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POLYNOMIAL REGRESSION WITH AUTOMATED DEGREE: AFUNCTION APPROXIMATOR FOR AUTONOMOUS AGENTSDANIEL STRONGER and PETER STONEDepartment of Computer Sienes, The University of Texas at AustinC0500, 1 University StationAustin, TX 78712, United States of Ameriafstronger,pstoneg�s.utexas.eduIn order for an autonomous agent to behave robustly in a variety of environments, itmust have the ability to learn approximations to many di�erent funtions. The funtionapproximator used by suh an agent is subjet to a number of onstraints that may notapply in a traditional supervised learning setting. Many di�erent funtion approximatorsexist and are appropriate for di�erent problems. This paper proposes a set of riteriafor funtion approximators for autonomous agents. Additionally, for those problems onwhih polynomial regression is a andidate tehnique, the paper presents an enhanementthat meets these riteria. In partiular, using polynomial regression typially requires amanual hoie of the polynomial's degree, trading o� between funtion auray andomputational and memory eÆieny. Polynomial Regression with Automated Degree(PRAD) is a novel funtion approximation method that uses training data to automat-ially identify an appropriate degree for the polynomial. PRAD is fully implemented.Empirial tests demonstrate its ability to eÆiently and aurately approximate both awide variety of syntheti funtions and real-world data gathered by a mobile robot.1. IntrodutionIn order for an autonomous agent to robustly interat with its environment, it isvaluable for it to be able to learn the relationships between relevant environmentalvariables. For example, as a mobile robot moves over di�erent terrains, it may needto learn a new funtion from its motion ommands to the orresponding veloitiesfor eah new surfae it enounters. Similarly, a software travel agent may need tolearn how the pries of di�erent airline tikets vary with respet to time.These relationships an be represented by funtion approximators. A funtionapproximator learns the relationship between a dependent variable and a set ofindependent variables on the basis of a series of training examples. In this paper,we onsider learning funtions of one variable. Even in ases where an agent maynot have aess to expliit training examples, funtion approximation systems ansometimes be used. For example, a legged robot an use funtion approximators tosimultaneously learn one model of its walking ations and one of its visual sensor,without labeled training data for either model 1.An autonomous agent needs its funtion approximator to satisfy ertain on-straints that may not be neessary in a traditional supervised learning setting. Inpartiular, it must be: 1
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2 Daniel Stronger and Peter Stone� Flexible: Widely appliable without tuning parameters.� EÆient: With respet to omputation time and memory.� Robust: Able to handle varying amounts of random noise.These riteria are desribed more preisely and motivated in the following se-tion.2. MotivationFor an agent to be truly autonomous, its funtion approximator must be exible.Spei�ally, sine any parameters it has annot be manually tuned for eah newfuntion, they must have pre-set values that are e�etive over the entire range ofpotential funtions.The funtion approximator must also be eÆient. An autonomous agent haslimited time and memory to alloate to many di�erent omputational problems,and sine it may need to approximate many di�erent funtions, eah one must takeup as little time and spae as possible. This onstraint implies that the methodshould take less time for simpler target funtions. For spae, the algorithm mustuse an amount of storage spae that remains bounded as the amount of inputdata inreases. This requirement is neessary in light of the virtual \�rehose ofexperiene" 2 to whih agents in the real world may be subjet.Finally, agents often reeive data through noisy sensors, and there an be randomnoise in the dynamis of the world. The funtion approximator must be robust tothese e�ets, di�erentiating between random noise and genuine variation in thetarget funtion.There are many methods in ommon use for approximating funtions. However,we are not aware of any urrent method that is able to satisfy all three of theonstraints mentioned above. For example, the Nearest Neighbor method 3 storesall of the data points that are enountered, and evaluates a given input based on thetest points it is losest to in input spae. This method does not satisfy the eÆienyonstraint. Although there are enhanements to Nearest Neighbor 4 that enable itto store only some of the points, doing so normally introdues parameters that needto be manually tuned.Two other ommon funtion approximation methods are bakpropogation ofa neural network with a �xed topology 5;6 and radial basis funtions (RBFs) 7;8.These methods do not satisfy the exibility onstraint, as there are a number ofparameters that must be set manually, suh as the learning rate and the numberof hidden nodes in the network, or the kernel widths. More spei�ally for bak-propagation, a network with any �xed number of hidden nodes will be unable to�t suÆiently omplex funtions, despite the fat that bounded ontinuous fun-tions an be approximated arbitrarily losely by a neural network with one layer ofhidden nodes 9;10. Similarly for RBFs, arbitrary funtions an be approximate, butonly when the kernel widths an be individually spei�ed 11;8.One partiularly straightforward funtion approximator is polynomial regression.
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Polynomial Regression with Automated Degree: A Funtion Approximator for Autonomous Agents 3Polynomial regression has some drawbaks whih lead statistiians to often favorother methods, suh as ubi splines 3. First, as the polynomial degree inreases, theregression urve an sometimes over�t the data and osillate wildly between the datapoints. Furthermore, the regression an beome numerially unstable, espeially ifthe degree is high or the funtion domain is not entered at zero. However, in thepresene of enough data that over�tting is not a onern, and when the degree anddomain of the regression an be restrited to limit the numerial instability, thesimpliity and eÆieny of polynomial regression an make it the method of hoie.As outlined above, some problems faed by autonomous agents indeed have theseproperties. Other suessful uses of polynomial regression inlude modeling a visualsensor 12 and speeh reognition 13.Even in situations where polynomial regression an be useful, it still relies on amanually hosen degree that is ruial to the funtion approximator's e�etiveness.If the degree is too high, the regression an su�er from the drawbaks mentionedabove, and in the ontext of autonomous agents, high degree polynomial regressionarries a signi�ant omputational expense. On the other hand, if the degree is toolow, it will not be able to represent the omplexity of the funtion being learned.This reliane on the degree auses standard polynomial regression to violate theexibility onstraint disussed above.This paper presents a tehnique, Polynomial Regression with Automated Degree(PRAD), that augments polynomial regression so as to satisfy all three onstraints.PRAD is fully implemented and empirially validated on both syntheti data from awide range of funtion omplexities and noise magnitudes, and data olleted froman autonomous mobile robot.3. Finding the Polynomial DegreePolynomial regression entails an inherent trade-o� between auray and eÆieny.As the degree of the polynomial inreases, the �t grows in auray (up to a point),but the time and spae needed inreases as well. This setion presents a methodto automatially identify an appropriate degree for polynomial regression based onthe training data.PRAD takes pairs (xi; yi) and identi�es the best �t polynomial P (x) = � +Pdk=1 �kxk , where d is the degree of the polynomial. The best �t polynomial isde�ned to be the one that minimizes the total squared error Pni=1 [P (xi)� yi℄2,where n is the number of data points enountered thus far. The best �t polynomialis omputed by maintaining 3d+2 sums, namelyPni=1 xk , where k ranges from 0 to2d, andPni=1 yxk, where k ranges from 0 to d. These sums an be used to produea funtion estimate after eah data point 14.PRAD �nds the appropriate degree by starting with a �rst degree (linear) poly-nomial and ontinually monitoring the �t to see if the degree needs to be inreased.If so, the regression is restarted with the degree inremented by one. To restartthe regression, the sums are all reinitialized to zero. Another option would be to
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4 Daniel Stronger and Peter Stonemaintain a large number of sums from the beginning, depending on the relativeimportanes of data eÆieny and spae eÆieny. The degree ontinues to be in-remented until a satisfatory �t is found.In order to determine whether or not a partiular degree is satisfatory, PRADompares a global predition error and a loal noise estimate, two values that areontinually maintained. A high global predition error indiates a poor �t, suggest-ing that the polynomial degree should perhaps be inreased. However, suh an errormight also be aounted for by a large amount of random noise in the observed data,in whih ase inreasing the degree will not help. This omparison does not expliitlytake resoure eÆieny into onsideration, but it �nds the lowest degree polynomialthat ahieves a satisfatory �t, and thereby impliitly balanes omputational ostsagainst auray.PRAD omputes a best �t polynomial after eah data point is enountered. Thisrunning funtion estimate is used to ompute an error for eah data point. Theseerrors are aumulated into a root mean square error, whih we denote as C. C isPRAD's global predition error.We assume that yi an be expressed as f(xi)+!i, where f is the funtion PRADis trying to approximate and !i is zero-mean random noise. The expeted squarederror, C2, is E([f̂(x)� y℄2), where f̂ is the urrent estimate of f . Sine the noise iszero-mean and independent from the funtion error, this error an be deomposedas: C2 � E([f̂(x) � y℄2) = E([f̂(x)� f(x)℄2) +E(!2) (1)PRAD tries to minimize the �rst term on the right, whih represents the funtionestimate inauray. The seond term, whih we denote by D2, is unavoidable,sine the noise generates error even in the presene of a perfet �t to the funtion.Therefore, it is desirable to be able to distinguish between these two soures ofnoise. PRAD makes this distintion by estimating D2, the variane of the randomnoise, diretly.To estimate D2, PRAD partitions the input spae into a pre-set number (r) ofequal small intervals. Eah data point (x; y) is then lassi�ed aording to whihinterval x falls into. The variane of y over the points in any given interval isa good estimate of the noise in the data at eah point, beause the variation inthe underlying funtion is limited over suh a short interval. PRAD maintains thevariane of y over eah interval and onsiders their average to be the mean squarednoise,D2. This method requires knowing the funtion domain, but if it is not known,the robot an �rst estimate the domain from a small amount of data and use thatestimate.From (1), we know that C � D. The ratio between these quantities is a measureof the extent to whih the predition error, C, an be explained by the random noise,D. Therefore, to determine whether it is neessary to inrement the polynomialdegree, PRAD ompares C and D using a threshold ratio, � > 1. If C > D�, thereis a signi�ant amount of error that annot be explained by random noise in the
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Polynomial Regression with Automated Degree: A Funtion Approximator for Autonomous Agents 5data. In that ase, PRAD inrements the degree by one.The ratio between C and D is a good indiator of when to inrease the poly-nomial's degree, but are must be taken to ensure that C and D have stabilizedbefore this metri is used. The following measures ensure this goal. First, when veryfew data points have been taken into aount, the resulting best �t polynomials anbe very haoti (or unde�ned). Thus PRAD does not begin aumulating the rootmean square predition error C until a suÆient number of distint inputs have beenenountered. This threshold amount is set to 3(d+1) (based on the idea that d+1points are required to determine a d-degree polynomial uniquely). Furthermore, forinputs that are either the highest or lowest input seen so far, their predition erroris disarded beause of the unpreditable nature of polynomial regression outsideof its range of training inputs. Finally, to ensure that C and D are based on asuÆiently representative sample of the data, we prohibit inrementing the degreeuntil a threshold number of predition errors have been ounted. This threshold isequal to 3r.Pseudoode for PRAD is depited in Algorithm 1. The running funtion esti-mate, f̂(x), is omputed after every data point. The INITIALIZE routine sets allof the sums used in omputing the regression to zero. As eah training pair (x; y) isRECEIVED by PRAD, the INCORPORATE routine updates all the stored sumsappropriately.PRAD uses four onstants as summarized in Table 1. Their suggested valuesindiated in the table were hosen without extensive experimentation and are usedin all of the experiments reported in this paper. These parameters replae a singleparameter in onventional polynomial regression: the polynomial's degree. Never-theless, we argue that PRAD is atually a signi�ant improvement with respet tothe exibility onstraint. In partiular, one setting for these four variables is able tohandle a wide range of funtion omplexities and amounts of noise, whereas no onesetting for the degree an do that. This hypothesis is supported empirially in thefollowing setion. Furthermore, the same setting of the onstants is also e�etive inthe robot experiments.Notably, the method desribed here is not sensitive to the sale of the data. Ifall of the x or y are multiplied by a onstant saling fator, PRAD will settle onthe same degree for the polynomial. This property ontributes to the algorithm'sability to handle a wide range of funtions and noise levels.Constant ValueNumber of Intervals (r) 20Degree Inrementing Threshold (�) 1:3Error Usability Threshold 3(d+ 1)Interval Aumulation Threshold 3r = 60
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6 Daniel Stronger and Peter StoneAlgorithm 1 Pseudoode for PRADGiven: �, r, Domainmin, Domainmaxdegree 1loopShouldInrementDegree = falseINITIALIZE f̂(x) \\Running funtion estimaten 0 \\Number of data pointsECounter  0 \\Number of predition errors ountedESquareSum 0 \\Total squared predition errorfor i = 1 to r doICounteri  0 \\Number of points in eah intervalISumi  0 \\Sums used to ompute interval varianesISquareSumi  0end forwhile ShouldInrementDegree = false don n+ 1RECEIVE (x; y)if (x is not the largest or smallest x so far) AND(have reeived � 3(degree+ 1) di�erent values of x) thenError  y � f̂(x)ECounter  ECounter + 1ESquareSum ESquareSum+Error2C  pESquareSum=ECounterend ifINCORPORATE (x; y) into f̂(x)i d r(x�Domainmin)(Domainmax�Domainmin)eICounteri  ICounteri + 1ISumi  ISumi + yISquareSumi  ISquareSumi + y2V arianei  (ISquareSumi�ISum2i =ICounteri)ICounteri�1D  root mean of de�ned values of V arianeiif (ECounter > 3r) AND (C > D�) thenShouldInrementDegree trueend ifend whiledegree degree+ 1end loop4. Experimental ValidationThis setion sets out to verify that PRAD satis�es the riteria set forth in the intro-dution. Namely, it should be eÆient, exible and robust to noise. More preisely,
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Polynomial Regression with Automated Degree: A Funtion Approximator for Autonomous Agents 7just one setting of the algorithm's numerial parameters should be able to eÆientlyhandle a wide range of di�erent funtions and amounts of random noise. To verifyonlusively that these onstraints are met requires extensive testing in a wide va-riety of domains. Here we verify that PRAD is e�etive in at least some ases, andpresent evidene that all onstraints are met by implementing PRAD and testingit both on a varied suite of simulated test data and on a roboti senario that hasbeen addressed previously with polynomial regression.4.1. Simulated Data ResultsWe have tested PRAD on a suite of syntheti test data designed spei�ally torepresent a wide range of funtion omplexities and amounts of noise. In this set-ting, PRAD produes an improvement over polynomial regression with any �xeddegree. PRAD also ompares favorably against another popular funtion approx-imation method, natural ubi splines with uniformly distributed knots. All testswere performed on a 2.00GHz Pentium 4 proessor with 512MB of RAM.The suite of test data varied along two dimensions: i) the omplexity of theunderlying funtion, and ii) the amount of random noise added to the funtionvalues. Eah dimension varies over a range of ten values, yielding 100 test trials.For eah point, x is hosen randomly with a uniform distribution over the domaininterval, whih is set to (�1; 1). The omplexity of the funtion is represented bythe variable a, whih ranges over the integers from 1 to 10. In terms of a, the testfuntion is: f(x) = sin�a�4 �x� 12�� (2)The higher a is, the more omplex the funtion is over the domain (�1; 1). Notethat a sine wave is used instead of a polynomial, to demonstrate the exibilityof polynomial regression. The sine wave is entered at x = 1=2 so that the fun-tion is not stritly odd or even, sine an odd or even funtion would diminish theimportane of polynomials of the opposite parity degree.
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8 Daniel Stronger and Peter StoneThe amount of random noise is represented by the variable b, whih also rangesfrom 1 to 10. A value of b auses a zero-mean, gaussian-distributed random o�setwith standard deviation b=20 to be added to f(x) for eah data point. Figure 1depits the funtion and 100 data points produed by eah of two ombinations of aand b. It is important to remember that the data presented to our simulated agentarrives as a stream. In general, the agent does not see all of the points at one, butrather must inorporate the new data eÆiently as it omes in.In eah test trial, PRAD enounters 2000 data points. To evaluate PRAD, weompute the predition error after the polynomial degree has stabilized. To measurethis, PRAD's ability to inrement the degree is turned o� after 800 points. In testswhere it was not turned o�, it was very rare for the degree to inrease beyond thispoint. The squared predition errors after the 1000th point are then averaged toobtain the mean square error for that trial. This ensures that the measured errorsare based on a signi�ant amount of data with the seleted degree.The trials are also evaluated by the amount of time that they take. These are theamounts of time that a single run of PRAD takes to proess all 2000 data points.Finally, in eah trial the �nal degree used by PRAD is reorded. Eah of the 100data settings is tested 100 times, and the average errors, times, and degrees are usedto evaluate the method. The results are shown in Figure 2.A few general patterns are evident in the data. First, the average error is on-sistently quite lose to the magnitude of the random noise, b=20. Therefore (asindiated by (1)), PRAD's funtion approximations are very lose to the atualfuntions being estimated. In addition, the average degree used to represent thefuntion inreases as the funtion omplexity inreases. This pattern indiates thatPRAD is adapting the polynomial degree as needed to represent the omplexity ofthe funtion. Furthermore, for a given funtion omplexity, as the amount of noiseinreases, the degree dereases slowly. PRAD uses slightly lower degrees in theseases beause the noise masks some of the variation in the funtion. Finally, notethat the time taken is highly orrelated with the degree used, so that only as muhtime is used as needed for the omplexity of the funtion being modeled.For omparison, the same tests were run on polynomial regression with a �xeddegree. For eah degree from one to ten, the errors and times were measured forall 100 test ases. One straightforward measure of an algorithm's performane is itsaverage time and error over all 100 trials. These averages are shown in Table 2.Note that a baseline amount of error is 0:275, sine that is the average of themagnitudes of random noise that are used. By omparison, PRAD's overall averageerror is 0:310, with an average degree of 4:20 and time of 111 ms. The lowest �xeddegree that is able to attain PRAD's average error is 7, whih takes 209 ms, or 88%more time.A good measure of the funtion approximator's �delity is the exess error, de-�ned as the di�erene between the amount of average error and the magnitude ofthe noise. The average exess error is equivalent to the average overall error minus0:275, so it behaves identially to the average error shown in Table 2. However, the
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Polynomial Regression with Automated Degree: A Funtion Approximator for Autonomous Agents 9a b Err. Deg. ms a b Err. Deg. ms1 1 0:06 1:25 47 2 1 0:05 2:95 811 2 0:11 1:03 43 2 2 0:12 2:15 661 3 0:15 1:01 42 2 3 0:16 2:04 641 4 0:20 1:01 42 2 4 0:21 2:05 641 5 0:25 1:00 42 2 5 0:26 2:03 641 6 0:30 1:00 42 2 6 0:33 1:64 561 7 0:35 1:01 42 2 7 0:39 1:40 501 8 0:40 1:01 42 2 8 0:45 1:25 481 9 0:45 1:01 42 2 9 0:49 1:19 461 10 0:50 1:00 42 2 10 0:54 1:11 443 1 0:07 3:40 91 4 1 0:05 4:00 1043 2 0:12 3:18 86 4 2 0:10 4:00 1043 3 0:18 2:44 72 4 3 0:15 4:00 1033 4 0:23 2:22 68 4 4 0:21 3:93 1013 5 0:27 2:13 66 4 5 0:29 3:12 863 6 0:32 2:10 65 4 6 0:35 2:49 733 7 0:37 2:06 64 4 7 0:40 2:22 683 8 0:42 2:04 64 4 8 0:44 2:13 663 9 0:46 2:00 63 4 9 0:49 2:11 653 10 0:51 2:01 63 4 10 0:54 2:13 665 1 0:09 4:10 106 6 1 0:11 5:10 1285 2 0:13 4:09 106 6 2 0:14 5:07 1275 3 0:17 4:03 105 6 3 0:18 5:07 1275 4 0:22 4:06 106 6 4 0:22 5:04 1265 5 0:26 4:02 104 6 5 0:29 4:82 1215 6 0:31 4:03 105 6 6 0:34 4:62 1175 7 0:36 4:00 103 6 7 0:40 4:41 1125 8 0:43 3:87 100 6 8 0:45 4:31 1105 9 0:50 3:62 95 6 9 0:50 4:20 1085 10 0:57 3:34 89 6 10 0:56 4:05 1047 1 0:13 5:77 144 8 1 0:06 7:00 1757 2 0:16 5:46 136 8 2 0:11 6:99 1767 3 0:20 5:37 135 8 3 0:17 6:82 1707 4 0:24 5:14 128 8 4 0:26 6:04 1507 5 0:29 5:15 129 8 5 0:31 5:74 1447 6 0:33 5:07 127 8 6 0:36 5:39 1357 7 0:38 5:08 127 8 7 0:41 5:31 1337 8 0:43 5:05 126 8 8 0:46 5:12 1287 9 0:48 5:03 126 8 9 0:50 5:13 1297 10 0:53 5:01 125 8 10 0:55 5:07 1279 1 0:12 7:01 176 10 1 0:13 8:03 2049 2 0:15 7:02 177 10 2 0:17 7:91 2019 3 0:18 7:00 176 10 3 0:21 7:83 1989 4 0:23 7:01 176 10 4 0:26 7:72 1969 5 0:27 6:99 175 10 5 0:31 7:58 1919 6 0:33 6:92 173 10 6 0:37 7:35 1859 7 0:39 6:81 170 10 7 0:41 7:30 1849 8 0:46 6:56 163 10 8 0:46 7:21 1819 9 0:53 6:05 151 10 9 0:52 6:99 1759 10 0:59 5:81 146 10 10 0:58 6:78 172Fig. 2. Performane of PRAD under di�erent test onditions. All values are averaged over 100runs. The olumns represent the omplexity of the funtion, the amount of noise, and the averageerror, polynomial degree, and time in milliseonds.exibility onstraint requires the funtion to be aurately modeled in eah of thesettings it enounters. This ability is represented by the maximum amount of exesserror ahieved over all of the test senarios. Figure 3 ompares the maximum exesserror and time spent by PRAD with those of onstant degree polynomial regression.The �gure shows that PRAD attains a qualitatively better ombination of exesserror and time expended than polynomial regression with any of the �xed degrees
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10 Daniel Stronger and Peter StoneDegree Avg. Err. Max. Exess Time(ms)1 0:653 0:664 392 0:536 0:635 623 0:487 0:615 844 0:441 0:600 1105 0:350 0:514 1386 0:327 0:356 1717 0:289 0:196 2098 0:281 0:083 2509 0:277 0:024 34110 0:276 0:004 398PRAD 0:310 0:094 111
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Fig. 3. The maximum exess errors and times attained by polynomial regression with a �xeddegree, ompared to PRAD.tried. In partiular, the lowest degree to attain the exess error ahieved by PRADwas 8, whih takes 125% more time than PRAD.To test PRAD further, we ompare it with a powerful alternative to polyno-mial regression: natural ubi splines. These are pieewise ubi urves that have aontinuous seond derivative 3. For example, ubi splines an be used to identifykineti parameters of a simulated or atual network of hemial reations 15. Thetransition points between the ubis are known as knots, and the question of howmany knots there should be and where they should be plaed has reeived muhattention in the literature 16;17. We are not aware of a solution to this problem thatsatis�es the onstraints set forth in the introdution. For omparison purposes, wehave implemented a straightforward approah to knot seletion, spaing them uni-formly throughout the interval. Sine the method requires there to be at least 3knots, we have tested eah number of knots from 3 to 10. Eah number of knotswas tested on all 100 test ases, and the average errors, maximum exess errors,
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Polynomial Regression with Automated Degree: A Funtion Approximator for Autonomous Agents 11and average times were reorded. These values are shown in Table 3.# of Knots Avg. Err. Max. Exess Time(ms)3 0:529 0:630 644 0:464 0:623 835 0:421 0:580 1086 0:313 0:380 1357 0:289 0:174 1678 0:280 0:063 2029 0:277 0:025 24110 0:276 0:010 339PRAD 0:310 0:094 111PRAD outperforms any of the �xed settings tried for the ubi splines. Thelowest number of knots that attains a better average error is 7, whih takes 50%moretime than PRAD. Furthermore, the lowest number that attains a better maximumexess error is 8, taking 82% more time than PRAD.These results should not be taken as an indiation that PRAD dominates ubisplines, or for that matter any other funtion approximator, in all ases. Rather, theyindiate that for the subest of ases that polynomial regression is an appropriatemethod, PRAD an provide a more general, less brittle, solution.4.2. Mobile Robot ResultsThe true test of PRAD's e�etiveness is its performane on real autonomous agenttasks. In this setion we present our implementation of PRAD on a mobile robotlearning about itself and its environment. For these experiments, the algorithmand onstants used were exatly the same as the ones used for the simulated datadesribed above, namely the algorithm spei�ed in Algorithm 1 and the onstants inTable 1. The fat that no additional parameter tuning was neessary lends redeneto PRAD's robustness.The experimental setup used here is based on previous work training a mobilerobot to simultaneously alibrate its ation and sensor models 1. In this work, arobot that is equipped with a amera uses polynomial regression to learn a modelof a visual sensor. In the robot's amera image, the vertial size of a �xed landmarkis taken as a visual sensor input. The sensor model is a funtion from this inputto the robot's distane from the landmark. The robot and the landmark, a olor-oded ylindrial beaon, are depited in Figure 4. While the robot walks forwardsand bakwards faing the landmark, it uses estimates of its loation (based on itsation model), ombined with orresponding sensor readings, to provide trainingdata for the sensor model. In that work, the robot simultaneously learned its ationmodel, a funtion from a parameterized range of ation ommands to their resultant
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12 Daniel Stronger and Peter Stoneveloities, also using polynomial regression.
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Fig. 4. A mobile robot with a �xed landmark. The inset depits the landmark as seen throughthe robot's amera.Previously, both regressions relied on a manually hosen degree for the polyno-mial. We hose 3 for the sensor model and 4 for the ation model. These degreeswere hosen based on the rough intuition that those were the amounts of omplexityneeded to represent those funtions. However, the manually hosen degrees limit themethod's appliability. Here we apply PRAD to the learning of the sensor model,demonstrating PRAD's e�etiveness on real-world data. PRAD is implemented andtested on the Sony Aibo ERS-7 robot, shown in Figure 4. All proessing is performedon the robot's 576 MHz proessor in real time, inluding vision and motion pro-essing.
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Fig. 5. The measured sensor model and a learned ubi modelThe sensor model learned by PRAD is a funtion from the beaon's height in
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Polynomial Regression with Automated Degree: A Funtion Approximator for Autonomous Agents 13the image to the robot's distane from the beaon. In the senario used to testPRAD, an ation model is already known, but not a sensor model. In this situation,an appropriate polynomial degree for the sensor model would still be a priori un-known, making this senario a realisti test ase for PRAD. The distanes used inthe training are based on a pre-learned ation model, whih is a fourth degree poly-nomial mapping a parameterized set of ations to orresponding veloities. Theseestimated veloities are integrated over time to yield a ontinual distane estimate.The training examples for PRAD have the beaon's height as an input and theorresponding estimated beaon distane as an output. As PRAD learned a sensormodel, the robot walked forwards and bakwards via a sequene of randomly hosenation ommands.Eah trial run lasted �ve minutes on the robot, and PRAD was tested over 15trials. During the trials, PRAD was allowed to inrement the degree at any time, butit never did so after two and a half minutes had passed. The fat that PRAD was ableto settle on a degree every time demonstrates the method's stability. Furthermore,onsidering that eah time the robot is booted up, it takes about 27 seonds toinitialize, we onsider this learning time of �ve minutes to be qualitatively quiteshort. Nevertheless, randomness in the training data aused some variation in thedegree settled on by PRAD. The average degree hosen was 3:33, with a standarddeviation of 1:29. This degree orroborates our earlier estimate that a third degreepolynomial was roughly the amount of omplexity needed to learn the sensor model.Figure 5 depits a typial ubi sensor model learned by PRAD. The measured datais obtained by manual measurements ompared with the robot's reported beaonheights.The learned sensor models are evaluated by omparing them to the measureddata. However, although the training outputs orrespond to relative distanes fromthe beaon, the robot has no aess to its absolute distane. Thus we an expet thelearned sensor model to math the measured one only up to an additive onstant.To evaluate the learned model, we omputed the shifting onstant that minimizesthe mean squared error. On average, the root mean square error between the shiftedlearned sensor model and the measured sensor model was 10:1� 3:4 m. Comparedto the distane range of 240 m, the error is 4:2 perent.These experiments demonstrate that PRAD an be e�etive in the ontext ofan autonomous agent in the real world. It suessfully negotiates the data obtainedfrom the robot's noisy sensors and e�etors and settles on an appropriate polynomialdegree.5. Related WorkPRAD an be seen as a type of stepwise regression algorithm. Suh an algorithmadds to a set of basis funtions for the regression, one funtion at a time. PRAD is inthis ategory beause inrementing the degree of the polynomial by one is equivalentto adding another exponent to a set of basis funtions. One ommon method for
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14 Daniel Stronger and Peter Stonestepwise regression involves adding new terms based on their omputed statistialsigni�ane 18. When this method is applied to polynomial regression, it an fail to�nd the orret degree beause there are situations where inrementing the degreeby one produes no improvement but where further inreases an yield a signi�antimprovement. PRAD irumvents this problem by inreasing the degree until the�t is roughly as good as possible, based on an estimate of the amount of randomnoise. Other stepwise regression methods inlude MARS 19 and CIPER 20, whihontinually add multivariable polynomials to a basis set with the goal of minimizingthe predition error.PRAD hooses a value for the degree of the polynomial to yield a small error us-ing as little time and spae as possible. Other methods for automatially hoosing aparameter for a funtion approximator inlude the Akaike Information Criterion 21,the Bayes Information Criterion 22, and ross-validation 3. However, these methodsoptimize parameters stritly in terms of predition error, fousing on trying to makeeÆient use of a limited amount of data. PRAD di�ers from all of these methodsin that it �nds a good balane between predition auray and resoure eÆienyin aordane with the amount of noise and omplexity of the target funtion.6. ConlusionWe have developed, implemented, and tested an enhanement to polynomial re-gression, PRAD. This tehnique is designed to satisfy three spei� onstraints.First, the algorithm uses only as muh time and spae as is neessary to representthe funtion being estimated. Seond, PRAD is robust to varied amounts of ran-dom noise. Finally, it has no parameters that need to be manually tuned for eahsituation.PRAD has been implemented and tested on both simulated test data and datagathered from a mobile robot. The experimental results with simulated data bearout that it an improve over polynomial regression with any �xed degree, aordingto the above onstraints, and also that it an be more e�etive than natural ubisplines for some �xed settings of the spline knots. Furthermore, using the exat samealgorithm and numerial onstants, PRAD was able to automatially detet theappropriate degree for learning a sensor model on a mobile robot. These experimentssuggest that PRAD is well-suited to learning in the ontext of an autonomous agent.AknowledgementsThe authors thank Kurt Dresner, Peggy Fidelman, Nate Kohl, and Greg Kuhlmannfor helpful omments on an earlier draft. This researh was supported in part byNSF CAREER award IIS-0237699 and ONR YIP award N00014-04-1-0545.Referenes1. Stronger, D., Stone, P.: Towards autonomous sensor and atuator model indution ona mobile robot. Connetion Siene 18 (2006) 97{119 Speial Issue on Developmental
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