because the

value-function has well-defined semantics that enable a

straightforward representation of the optimal policy, and

because of theoretical results guaranteeing the convergence

of certain methods to an optimal policy [6], [7].

Fig. 1. One of the penalty kicks during the semi-finals of RoboCup 2009.

Value-function methods can themselves be divided into

model-free algorithms, such as Q-LEARNING [6], that are

computationally cheap, but ignore the dynamics of the world,

thus requiring lots of experience; and model-based algo-

rithms, such as R-MAX [7], that learn an explicit domain

model and then use it to find the optimal actions via sim-

ulation in the model. Model-based reinforcement learning,

though computationally more intensive, gives the agent the

ability to perform directed exploration of the world so it can

learn an accurate model and learn an optimal policy from

limited experience.

Model-based methods are thus more appropriate for robot

learning, where trials are expensive due to the time involved

and/or the wear and tear on the robot. However, existing

model-based methods require detailed or exhaustive explo-

ration in order to build the model. In a complex domain,

such exploration can itself render the algorithm infeasible

from the perspective of sample complexity.

In this paper we describe a model-based RL algorithm,

Reinforcement Learning with Decision Trees (RL-DT) that

generalizes aggressively during model-learning so as to

further limit the number of trials needed for learning. We

apply RL-DT on a humanoid robot, the Aldebaran Nao, as it

learns to perform a challenging problem from the RoboCup

Standard Platform League (SPL): scoring on penalty kicks.

We compare RL-DT empirically to both Q-LEARNING and R-

MAX, demonstrating that it can successfully be used to learn

this task, both in simulation and on a physical humanoid

robot. To the best of our knowledge, this first application

of RL-DT in a robotic setting is also the first example of

successful RL of any kind on the Nao.

II. THE PROBLEM

We used reinforcement learning algorithms to train hu-

manoid robots to score penalty kick goals. This scenario

takes place in the domain of the RoboCup SPL. RoboCup

is an annual robot soccer competition with the goal of

developing an autonomous humanoid robot soccer team that

can defeat the world champion human team by 2050. Games

in the SPL are played between two teams of three Aldebaran

Nao 1 robots on a 6 by 4 meter field [8].

Games in the SPL use the V3 RoboCup version of the

Aldebaran Nao humanoid robot. The robot is 58 centimeters

tall and has 21 degrees of freedom. The robot has two

cameras in its head (only one can be used at a time).

Computation is performed on the robot using its AMD Geode

processor.

When an elimination game in the SPL ends in a tie score,

the winner is determined by best of five penalty kicks. In the

penalty kick, the defending robot starts in the middle of the

goal on the goal line, while the offensive robot starts at mid

field. The ball is placed on a white cross located 1.8 meters

from the goal. The robot has one minute to walk up to the

ball and score a goal.

Penalty kicks are critical to success in the SPL as many

of the teams are evenly matched and many games end in

a tie and are decided by penalty kicks. At RoboCup 2009

in Graz, Austria, 28 of the 64 games (43.75%) ended in a

tie, including all 8 games in the intermediate round and one

of the semi-final games (shown in Figure 1) 2. In addition,

our team’s US Open Championship win came in penalty

kicks over the UPennalizers after a 1-1 tie in regulation. The

frequency of games ending in ties makes penalty kicks an

important aspect of the games.

Even though most teams employ a stationary goal keeper

for the kicks (as in Figure 1), teams rarely scored on penalty

kicks as lining up and aiming the ball past the keeper has

proved to be particularly difficult. Out of the 9 games that

were decided by penalty kicks (the rest were left as a draw),

only 3 had goals scored during the best of five penalty kicks.

In total, there were only 7 goals scored in 90 penalty kick

attempts, resulting in a low scoring percentage of 7.8%.

III. REINFORCEMENT LEARNING

We adopted the standard Markov Decision Process (MDP)

formalism for this work [5]. An MDP consists of a set of

states S, a set of actions A, a reward function R(s, a), and a

transition function P (s′|s, a). In many domains, the discrete

state s is represented by a vector of n discrete state variables

s = 〈x1, x2, ..., xn〉. In each state s ∈ S, the agent takes an

action a ∈ A. Upon taking this action, the agent receives a

1http://www.aldebaran-robotics.com
2http://www.tzi.de/spl/bin/view/Website/Results2009

Algorithm 1 RL-DT(RMax, s)

1: A← Set of Actions
2: S ← Set of States
3: ∀a ∈ A : visits(s, a)← 0
4: loop
5: a← argmax

a′∈A
Q(s, a′)

6: Execute a, obtain reward r, observe state s′

7: Increment visits(s, a)
8: (PM , RM ,CH) ← UPDATE-MODEL(s, a, r, s′, S, A)
9: exp← CHECK-POLICY(PM , RM)

10: if CH then
11: COMPUTE-VALUES(RMax,PM , RM , SM , A, exp)
12: end if
13: s← s′

14: end loop

reward R(s, a) and reaches a new state s′. The new state s′

is determined from the probability distribution P (s′|s, a).

The value Q∗(s, a) of a given state-action pair (s, a) is

determined by solving the Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a)max
a′

Q∗(s′, a′) (1)

where 0 < γ < 1 is the discount factor. The optimal value

function Q∗ can be found through value iteration by iterating

over the Bellman equations until convergence [5]. The goal

of the agent is to find the policy π mapping states to actions

that maximizes the expected discounted total reward over the

agent’s lifetime. The optimal policy π is then as follows:

π(s) = argmax
a
Q∗(s, a) (2)

Model-free methods update the value of an action towards

its true value when taking each action. In contrast, model-

based reinforcement learning methods learn a model of the

domain by approximating its transition and reward functions

and then simulate actions inside their models. In this paper,

we compare a model-free method (Q-LEARNING [6]), and

two model-based methods (R-MAX [7] and RL-DT [9]) on

the task of scoring on a penalty kick.

Q-LEARNING is a typical model-free reinforcement learn-

ing method. In it, values are stored for every state-action pair.

Upon taking an action, the value of the action is updated

closer to its true value through the Bellman equations. The

algorithm was run using ǫ-greedy exploration, where the

agent takes a random exploration action ǫ percent of the

time and takes the optimal action the rest of the time. In our

experiments, Q-LEARNING was run with the learning rate

α = 0.3, ǫ = 0.1, and the action values initialized to 0.

R-MAX is a representative model-based method that ex-

plores unknown states to learn its model quickly. It records

the number of visits to each state-action in the domain. State-

actions with more than M visits are considered known, while

ones with fewer visits are unknown and need to be explored.

The agent is driven to explore the unknown state-actions by

assuming they have the maximum reward in the domain.

Once the model is completely learned, the algorithm can

determine the optimal policy through value iteration.

IV. RL-DT

The RL-DT algorithm (shown in Algorithm 1) is a novel

algorithm that incorporates generalization into its model

learning. In many domains, it is too expensive or time

consuming to exhaustively explore every state in the domain.

RL-DT was developed with the idea that by generalizing the

model to unseen states, the agent can avoid exploring some

states. Its two main features are that it uses decision trees to

generalize the effects of actions across states, and that it has

explicit exploration and exploitation modes. The algorithm is

described in detail below, and more pseudocode is available

in [9].

In a state s, the algorithm takes the action a with the

highest action-value, entering a new state s′ and receiving

a reward r. Then the algorithm updates its models with

this new experience through the model learning approach

described below. The algorithm decides to explore or exploit

based on the value of its policy in the call to CHECK-

POLICY. Next, the algorithm re-computes the action-values

using value iteration if the model was changed. It then

continues executing actions until the end of the experiment

or episode.

The algorithm starts out with a poor model of the domain

and refines it over time as it explores. It uses a heuristic

to determine when it should explore. If the model predicts

that the agent can only reach states with rewards < 40% of

the maximum one-step reward in the domain (given to the

algorithm ahead of time) from any state, then the agent goes

into exploration mode, exploring the state-actions with the

fewest visits. If it predicts that it can reach state-actions with

better rewards, then it goes into exploitation mode, where it

takes what it believes is the optimal action at each step.

RL-DT’s two modes allow it to explore intelligently early,

until it finds good rewards, and then exploit that reward.

It does not continue exploring after finding this reward,

meaning it explores less than R-MAX does. However, this

also means that it may stop exploring before it has found the

optimal policy. In many domains, it may be too expensive

to explore exhaustively and we may prefer that the agent

simply finds a reasonable policy quickly, rather than find an

optimal policy slowly.

A distinguishing characteristic of RL-DT is the way in

which it learns models of the transition and reward functions.

RL-DT generalizes the transition and reward functions across

states to learn a model of the underlying MDP in as few

samples as possible. In many domains, the relative transition

effects of actions are similar across many states, making

it easier to generalize actions’ relative effects than their

absolute ones. For example, in many gridworld domains,

there is an EAST action that usually increases the agent’s

x variable by 1. It is easier to generalize that this relative

effect (x ← x + 1) occurs in many states than the absolute

effects (x← 7). RL-DT takes advantage of this idea by using

supervised learning techniques to generalize the relative

effects of actions across states when learning its model. This

generalization allows it to make predictions about the effects

of actions even in states that it has not visited.

We treat the model learning as a supervised learning

problem, with the current state and action as the input, and

the relative change in state and the reward as the outputs

to be predicted. The agent learns models of the transition

and reward functions using decision trees. Decision trees

were used because they generalize well while still making

accurate predictions. The decision trees are an implementa-

tion of Quinlan’s C4.5 algorithm [10]. The C4.5 algorithm

repeatedly splits the dataset on one of the input variables

until the instances in each leaf of the tree cannot be split

anymore. It chooses the optimal split at each node of the

tree based on information gain. The state features used as

inputs to the decision trees are treated both as numerical and

categorical inputs, meaning both splits of the type x = 3 and

x > 3 are allowed.

A separate decision tree is built to predict the reward and

each of the n state variables. The first n trees each make

a prediction of the probabilities of the change in the state

feature P (xr

i
|s, a), while the last tree predicts the average

reward R(s, a). The input to each tree is a vector containing

the n state features and action a: 〈a, s1, s2, ..., sn〉.
After all the trees are updated, they can be used to predict

the model of the domain. For a queried state vector s and

action a, each tree makes predictions based on the leaf of

the tree that matches the input. The first n trees output

probabilities for the relative change, xr

i
, of their particular

state features. This output P (xr

i
|s, a) is the number of

occurrences of xr

i
in the matching leaf of the tree divided by

the total number of experiences in that leaf. The predictions

P (xr

i
|s, a) for the n state features are combined to create

a prediction of probabilities of the relative change of the

state sr = 〈xr

1
, xr

2
, ..., xr

n
〉. Assuming that each of the state

variables transition independently, the probability of the

change in state P (sr|s, a) is the product of the probabilities

of each of its n state features:

P (sr|s, a) = Πn

i=0
P (xr

i
|s, a) (3)

The relative change in the state, sr, is added to the current

state sm to get the next state s′. The last tree predicts reward

R(s, a) by outputting the average reward in the matching leaf

of the tree. The combination of the model of the transition

function and reward function make up a complete model of

the underlying MDP.

FT FT

FT

FT

F
T

X=0

X=1

Y=1

0 0

0

0 +1

−1

A=L

A=R

Fig. 2. Example tree pre-
dicting the change in the x

variable in a gridworld.

Figure 2 shows an example of

a decision tree classifying the rela-

tive change in the x variable in the

gridworld shown in the figure. The

tree first splits on the action (if the

action was LEFT) and then splits on

the x and y variables. In some cases,

it can ignore large parts of the state

space. For example, when the action

is not left or right, the tree predicts

a change of 0 in the x variable. In

other cases, it makes a prediction

that is specific to a single state, such as when it predicts

Fig. 3. The experimental setup in the Webots simulator, with the robot
learning to aim its kick past the keeper to score on penalty kicks.

a change of 0 for the action right when x is not 1 and y

equals 1.
Once the model has been updated, exact value iteration

with a discount factor γ = 0.99 is performed on the approx-

imate model to find a policy. If the agent is in exploration

mode, the least visited states are given a reward bonus to

drive the agent to explore them. Otherwise, the value iteration

calculates the optimal policy according to its learned model.

V. EXPERIMENTAL SETUP

Our goal was to have the robot learn how to score penalty

goals against a typical stationary keeper. We set up the

experiments with the ball on the penalty mark 1.8 meters

from the goal as specified in the SPL penalty kick rules [8].

The robot was placed facing the goal with the center of its

feet 15 cm behind the penalty mark. In an actual penalty

kick, the robot starts at midfield, but here we are strictly

trying to learn to aim the kick and we assume the robot has

walked up to ball. The non-stationary keeper was placed in

a crouched position in the center of the goal. Every episode

began with this exact setup, shown in Figure 3.

For each episode, the agent started our normal kick engine,

standing on its right leg and looking down at the ball. The

learning algorithm then controlled the free left leg with three

available actions: MOVE-OUT, MOVE-IN, and KICK. The

robot’s state consisted of two state features: the x coordinate

of the ball in the robot’s camera image and the distance the

free foot was shifted out from the robot’s hip in millimeters,

demonstrated in Figure 4. Each feature was discretized: the

ball’s image coordinate was discretized into bins of two

pixels each, while the leg distance was discretized in 4

millimeter bins. The MOVE-OUT and MOVE-IN actions each

moved the leg 4 mm in or out from the robot’s body. The

agent received a reward of −1 for each action moving the leg

in or out and −20 if the action caused the robot to fall over

(by shifting its leg too far in either direction). When kicking,

the agent received a reward of +20 if it scored a goal, and

−2 if it did not. The agent’s goal was to learn exactly how

far to shift its leg before kicking such that it would kick the

ball at an angle past the keeper.

Due to the difficulties and time involved in performing

Kick

Feature 1

Feature 2

In Out

Fig. 4. This robot is eager to learn! For the learning problem, the robot’s
state consisted of the x coordinate of the ball in the robot’s camera image
and the distance the robot’s foot was shifted out from its hip. The actions
available to the robot were to move the leg in, out, or kick.

learning experiments on the physical robot, we started by

performing experiments in the Webots simulator from Cy-

berbotics 3. Webots is a robotics simulator that uses the

Open Dynamics Engine (ODE) for physics simulation. It

simulates all the joints and sensors of the robot, including

the camera. After running experiments in the simulator, we

ran experiments on the physical robot to validate our results.

VI. RESULTS

For the first experiment, the ball was always placed at the

same location relative to the robot. The ball was placed 30

mm left of the penalty mark, requiring the robot to shift its

leg out 3 or 4 times before kicking the ball to aim it past the

keeper. We ran each of the three learning algorithms for 30

trials over 100 episodes of the task. The cumulative reward

of the learning algorithms over 100 episodes is shown in

Figure 5. We show the cumulative reward plot to demonstrate

how quickly the algorithms learn and we analyze the quality

of their final policies below. RL-DT learned the task quickly,

having significantly (p < .0005) more reward per episode

than the other two algorithms from episode 5 to episode

34. At episode 35, R-MAX had also learned the task and its

performance was no longer significantly different than RL-

DT.

3http://www.cyberbotics.com

-200

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Episode Number

Penalty Kick Learning with Standard Ball Location

RL-DT
Q-Learning

R-Max

Fig. 5. Cumulative reward of the learning agents on the penalty kick task
with a standard ball location. The final policies are analyzed in the text.

The optimal policy in this task was to shift the leg outward

4 times, so that the robot’s foot was 112 mm out from its

hip, and then kick. Kicking from this position would score

on 85% of its attempts, resulting in an average reward per

episode of 12.7. Kicking from 108 mm was a close second

best, as it scored 75% of the time, but took one fewer action

to get to the kicking position, resulting in an average reward

per episode of 11.5. RL-DT converged to one of these two

policies in 28 of the 30 trials, Q-LEARNING in 18 of the 30

trials, and R-MAX in all 30 trials.

Following the first experiment, we ran a second experiment

with the ball in a random location relative to the robot to

simulate the noisiness of the robot’s approach to the ball.

We first determined the range of ball locations where it was

possible to score from and then randomly placed the ball in

this region, which was between 0 and 34 mm or between 74

and 130 mm left of the penalty mark. In this experiment, the

robot needed to use the state feature about the ball’s location

in its camera image to determine how far it needed to shift

its leg to line up the ball properly to score a goal.

Plots of the average cumulative reward for the three

algorithms over 30 trials are shown in Figure 6. Here, it

was possible to score at many positions without shifting the

leg and Q-LEARNING performed well by quickly learning

to score consistently at these positions. While Q-LEARNING

performed well early, its final policy was not as good as that

of the other two algorithms. Figure 7 shows the percentage

of tries that each algorithm scored at each ball position

during the final 200 episodes. Q-LEARNING does very well

on the positions where there was no leg shift required, but

was unable to learn to score on more difficult positions,

such as when the ball was offset between 74 and 84 mm.

The two model-based methods performed more exploration

and learned to score from these positions. RL-DT explored

fast enough that it was able to accumulate enough reward

from its better policy to surpass the cumulative reward of

Q-LEARNING and it had a better policy than RMAX at the

end of the 1500 episodes.

Following these experiments, we ran one trial of RL-DT on

the physical robot (which is highlighted in the accompanying

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200 1400

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Episode Number

Penalty Kick Learning with Random Ball Location

RL-DT
Q-Learning

R-Max

Fig. 6. Cumulative reward of the learning agents on the penalty kick task
with a random ball location.

Fig. 7. This graph shows the percentage of tries that each algorithm scored
at each ball position in the last 200 episodes. Note that the ball’s initial
position was never between 34 and 74 mm because these locations were
impossible to score from.

video 4). In this case, we manually reset the robots and ball to

the correct positions between each episode, resulting in more

noise than in the simulator. The cumulative reward plot for

the one physical robot trial is shown in Figure 8 along with

the cumulative reward averaged over the 30 trials of RL-DT

in the simulator for comparison. The results the algorithm

achieves on the real robot are very similar to its performance

in the simulator, validating that these experiments do cross

over to the physical robot.

Next we ran the final learned policy from the simulator for

the standard ball location case on the real robot, to see how

well the policy transferred over. The learned policy from the

simulator was to shift the leg outward 4 times, so that the

robot’s foot was 112 mm out from its hip, and then kick.

On the real robot, this policy scored on 7 of 10 attempts. In

the simulator, this policy scored 85% of the time. However,

in the simulator, if the ball was moved 4 mm in either

direction, its success rate dropped to 65% or 75%. Noise

in the placement of the real ball may have caused the lower

scoring percentage, as well as the fact that the ball does not

4http://www.cs.utexas.edu/˜AustinVilla/?p=research/rl kick

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Episode Number

Penalty Kick Learning for RL-DT

Real Robot
Simulated

Fig. 8. Cumulative reward of RL-DT on one trial on the real robot and
averaged over 30 trials in the simulator with a standard ball location.

roll as straight in reality as it does in the simulator.

VII. RELATED WORK

There are a few learning algorithms that are based on

a similar premise to ours. SLF-RMAX [11] learns which

state features are relevant for predictions of the transition

and reward functions. The algorithm enumerates all possible

combinations of input features as elements and then keeps

counts of visits and outcomes for all pairs of these elements.

It then determines which elements are the relevant factors.

The algorithm makes predictions when a relevant factor is

found for a queried state; if none is found, the state is

considered unknown and explored. Looking at subsets of

features allows SLF-RMAX to perform less exploration than

R-MAX, but keeping counters for all possible combinations

of input features is very computationally expensive.

Degris et al. [12] use decision trees to learn a model

of the MDP. A separate decision tree is built to predict

each next state feature as well as the reward. Unlike our

algorithm, theirs attempts to predict the absolute transition

function, which may not generalize as well as the relative

effects. Degris et al.’s algorithm calculates an ǫ-greedy policy

through value iteration based on the model provided by the

decision trees. Our approach differs from theirs by starting

in an R-MAX-like exploration mode, which provides a more

guided exploration approach than an ǫ-greedy policy.

There are also a few examples in the literature of reinforce-

ment learning being applied to robots. In [13], the authors

introduce an algorithm called RAM-RMAX, which is a model-

based algorithm where some part of the model is provided to

the algorithm ahead of time. They demonstrate the algorithm

on a robot learning to navigate on two different surfaces.

In Robot Learning [14], the authors provide an overview

of robot learning methods, including reinforcement learning.

Specifically, they look at ways to scale up reinforcement

learning and other methods to robots. One of the methods

that they mention for scaling up learning methods is to learn

action models, which is similar to the models of transition

effects of actions that RL-DT learns with its decision trees.

VIII. DISCUSSION

We demonstrated that reinforcement learning, and specif-

ically model-based reinforcement learning, can be success-

fully used to learn a task on a humanoid robot. Our learning

algorithms were able to learn to score penalty goals in all

three experiments: with a standard ball location, a random-

ized ball location, and on the physical robot. Specifically,

our algorithm, RL-DT, was very successful at solving each

task quickly.

These experiments demonstrate that RL-DT is a good

choice for learning tasks on a robot. Its generalized models

and targeted exploration allow it to learn a reasonable policy

quickly without taking too many actions, which can be

very expensive and time consuming to get on a real robot.

This ability allowed RL-DT to accrue the highest cumulative

rewards on all the experiments.

ACKNOWLEDGMENTS

This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory, The Uni-
versity of Texas at Austin. LARG research is supported in part by
grants from the National Science Foundation (CNS-0615104 and
IIS-0917122), ONR (N00014-09-1-0658), DARPA (FA8650-08-C-
7812), and the Federal Highway Administration (DTFH61-07-H-
00030).

REFERENCES

[1] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry, “Autonomous
helicopter flight via reinforcement learning,” in Advances in Neural

Information Processing Systems 17. MIT Press, 2004.
[2] J. A. Bagnell and J. C. Schneider, “Autonomous helicopter control

using reinforcement learning policy search methods,” in In Interna-

tional Conference on Robotics and Automation. IEEE Press, 2001,
pp. 1615–1620.

[3] R. Zhang and P. Vadakkepat, “An evolutionary algorithm for trajec-
tory based gait generation of biped robot,” in Proceedings of the

International Conference on Computational Intelligence, Robotics and

Autonomous Systems, 2003.
[4] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast

quadrupedal locomotion,” in Proceedings of the IEEE International

Conference on Robotics and Automation, May 2004.
[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. Cambridge, MA: MIT Press, 1998.
[6] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,

University of Cambridge, 1989.
[7] R. I. Brafman and M. Tennenholtz, “R-MAX - a general polynomial

time algorithm for near-optimal reinforcement learning,” in Proceed-

ings of the Seventeenth International Joint Conference on Artificial

Intelligence, 2001, pp. 953–958.
[8] R. T. Committee, “Robocup standard platform league rule book,” May

2009.
[9] T. Hester and P. Stone, “Generalized model learning for reinforcement

learning in factored domains,” in The Eighth International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), May 2009.
[10] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

pp. 81–106, 1986.
[11] A. L. Strehl, C. Diuk, and M. L. Littman, “Efficient structure learning

in factored-state mdps,” in AAAI. AAAI Press, 2007, pp. 645–650.
[12] T. Degris, O. Sigaud, and P.-H. Wuillemin, “Learning the structure of

factored markov decision processes in reinforcement learning prob-
lems,” in ICML ’06: Proceedings of the 23rd international conference

on Machine learning. New York, NY, USA: ACM, 2006, pp. 257–
264.

[13] B. R. Leffler, M. L. Littman, and T. Edmunds, “Efficient reinforcement
learning with relocatable action models,” in Proceedings of the Twenty-
Second National Conference on Artificial Intelligence, 2007, pp. 572–
577.

[14] J. Connell and S. Mahadevan, Robot Learning. MA: Kluwer
Academic Publishers, 1993.

