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In order for an autonomous agent to behave robustly in a variety of environments, it
must have the ability to learn approximations to many different functions. The function
approximator used by such an agent is subject to a number of constraints that may not
apply in a traditional supervised learning setting. Many different function approximators
exist and are appropriate for different problems. This paper proposes a set of criteria
for function approximators for autonomous agents. Additionally, for those problems on
which polynomial regression is a candidate technique, the paper presents an enhancement
that meets these criteria. In particular, using polynomial regression typically requires a
manual choice of the polynomial’s degree, trading off between function accuracy and
computational and memory efficiency. Polynomial Regression with Automated Degree
(PRAD) is a novel function approximation method that uses training data to automat-
ically identify an appropriate degree for the polynomial. PRAD is fully implemented.
Empirical tests demonstrate its ability to efficiently and accurately approximate both a
wide variety of synthetic functions and real-world data gathered by a mobile robot.

1. Introduction

In order for an autonomous agent to robustly interact with its environment, it is
valuable for it to be able to learn the relationships between relevant environmental
variables. For example, as a mobile robot moves over different terrains, it may need
to learn a new function from its motion commands to the corresponding velocities
for each new surface it encounters. Similarly, a software travel agent may need to
learn how the prices of different airline tickets vary with respect to time.

These relationships can be represented by function approximators. A function
approximator learns the relationship between a dependent variable and a set of
independent variables on the basis of a series of training examples. In this paper,
we consider learning functions of one variable. Even in cases where an agent may
not have access to explicit training examples, function approximation systems can
sometimes be used. For example, a legged robot can use function approximators to
simultaneously learn one model of its walking actions and one of its visual sensor,
without labeled training data for either model !.

An autonomous agent needs its function approximator to satisfy certain con-
straints that may not be necessary in a traditional supervised learning setting. In
particular, it must be:
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e Flexible: Widely applicable without tuning parameters.
e Efficient: With respect to computation time and memory.
e Robust: Able to handle varying amounts of random noise.

These criteria are described more precisely and motivated in the following sec-
tion.

2. Motivation

For an agent to be truly autonomous, its function approximator must be flexible.
Specifically, since any parameters it has cannot be manually tuned for each new
function, they must have pre-set values that are effective over the entire range of
potential functions.

The function approximator must also be efficient. An autonomous agent has
limited time and memory to allocate to many different computational problems,
and since it may need to approximate many different functions, each one must take
up as little time and space as possible. This constraint implies that the method
should take less time for simpler target functions. For space, the algorithm must
use an amount of storage space that remains bounded as the amount of input
data increases. This requirement is necessary in light of the virtual “firechose of
experience” % to which agents in the real world may be subject.

Finally, agents often receive data through noisy sensors, and there can be random
noise in the dynamics of the world. The function approximator must be robust to
these effects, differentiating between random noise and genuine variation in the
target function.

There are many methods in common use for approximating functions. However,
we are not aware of any current method that is able to satisfy all three of the
constraints mentioned above. For example, the Nearest Neighbor method 3 stores
all of the data points that are encountered, and evaluates a given input based on the
test points it is closest to in input space. This method does not satisfy the efficiency
constraint. Although there are enhancements to Nearest Neighbor # that enable it
to store only some of the points, doing so normally introduces parameters that need
to be manually tuned.

Two other common function approximation methods are backpropogation of
a neural network with a fixed topology °¢ and radial basis functions (RBFs) 78.
These methods do not satisfy the flexibility constraint, as there are a number of
parameters that must be set manually, such as the learning rate and the number
of hidden nodes in the network, or the kernel widths. More specifically for back-
propagation, a network with any fired number of hidden nodes will be unable to
fit sufficiently complex functions, despite the fact that bounded continuous func-
tions can be approximated arbitrarily closely by a neural network with one layer of
hidden nodes ?'°. Similarly for RBFs, arbitrary functions can be approximate, but
only when the kernel widths can be individually specified -3,

One particularly straightforward function approximator is polynomial regression.
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Polynomial regression has some drawbacks which lead statisticians to often favor
other methods, such as cubic splines 2. First, as the polynomial degree increases, the
regression curve can sometimes overfit the data and oscillate wildly between the data
points. Furthermore, the regression can become numerically unstable, especially if
the degree is high or the function domain is not centered at zero. However, in the
presence of enough data that overfitting is not a concern, and when the degree and
domain of the regression can be restricted to limit the numerical instability, the
simplicity and efficiency of polynomial regression can make it the method of choice.
As outlined above, some problems faced by autonomous agents indeed have these
properties. Other successful uses of polynomial regression include modeling a visual
sensor 2 and speech recognition 3.

Even in situations where polynomial regression can be useful, it still relies on a
manually chosen degree that is crucial to the function approximator’s effectiveness.
If the degree is too high, the regression can suffer from the drawbacks mentioned
above, and in the context of autonomous agents, high degree polynomial regression
carries a significant computational expense. On the other hand, if the degree is too
low, it will not be able to represent the complexity of the function being learned.
This reliance on the degree causes standard polynomial regression to violate the
flexibility constraint discussed above.

This paper presents a technique, Polynomial Regression with Automated Degree
(PRAD), that augments polynomial regression so as to satisfy all three constraints.
PRAD is fully implemented and empirically validated on both synthetic data from a
wide range of function complexities and noise magnitudes, and data collected from
an autonomous mobile robot.

3. Finding the Polynomial Degree

Polynomial regression entails an inherent trade-off between accuracy and efficiency.
As the degree of the polynomial increases, the fit grows in accuracy (up to a point),
but the time and space needed increases as well. This section presents a method
to automatically identify an appropriate degree for polynomial regression based on
the training data.

PRAD takes pairs (z;,y;) and identifies the best fit polynomial P(z) = a +
Zzzl Bra®, where d is the degree of the polynomial. The best fit polynomial is
defined to be the one that minimizes the total squared error .1 [P(z;) — y;]?,
where n is the number of data points encountered thus far. The best fit polynomial
is computed by maintaining 3d + 2 sums, namely > ; z*, where k ranges from 0 to
2d, and Z?:l yz*, where k ranges from 0 to d. These sums can be used to produce
a function estimate after each data point 4.

PRAD finds the appropriate degree by starting with a first degree (linear) poly-
nomial and continually monitoring the fit to see if the degree needs to be increased.
If so, the regression is restarted with the degree incremented by one. To restart
the regression, the sums are all reinitialized to zero. Another option would be to
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maintain a large number of sums from the beginning, depending on the relative
importances of data efficiency and space efficiency. The degree continues to be in-
cremented until a satisfactory fit is found.

In order to determine whether or not a particular degree is satisfactory, PRAD
compares a global prediction error and a local noise estimate, two values that are
continually maintained. A high global prediction error indicates a poor fit, suggest-
ing that the polynomial degree should perhaps be increased. However, such an error
might also be accounted for by a large amount of random noise in the observed data,
in which case increasing the degree will not help. This comparison does not explicitly
take resource efficiency into consideration, but it finds the lowest degree polynomial
that achieves a satisfactory fit, and thereby implicitly balances computational costs
against accuracy.

PRAD computes a best fit polynomial after each data point is encountered. This
running function estimate is used to compute an error for each data point. These
errors are accumulated into a root mean square error, which we denote as C. C is
PRAD’s global prediction error.

We assume that y; can be expressed as f(z;)+w;, where f is the function PRAD
is trying to approximate and w; is zero-mean random noise. The expected squared
error, C?, is E([f(:l:) —y]?), where f is the current estimate of f. Since the noise is
zero-mean and independent from the function error, this error can be decomposed
as:

C* ~ B([f () — ") = E(f(2) - f(2)]*) + E(w?) (1)

PRAD tries to minimize the first term on the right, which represents the function
estimate inaccuracy. The second term, which we denote by D?2, is unavoidable,
since the noise generates error even in the presence of a perfect fit to the function.
Therefore, it is desirable to be able to distinguish between these two sources of
noise. PRAD makes this distinction by estimating D?, the variance of the random
noise, directly.

To estimate D?, PRAD partitions the input space into a pre-set number (r) of
equal small intervals. Each data point (z,y) is then classified according to which
interval x falls into. The variance of y over the points in any given interval is
a good estimate of the noise in the data at each point, because the variation in
the underlying function is limited over such a short interval. PRAD maintains the
variance of y over each interval and considers their average to be the mean squared
noise, D2. This method requires knowing the function domain, but if it is not known,
the robot can first estimate the domain from a small amount of data and use that
estimate.

From (1), we know that C' > D. The ratio between these quantities is a measure
of the extent to which the prediction error, C, can be explained by the random noise,
D. Therefore, to determine whether it is necessary to increment the polynomial
degree, PRAD compares C' and D using a threshold ratio, 8 > 1. If C > D@, there
is a significant amount of error that cannot be explained by random noise in the
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data. In that case, PRAD increments the degree by one.

The ratio between C' and D is a good indicator of when to increase the poly-
nomial’s degree, but care must be taken to ensure that C' and D have stabilized
before this metric is used. The following measures ensure this goal. First, when very
few data points have been taken into account, the resulting best fit polynomials can
be very chaotic (or undefined). Thus PRAD does not begin accumulating the root
mean square prediction error C until a sufficient number of distinct inputs have been
encountered. This threshold amount is set to 3(d + 1) (based on the idea that d + 1
points are required to determine a d-degree polynomial uniquely). Furthermore, for
inputs that are either the highest or lowest input seen so far, their prediction error
is discarded because of the unpredictable nature of polynomial regression outside
of its range of training inputs. Finally, to ensure that C and D are based on a
sufficiently representative sample of the data, we prohibit incrementing the degree
until a threshold number of prediction errors have been counted. This threshold is
equal to 3r.

Pseudocode for PRAD is depicted in Algorithm 1. The running function esti-
mate, f(:l:), is computed after every data point. The INITIALIZE routine sets all
of the sums used in computing the regression to zero. As each training pair (z,y) is
RECEIVED by PRAD, the INCORPORATE routine updates all the stored sums
appropriately.

PRAD uses four constants as summarized in Table 1. Their suggested values
indicated in the table were chosen without extensive experimentation and are used
in all of the experiments reported in this paper. These parameters replace a single
parameter in conventional polynomial regression: the polynomial’s degree. Never-
theless, we argue that PRAD is actually a significant improvement with respect to
the flexibility constraint. In particular, one setting for these four variables is able to
handle a wide range of function complexities and amounts of noise, whereas no one
setting for the degree can do that. This hypothesis is supported empirically in the
following section. Furthermore, the same setting of the constants is also effective in
the robot experiments.

Notably, the method described here is not sensitive to the scale of the data. If
all of the z or y are multiplied by a constant scaling factor, PRAD will settle on
the same degree for the polynomial. This property contributes to the algorithm’s
ability to handle a wide range of functions and noise levels.

Constant | Value |
Number of Intervals (r) 20
Degree Incrementing Threshold (6) | 1.3

Error Usability Threshold 3(d+1)
Interval Accumulation Threshold 3r =60
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Algorithm 1 Pseudocode for PRAD
Given: 0, r, Domain,in, Domaing,gs:
degree « 1
loop
ShouldIncrementDegree = false
INITIALIZE f(z) \\ Running function estimate
n«0 \\ Number of data points
ECounter < 0 \\ Number of prediction errors counted
ESquareSum + 0 \\ Total squared prediction error
fori=1tor do
ICounter; < 0 \\ Number of points in each interval
ISum; «+ 0 \\Sums used to compute interval variances
ISquareSum; < 0
end for
while ShouldIncrementDegree = false do
n<n+1
RECEIVE (z,y)
if (z is not the largest or smallest z so far) AND
(have received > 3(degree + 1) different values of z) then
Error « y — f(z)
ECounter < ECounter + 1
ESquareSum «— ESquareSum + Error?
C «+ /ESquareSum/ECounter
end if

INCORPORATE (z,y) into f(z)
. —D iNmin

[ [(DorgéfnmaZTangmair)Lmin)]
ICounter; < ICounter; + 1
ISum; < I[Sum; +y

ISquareSum; + ISquareSum; + y>

(ISquareSum;—ISum?/ICounter;)
ICounter;—1

D < root mean of defined values of Variance;

if (ECounter > 3r) AND (C > D§) then
ShouldIncrementDegree < true
end if

end while

Variance; <

degree « degree + 1
end loop

4. Experimental Validation

This section sets out to verify that PRAD satisfies the criteria set forth in the intro-
duction. Namely, it should be efficient, flexible and robust to noise. More precisely,
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just one setting of the algorithm’s numerical parameters should be able to efficiently
handle a wide range of different functions and amounts of random noise. To verify
conclusively that these constraints are met requires extensive testing in a wide va-
riety of domains. Here we verify that PRAD is effective in at least some cases, and
present evidence that all constraints are met by implementing PRAD and testing
it both on a varied suite of simulated test data and on a robotic scenario that has
been addressed previously with polynomial regression.

4.1. Simulated Data Results

We have tested PRAD on a suite of synthetic test data designed specifically to
represent a wide range of function complexities and amounts of noise. In this set-
ting, PRAD produces an improvement over polynomial regression with any fixed
degree. PRAD also compares favorably against another popular function approx-
imation method, natural cubic splines with uniformly distributed knots. All tests
were performed on a 2.00GHz Pentium 4 processor with 512MB of RAM.

The suite of test data varied along two dimensions: i) the complexity of the
underlying function, and ii) the amount of random noise added to the function
values. Each dimension varies over a range of ten values, yielding 100 test trials.

For each point, x is chosen randomly with a uniform distribution over the domain
interval, which is set to (—1,1). The complexity of the function is represented by
the variable a, which ranges over the integers from 1 to 10. In terms of a, the test

f(z) = sin (% (:,; - %)) (2)

The higher a is, the more complex the function is over the domain (—1,1). Note

function is:

that a sine wave is used instead of a polynomial, to demonstrate the flexibility
of polynomial regression. The sine wave is centered at z = 1/2 so that the func-
tion is not strictly odd or even, since an odd or even function would diminish the
importance of polynomials of the opposite parity degree.

X X

Fig. 1. Functions and 100 data points for two combinations of a and b, a = 2 and b = 8 (left),
and a = 8 and b = 2 (right).
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The amount of random noise is represented by the variable b, which also ranges
from 1 to 10. A value of b causes a zero-mean, gaussian-distributed random offset
with standard deviation b/20 to be added to f(z) for each data point. Figure 1
depicts the function and 100 data points produced by each of two combinations of a
and b. It is important to remember that the data presented to our simulated agent
arrives as a stream. In general, the agent does not see all of the points at once, but
rather must incorporate the new data efficiently as it comes in.

In each test trial, PRAD encounters 2000 data points. To evaluate PRAD, we
compute the prediction error after the polynomial degree has stabilized. To measure
this, PRAD’s ability to increment the degree is turned off after 800 points. In tests
where it was not turned off, it was very rare for the degree to increase beyond this
point. The squared prediction errors after the 1000th point are then averaged to
obtain the mean square error for that trial. This ensures that the measured errors
are based on a significant amount of data with the selected degree.

The trials are also evaluated by the amount of time that they take. These are the
amounts of time that a single run of PRAD takes to process all 2000 data points.
Finally, in each trial the final degree used by PRAD is recorded. Each of the 100
data settings is tested 100 times, and the average errors, times, and degrees are used
to evaluate the method. The results are shown in Figure 2.

A few general patterns are evident in the data. First, the average error is con-
sistently quite close to the magnitude of the random noise, b/20. Therefore (as
indicated by (1)), PRAD’s function approximations are very close to the actual
functions being estimated. In addition, the average degree used to represent the
function increases as the function complexity increases. This pattern indicates that
PRAD is adapting the polynomial degree as needed to represent the complexity of
the function. Furthermore, for a given function complexity, as the amount of noise
increases, the degree decreases slowly. PRAD uses slightly lower degrees in these
cases because the noise masks some of the variation in the function. Finally, note
that the time taken is highly correlated with the degree used, so that only as much
time is used as needed for the complexity of the function being modeled.

For comparison, the same tests were run on polynomial regression with a fixed
degree. For each degree from one to ten, the errors and times were measured for
all 100 test cases. One straightforward measure of an algorithm’s performance is its
average time and error over all 100 trials. These averages are shown in Table 2.

Note that a baseline amount of error is 0.275, since that is the average of the
magnitudes of random noise that are used. By comparison, PRAD’s overall average
error is 0.310, with an average degree of 4.20 and time of 111 ms. The lowest fixed
degree that is able to attain PRAD’s average error is 7, which takes 209 ms, or 88%
more time.

A good measure of the function approximator’s fidelity is the excess error, de-
fined as the difference between the amount of average error and the magnitude of
the noise. The average excess error is equivalent to the average overall error minus
0.275, so it behaves identically to the average error shown in Table 2. However, the
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[a]b [ Err. [ Deg. | ms | [a [ b [ Err. [ Deg. [ ms |
1 1 0.06 1.25 47 2 1 0.05 2.95 81
1 2 0.11 1.03 43 2 2 0.12 2.15 66
1 3 0.15 1.01 42 2 3 0.16 2.04 64
1 4 0.20 1.01 42 2 4 0.21 2.05 64
1 5 0.25 1.00 42 2 5 0.26 2.03 64
1 6 0.30 1.00 42 2 6 0.33 1.64 56
1 7 0.35 1.01 42 2 7 0.39 1.40 50
1 8 0.40 1.01 42 2 8 0.45 1.25 48
1 9 0.45 1.01 42 2 9 0.49 1.19 46
1 10 0.50 1.00 42 2 10 0.54 1.11 44
3 1 0.07 3.40 91 4 1 0.05 4.00 104
3 2 0.12 3.18 86 4 2 0.10 4.00 104
3 3 0.18 2.44 72 4 3 0.15 4.00 103
3 4 0.23 2.22 68 4 4 0.21 3.93 101
3 5 0.27 2.13 66 4 5 0.29 3.12 86
3 6 0.32 2.10 65 4 6 0.35 2.49 73
3 7 0.37 2.06 64 4 7 0.40 2.22 68
3 8 0.42 2.04 64 4 8 0.44 2.13 66
3 9 0.46 2.00 63 4 9 0.49 2.11 65
3 10 0.51 2.01 63 4 10 0.54 2.13 66
5 1 0.09 4.10 106 6 1 0.11 5.10 128
5 2 0.13 4.09 106 6 2 0.14 5.07 127
5 3 0.17 4.03 105 6 3 0.18 5.07 127
5 4 0.22 4.06 106 6 4 0.22 5.04 126
5 5 0.26 4.02 104 6 5 0.29 4.82 121
5 6 0.31 4.03 105 6 6 0.34 4.62 117
5 7 0.36 4.00 103 6 7 0.40 4.41 112
5 8 0.43 3.87 100 6 8 0.45 4.31 110
5 9 0.50 3.62 95 6 9 0.50 4.20 108
5 10 0.57 3.34 89 6 10 0.56 4.05 104
7 1 0.13 5.77 144 8 1 0.06 7.00 175
7 2 0.16 5.46 136 8 2 0.11 6.99 176
7 3 0.20 5.37 135 8 3 0.17 6.82 170
7 4 0.24 5.14 128 8 4 0.26 6.04 150
7 5 0.29 5.15 129 8 5 0.31 5.74 144
7 6 0.33 5.07 127 8 6 0.36 5.39 135
7 7 0.38 5.08 127 8 7 0.41 5.31 133
7 8 0.43 5.05 126 8 8 0.46 5.12 128
7 9 0.48 5.03 126 8 9 0.50 5.13 129
7 10 0.53 5.01 125 8 10 0.55 5.07 127
9 1 0.12 7.01 176 10 1 0.13 8.03 204
9 2 0.15 7.02 177 10 2 0.17 7.91 201
9 3 0.18 7.00 176 10 3 0.21 7.83 198
9 4 0.23 7.01 176 10 4 0.26 7.72 196
9 5 0.27 6.99 175 10 5 0.31 7.58 191
9 6 0.33 6.92 173 10 6 0.37 7.35 185
9 7 0.39 6.81 170 10 7 0.41 7.30 184
9 8 0.46 6.56 163 10 8 0.46 7.21 181
9 9 0.53 6.05 151 10 9 0.52 6.99 175
9 10 0.59 5.81 146 10 10 0.58 6.78 172

Fig. 2. Performance of PRAD under different test conditions. All values are averaged over 100
runs. The columns represent the complexity of the function, the amount of noise, and the average
error, polynomial degree, and time in milliseconds.

flexibility constraint requires the function to be accurately modeled in each of the
settings it encounters. This ability is represented by the mazimum amount of excess
error achieved over all of the test scenarios. Figure 3 compares the maximum excess
error and time spent by PRAD with those of constant degree polynomial regression.

The figure shows that PRAD attains a qualitatively better combination of excess
error and time expended than polynomial regression with any of the fixed degrees
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Degree | Avg. Err. | Max. Excess | Time(ms) |

1 0.653 0.664 39
2 0.536 0.635 62
3 0.487 0.615 84
4 0.441 0.600 110
5 0.350 0.514 138
6 0.327 0.356 171
7 0.289 0.196 209
8 0.281 0.083 250
9 0.277 0.024 341
10 0.276 0.004 398
PRAD | 0.310 0.094 111
1

123 4\.5 +: Fixed Degree
Max. | X:PRAD 1
Excess™| 6
Error .

o 7

8 |

X 9 10
Time (ms)

Fig. 3. The maximum excess errors and times attained by polynomial regression with a fixed
degree, compared to PRAD.

tried. In particular, the lowest degree to attain the excess error achieved by PRAD
was 8, which takes 125% more time than PRAD.

To test PRAD further, we compare it with a powerful alternative to polyno-
mial regression: natural cubic splines. These are piecewise cubic curves that have a
continuous second derivative 3. For example, cubic splines can be used to identify
kinetic parameters of a simulated or actual network of chemical reactions '°. The
transition points between the cubics are known as knots, and the question of how
many knots there should be and where they should be placed has received much
attention in the literature 1517, We are not aware of a solution to this problem that
satisfies the constraints set forth in the introduction. For comparison purposes, we
have implemented a straightforward approach to knot selection, spacing them uni-
formly throughout the interval. Since the method requires there to be at least 3
knots, we have tested each number of knots from 3 to 10. Each number of knots
was tested on all 100 test cases, and the average errors, maximum excess errors,
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and average times were recorded. These values are shown in Table 3.

| 7 of Knots | Avg. Err. | Max. Excess | Time(ms) |

3 0.529 0.630 64

4 0.464 0.623 83

5 0.421 0.580 108
6 0.313 0.380 135
7 0.289 0.174 167
8 0.280 0.063 202
9 0.277 0.025 241
10 0.276 0.010 339
PRAD 0.310 0.094 111

PRAD outperforms any of the fixed settings tried for the cubic splines. The
lowest number of knots that attains a better average error is 7, which takes 50% more
time than PRAD. Furthermore, the lowest number that attains a better maximum
excess error is 8, taking 82% more time than PRAD.

These results should not be taken as an indication that PRAD dominates cubic
splines, or for that matter any other function approximator, in all cases. Rather, they
indicate that for the subest of cases that polynomial regression is an appropriate
method, PRAD can provide a more general, less brittle, solution.

4.2. Mobile Robot Results

The true test of PRAD’s effectiveness is its performance on real autonomous agent
tasks. In this section we present our implementation of PRAD on a mobile robot
learning about itself and its environment. For these experiments, the algorithm
and constants used were exactly the same as the ones used for the simulated data
described above, namely the algorithm specified in Algorithm 1 and the constants in
Table 1. The fact that no additional parameter tuning was necessary lends credence
to PRAD’s robustness.

The experimental setup used here is based on previous work training a mobile
robot to simultaneously calibrate its action and sensor models !. In this work, a
robot that is equipped with a camera uses polynomial regression to learn a model
of a visual sensor. In the robot’s camera image, the vertical size of a fixed landmark
is taken as a visual sensor input. The sensor model is a function from this input
to the robot’s distance from the landmark. The robot and the landmark, a color-
coded cylindrical beacon, are depicted in Figure 4. While the robot walks forwards
and backwards facing the landmark, it uses estimates of its location (based on its
action model), combined with corresponding sensor readings, to provide training
data for the sensor model. In that work, the robot simultaneously learned its action
model, a function from a parameterized range of action commands to their resultant
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velocities, also using polynomial regression.

Fig. 4. A mobile robot with a fixed landmark. The inset depicts the landmark as seen through
the robot’s camera.

Previously, both regressions relied on a manually chosen degree for the polyno-
mial. We chose 3 for the sensor model and 4 for the action model. These degrees
were chosen based on the rough intuition that those were the amounts of complexity
needed to represent those functions. However, the manually chosen degrees limit the
method’s applicability. Here we apply PRAD to the learning of the sensor model,
demonstrating PRAD’s effectiveness on real-world data. PRAD is implemented and
tested on the Sony Aibo ERS-7 robot, shown in Figure 4. All processing is performed
on the robot’s 576 MHz processor in real time, including vision and motion pro-
cessing.

4000

3500

Measured Sensor Model: ~ +
3000 - Learned Sensor Model:

Dist.

2500 |-

2000

1500 -

1000
10

Beacon Height

Fig. 5. The measured sensor model and a learned cubic model

The sensor model learned by PRAD is a function from the beacon’s height in
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the image to the robot’s distance from the beacon. In the scenario used to test
PRAD, an action model is already known, but not a sensor model. In this situation,
an appropriate polynomial degree for the sensor model would still be a priori un-
known, making this scenario a realistic test case for PRAD. The distances used in
the training are based on a pre-learned action model, which is a fourth degree poly-
nomial mapping a parameterized set of actions to corresponding velocities. These
estimated velocities are integrated over time to yield a continual distance estimate.
The training examples for PRAD have the beacon’s height as an input and the
corresponding estimated beacon distance as an output. As PRAD learned a sensor
model, the robot walked forwards and backwards via a sequence of randomly chosen
action commands.

Each trial run lasted five minutes on the robot, and PRAD was tested over 15
trials. During the trials, PRAD was allowed to increment the degree at any time, but
it never did so after two and a half minutes had passed. The fact that PRAD was able
to settle on a degree every time demonstrates the method’s stability. Furthermore,
considering that each time the robot is booted up, it takes about 27 seconds to
initialize, we consider this learning time of five minutes to be qualitatively quite
short. Nevertheless, randomness in the training data caused some variation in the
degree settled on by PRAD. The average degree chosen was 3.33, with a standard
deviation of 1.29. This degree corroborates our earlier estimate that a third degree
polynomial was roughly the amount of complexity needed to learn the sensor model.
Figure 5 depicts a typical cubic sensor model learned by PRAD. The measured data
is obtained by manual measurements compared with the robot’s reported beacon
heights.

The learned sensor models are evaluated by comparing them to the measured
data. However, although the training outputs correspond to relative distances from
the beacon, the robot has no access to its absolute distance. Thus we can expect the
learned sensor model to match the measured one only up to an additive constant.
To evaluate the learned model, we computed the shifting constant that minimizes
the mean squared error. On average, the root mean square error between the shifted
learned sensor model and the measured sensor model was 10.1 &+ 3.4 cm. Compared
to the distance range of 240 cm, the error is 4.2 percent.

These experiments demonstrate that PRAD can be effective in the context of
an autonomous agent in the real world. It successfully negotiates the data obtained
from the robot’s noisy sensors and effectors and settles on an appropriate polynomial
degree.

5. Related Work

PRAD can be seen as a type of stepwise regression algorithm. Such an algorithm
adds to a set of basis functions for the regression, one function at a time. PRAD is in
this category because incrementing the degree of the polynomial by one is equivalent
to adding another exponent to a set of basis functions. One common method for
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stepwise regression involves adding new terms based on their computed statistical
significance 8. When this method is applied to polynomial regression, it can fail to
find the correct degree because there are situations where incrementing the degree
by one produces no improvement but where further increases can yield a significant
improvement. PRAD circumvents this problem by increasing the degree until the
fit is roughly as good as possible, based on an estimate of the amount of random
noise. Other stepwise regression methods include MARS '° and CIPER 2°, which
continually add multivariable polynomials to a basis set with the goal of minimizing
the prediction error.

PRAD chooses a value for the degree of the polynomial to yield a small error us-
ing as little time and space as possible. Other methods for automatically choosing a
parameter for a function approximator include the Akaike Information Criterion 2!,
the Bayes Information Criterion ?2, and cross-validation 3. However, these methods
optimize parameters strictly in terms of prediction error, focusing on trying to make
efficient use of a limited amount of data. PRAD differs from all of these methods
in that it finds a good balance between prediction accuracy and resource efficiency
in accordance with the amount of noise and complexity of the target function.

6. Conclusion

We have developed, implemented, and tested an enhancement to polynomial re-
gression, PRAD. This technique is designed to satisfy three specific constraints.
First, the algorithm uses only as much time and space as is necessary to represent
the function being estimated. Second, PRAD is robust to varied amounts of ran-
dom noise. Finally, it has no parameters that need to be manually tuned for each
situation.

PRAD has been implemented and tested on both simulated test data and data
gathered from a mobile robot. The experimental results with simulated data bear
out that it can improve over polynomial regression with any fixed degree, according
to the above constraints, and also that it can be more effective than natural cubic
splines for some fixed settings of the spline knots. Furthermore, using the exact same
algorithm and numerical constants, PRAD was able to automatically detect the
appropriate degree for learning a sensor model on a mobile robot. These experiments
suggest that PRAD is well-suited to learning in the context of an autonomous agent.
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