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ien
es, The University of Texas at AustinC0500, 1 University StationAustin, TX 78712, United States of Ameri
afstronger,pstoneg�
s.utexas.eduIn order for an autonomous agent to behave robustly in a variety of environments, itmust have the ability to learn approximations to many di�erent fun
tions. The fun
tionapproximator used by su
h an agent is subje
t to a number of 
onstraints that may notapply in a traditional supervised learning setting. Many di�erent fun
tion approximatorsexist and are appropriate for di�erent problems. This paper proposes a set of 
riteriafor fun
tion approximators for autonomous agents. Additionally, for those problems onwhi
h polynomial regression is a 
andidate te
hnique, the paper presents an enhan
ementthat meets these 
riteria. In parti
ular, using polynomial regression typi
ally requires amanual 
hoi
e of the polynomial's degree, trading o� between fun
tion a

ura
y and
omputational and memory eÆ
ien
y. Polynomial Regression with Automated Degree(PRAD) is a novel fun
tion approximation method that uses training data to automat-i
ally identify an appropriate degree for the polynomial. PRAD is fully implemented.Empiri
al tests demonstrate its ability to eÆ
iently and a

urately approximate both awide variety of syntheti
 fun
tions and real-world data gathered by a mobile robot.1. Introdu
tionIn order for an autonomous agent to robustly intera
t with its environment, it isvaluable for it to be able to learn the relationships between relevant environmentalvariables. For example, as a mobile robot moves over di�erent terrains, it may needto learn a new fun
tion from its motion 
ommands to the 
orresponding velo
itiesfor ea
h new surfa
e it en
ounters. Similarly, a software travel agent may need tolearn how the pri
es of di�erent airline ti
kets vary with respe
t to time.These relationships 
an be represented by fun
tion approximators. A fun
tionapproximator learns the relationship between a dependent variable and a set ofindependent variables on the basis of a series of training examples. In this paper,we 
onsider learning fun
tions of one variable. Even in 
ases where an agent maynot have a

ess to expli
it training examples, fun
tion approximation systems 
ansometimes be used. For example, a legged robot 
an use fun
tion approximators tosimultaneously learn one model of its walking a
tions and one of its visual sensor,without labeled training data for either model 1.An autonomous agent needs its fun
tion approximator to satisfy 
ertain 
on-straints that may not be ne
essary in a traditional supervised learning setting. Inparti
ular, it must be: 1
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able without tuning parameters.� EÆ
ient: With respe
t to 
omputation time and memory.� Robust: Able to handle varying amounts of random noise.These 
riteria are des
ribed more pre
isely and motivated in the following se
-tion.2. MotivationFor an agent to be truly autonomous, its fun
tion approximator must be 
exible.Spe
i�
ally, sin
e any parameters it has 
annot be manually tuned for ea
h newfun
tion, they must have pre-set values that are e�e
tive over the entire range ofpotential fun
tions.The fun
tion approximator must also be eÆ
ient. An autonomous agent haslimited time and memory to allo
ate to many di�erent 
omputational problems,and sin
e it may need to approximate many di�erent fun
tions, ea
h one must takeup as little time and spa
e as possible. This 
onstraint implies that the methodshould take less time for simpler target fun
tions. For spa
e, the algorithm mustuse an amount of storage spa
e that remains bounded as the amount of inputdata in
reases. This requirement is ne
essary in light of the virtual \�rehose ofexperien
e" 2 to whi
h agents in the real world may be subje
t.Finally, agents often re
eive data through noisy sensors, and there 
an be randomnoise in the dynami
s of the world. The fun
tion approximator must be robust tothese e�e
ts, di�erentiating between random noise and genuine variation in thetarget fun
tion.There are many methods in 
ommon use for approximating fun
tions. However,we are not aware of any 
urrent method that is able to satisfy all three of the
onstraints mentioned above. For example, the Nearest Neighbor method 3 storesall of the data points that are en
ountered, and evaluates a given input based on thetest points it is 
losest to in input spa
e. This method does not satisfy the eÆ
ien
y
onstraint. Although there are enhan
ements to Nearest Neighbor 4 that enable itto store only some of the points, doing so normally introdu
es parameters that needto be manually tuned.Two other 
ommon fun
tion approximation methods are ba
kpropogation ofa neural network with a �xed topology 5;6 and radial basis fun
tions (RBFs) 7;8.These methods do not satisfy the 
exibility 
onstraint, as there are a number ofparameters that must be set manually, su
h as the learning rate and the numberof hidden nodes in the network, or the kernel widths. More spe
i�
ally for ba
k-propagation, a network with any �xed number of hidden nodes will be unable to�t suÆ
iently 
omplex fun
tions, despite the fa
t that bounded 
ontinuous fun
-tions 
an be approximated arbitrarily 
losely by a neural network with one layer ofhidden nodes 9;10. Similarly for RBFs, arbitrary fun
tions 
an be approximate, butonly when the kernel widths 
an be individually spe
i�ed 11;8.One parti
ularly straightforward fun
tion approximator is polynomial regression.
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tion Approximator for Autonomous Agents 3Polynomial regression has some drawba
ks whi
h lead statisti
ians to often favorother methods, su
h as 
ubi
 splines 3. First, as the polynomial degree in
reases, theregression 
urve 
an sometimes over�t the data and os
illate wildly between the datapoints. Furthermore, the regression 
an be
ome numeri
ally unstable, espe
ially ifthe degree is high or the fun
tion domain is not 
entered at zero. However, in thepresen
e of enough data that over�tting is not a 
on
ern, and when the degree anddomain of the regression 
an be restri
ted to limit the numeri
al instability, thesimpli
ity and eÆ
ien
y of polynomial regression 
an make it the method of 
hoi
e.As outlined above, some problems fa
ed by autonomous agents indeed have theseproperties. Other su

essful uses of polynomial regression in
lude modeling a visualsensor 12 and spee
h re
ognition 13.Even in situations where polynomial regression 
an be useful, it still relies on amanually 
hosen degree that is 
ru
ial to the fun
tion approximator's e�e
tiveness.If the degree is too high, the regression 
an su�er from the drawba
ks mentionedabove, and in the 
ontext of autonomous agents, high degree polynomial regression
arries a signi�
ant 
omputational expense. On the other hand, if the degree is toolow, it will not be able to represent the 
omplexity of the fun
tion being learned.This relian
e on the degree 
auses standard polynomial regression to violate the
exibility 
onstraint dis
ussed above.This paper presents a te
hnique, Polynomial Regression with Automated Degree(PRAD), that augments polynomial regression so as to satisfy all three 
onstraints.PRAD is fully implemented and empiri
ally validated on both syntheti
 data from awide range of fun
tion 
omplexities and noise magnitudes, and data 
olle
ted froman autonomous mobile robot.3. Finding the Polynomial DegreePolynomial regression entails an inherent trade-o� between a

ura
y and eÆ
ien
y.As the degree of the polynomial in
reases, the �t grows in a

ura
y (up to a point),but the time and spa
e needed in
reases as well. This se
tion presents a methodto automati
ally identify an appropriate degree for polynomial regression based onthe training data.PRAD takes pairs (xi; yi) and identi�es the best �t polynomial P (x) = � +Pdk=1 �kxk , where d is the degree of the polynomial. The best �t polynomial isde�ned to be the one that minimizes the total squared error Pni=1 [P (xi)� yi℄2,where n is the number of data points en
ountered thus far. The best �t polynomialis 
omputed by maintaining 3d+2 sums, namelyPni=1 xk , where k ranges from 0 to2d, andPni=1 yxk, where k ranges from 0 to d. These sums 
an be used to produ
ea fun
tion estimate after ea
h data point 14.PRAD �nds the appropriate degree by starting with a �rst degree (linear) poly-nomial and 
ontinually monitoring the �t to see if the degree needs to be in
reased.If so, the regression is restarted with the degree in
remented by one. To restartthe regression, the sums are all reinitialized to zero. Another option would be to
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4 Daniel Stronger and Peter Stonemaintain a large number of sums from the beginning, depending on the relativeimportan
es of data eÆ
ien
y and spa
e eÆ
ien
y. The degree 
ontinues to be in-
remented until a satisfa
tory �t is found.In order to determine whether or not a parti
ular degree is satisfa
tory, PRAD
ompares a global predi
tion error and a lo
al noise estimate, two values that are
ontinually maintained. A high global predi
tion error indi
ates a poor �t, suggest-ing that the polynomial degree should perhaps be in
reased. However, su
h an errormight also be a

ounted for by a large amount of random noise in the observed data,in whi
h 
ase in
reasing the degree will not help. This 
omparison does not expli
itlytake resour
e eÆ
ien
y into 
onsideration, but it �nds the lowest degree polynomialthat a
hieves a satisfa
tory �t, and thereby impli
itly balan
es 
omputational 
ostsagainst a

ura
y.PRAD 
omputes a best �t polynomial after ea
h data point is en
ountered. Thisrunning fun
tion estimate is used to 
ompute an error for ea
h data point. Theseerrors are a

umulated into a root mean square error, whi
h we denote as C. C isPRAD's global predi
tion error.We assume that yi 
an be expressed as f(xi)+!i, where f is the fun
tion PRADis trying to approximate and !i is zero-mean random noise. The expe
ted squarederror, C2, is E([f̂(x)� y℄2), where f̂ is the 
urrent estimate of f . Sin
e the noise iszero-mean and independent from the fun
tion error, this error 
an be de
omposedas: C2 � E([f̂(x) � y℄2) = E([f̂(x)� f(x)℄2) +E(!2) (1)PRAD tries to minimize the �rst term on the right, whi
h represents the fun
tionestimate ina

ura
y. The se
ond term, whi
h we denote by D2, is unavoidable,sin
e the noise generates error even in the presen
e of a perfe
t �t to the fun
tion.Therefore, it is desirable to be able to distinguish between these two sour
es ofnoise. PRAD makes this distin
tion by estimating D2, the varian
e of the randomnoise, dire
tly.To estimate D2, PRAD partitions the input spa
e into a pre-set number (r) ofequal small intervals. Ea
h data point (x; y) is then 
lassi�ed a

ording to whi
hinterval x falls into. The varian
e of y over the points in any given interval isa good estimate of the noise in the data at ea
h point, be
ause the variation inthe underlying fun
tion is limited over su
h a short interval. PRAD maintains thevarian
e of y over ea
h interval and 
onsiders their average to be the mean squarednoise,D2. This method requires knowing the fun
tion domain, but if it is not known,the robot 
an �rst estimate the domain from a small amount of data and use thatestimate.From (1), we know that C � D. The ratio between these quantities is a measureof the extent to whi
h the predi
tion error, C, 
an be explained by the random noise,D. Therefore, to determine whether it is ne
essary to in
rement the polynomialdegree, PRAD 
ompares C and D using a threshold ratio, � > 1. If C > D�, thereis a signi�
ant amount of error that 
annot be explained by random noise in the
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tion Approximator for Autonomous Agents 5data. In that 
ase, PRAD in
rements the degree by one.The ratio between C and D is a good indi
ator of when to in
rease the poly-nomial's degree, but 
are must be taken to ensure that C and D have stabilizedbefore this metri
 is used. The following measures ensure this goal. First, when veryfew data points have been taken into a

ount, the resulting best �t polynomials 
anbe very 
haoti
 (or unde�ned). Thus PRAD does not begin a

umulating the rootmean square predi
tion error C until a suÆ
ient number of distin
t inputs have beenen
ountered. This threshold amount is set to 3(d+1) (based on the idea that d+1points are required to determine a d-degree polynomial uniquely). Furthermore, forinputs that are either the highest or lowest input seen so far, their predi
tion erroris dis
arded be
ause of the unpredi
table nature of polynomial regression outsideof its range of training inputs. Finally, to ensure that C and D are based on asuÆ
iently representative sample of the data, we prohibit in
rementing the degreeuntil a threshold number of predi
tion errors have been 
ounted. This threshold isequal to 3r.Pseudo
ode for PRAD is depi
ted in Algorithm 1. The running fun
tion esti-mate, f̂(x), is 
omputed after every data point. The INITIALIZE routine sets allof the sums used in 
omputing the regression to zero. As ea
h training pair (x; y) isRECEIVED by PRAD, the INCORPORATE routine updates all the stored sumsappropriately.PRAD uses four 
onstants as summarized in Table 1. Their suggested valuesindi
ated in the table were 
hosen without extensive experimentation and are usedin all of the experiments reported in this paper. These parameters repla
e a singleparameter in 
onventional polynomial regression: the polynomial's degree. Never-theless, we argue that PRAD is a
tually a signi�
ant improvement with respe
t tothe 
exibility 
onstraint. In parti
ular, one setting for these four variables is able tohandle a wide range of fun
tion 
omplexities and amounts of noise, whereas no onesetting for the degree 
an do that. This hypothesis is supported empiri
ally in thefollowing se
tion. Furthermore, the same setting of the 
onstants is also e�e
tive inthe robot experiments.Notably, the method des
ribed here is not sensitive to the s
ale of the data. Ifall of the x or y are multiplied by a 
onstant s
aling fa
tor, PRAD will settle onthe same degree for the polynomial. This property 
ontributes to the algorithm'sability to handle a wide range of fun
tions and noise levels.Constant ValueNumber of Intervals (r) 20Degree In
rementing Threshold (�) 1:3Error Usability Threshold 3(d+ 1)Interval A

umulation Threshold 3r = 60
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ode for PRADGiven: �, r, Domainmin, Domainmaxdegree 1loopShouldIn
rementDegree = falseINITIALIZE f̂(x) \\Running fun
tion estimaten 0 \\Number of data pointsECounter  0 \\Number of predi
tion errors 
ountedESquareSum 0 \\Total squared predi
tion errorfor i = 1 to r doICounteri  0 \\Number of points in ea
h intervalISumi  0 \\Sums used to 
ompute interval varian
esISquareSumi  0end forwhile ShouldIn
rementDegree = false don n+ 1RECEIVE (x; y)if (x is not the largest or smallest x so far) AND(have re
eived � 3(degree+ 1) di�erent values of x) thenError  y � f̂(x)ECounter  ECounter + 1ESquareSum ESquareSum+Error2C  pESquareSum=ECounterend ifINCORPORATE (x; y) into f̂(x)i d r(x�Domainmin)(Domainmax�Domainmin)eICounteri  ICounteri + 1ISumi  ISumi + yISquareSumi  ISquareSumi + y2V arian
ei  (ISquareSumi�ISum2i =ICounteri)ICounteri�1D  root mean of de�ned values of V arian
eiif (ECounter > 3r) AND (C > D�) thenShouldIn
rementDegree trueend ifend whiledegree degree+ 1end loop4. Experimental ValidationThis se
tion sets out to verify that PRAD satis�es the 
riteria set forth in the intro-du
tion. Namely, it should be eÆ
ient, 
exible and robust to noise. More pre
isely,
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Polynomial Regression with Automated Degree: A Fun
tion Approximator for Autonomous Agents 7just one setting of the algorithm's numeri
al parameters should be able to eÆ
ientlyhandle a wide range of di�erent fun
tions and amounts of random noise. To verify
on
lusively that these 
onstraints are met requires extensive testing in a wide va-riety of domains. Here we verify that PRAD is e�e
tive in at least some 
ases, andpresent eviden
e that all 
onstraints are met by implementing PRAD and testingit both on a varied suite of simulated test data and on a roboti
 s
enario that hasbeen addressed previously with polynomial regression.4.1. Simulated Data ResultsWe have tested PRAD on a suite of syntheti
 test data designed spe
i�
ally torepresent a wide range of fun
tion 
omplexities and amounts of noise. In this set-ting, PRAD produ
es an improvement over polynomial regression with any �xeddegree. PRAD also 
ompares favorably against another popular fun
tion approx-imation method, natural 
ubi
 splines with uniformly distributed knots. All testswere performed on a 2.00GHz Pentium 4 pro
essor with 512MB of RAM.The suite of test data varied along two dimensions: i) the 
omplexity of theunderlying fun
tion, and ii) the amount of random noise added to the fun
tionvalues. Ea
h dimension varies over a range of ten values, yielding 100 test trials.For ea
h point, x is 
hosen randomly with a uniform distribution over the domaininterval, whi
h is set to (�1; 1). The 
omplexity of the fun
tion is represented bythe variable a, whi
h ranges over the integers from 1 to 10. In terms of a, the testfun
tion is: f(x) = sin�a�4 �x� 12�� (2)The higher a is, the more 
omplex the fun
tion is over the domain (�1; 1). Notethat a sine wave is used instead of a polynomial, to demonstrate the 
exibilityof polynomial regression. The sine wave is 
entered at x = 1=2 so that the fun
-tion is not stri
tly odd or even, sin
e an odd or even fun
tion would diminish theimportan
e of polynomials of the opposite parity degree.
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April 5, 2007 20:57 WSPC/INSTRUCTION FILE fun
app
8 Daniel Stronger and Peter StoneThe amount of random noise is represented by the variable b, whi
h also rangesfrom 1 to 10. A value of b 
auses a zero-mean, gaussian-distributed random o�setwith standard deviation b=20 to be added to f(x) for ea
h data point. Figure 1depi
ts the fun
tion and 100 data points produ
ed by ea
h of two 
ombinations of aand b. It is important to remember that the data presented to our simulated agentarrives as a stream. In general, the agent does not see all of the points at on
e, butrather must in
orporate the new data eÆ
iently as it 
omes in.In ea
h test trial, PRAD en
ounters 2000 data points. To evaluate PRAD, we
ompute the predi
tion error after the polynomial degree has stabilized. To measurethis, PRAD's ability to in
rement the degree is turned o� after 800 points. In testswhere it was not turned o�, it was very rare for the degree to in
rease beyond thispoint. The squared predi
tion errors after the 1000th point are then averaged toobtain the mean square error for that trial. This ensures that the measured errorsare based on a signi�
ant amount of data with the sele
ted degree.The trials are also evaluated by the amount of time that they take. These are theamounts of time that a single run of PRAD takes to pro
ess all 2000 data points.Finally, in ea
h trial the �nal degree used by PRAD is re
orded. Ea
h of the 100data settings is tested 100 times, and the average errors, times, and degrees are usedto evaluate the method. The results are shown in Figure 2.A few general patterns are evident in the data. First, the average error is 
on-sistently quite 
lose to the magnitude of the random noise, b=20. Therefore (asindi
ated by (1)), PRAD's fun
tion approximations are very 
lose to the a
tualfun
tions being estimated. In addition, the average degree used to represent thefun
tion in
reases as the fun
tion 
omplexity in
reases. This pattern indi
ates thatPRAD is adapting the polynomial degree as needed to represent the 
omplexity ofthe fun
tion. Furthermore, for a given fun
tion 
omplexity, as the amount of noisein
reases, the degree de
reases slowly. PRAD uses slightly lower degrees in these
ases be
ause the noise masks some of the variation in the fun
tion. Finally, notethat the time taken is highly 
orrelated with the degree used, so that only as mu
htime is used as needed for the 
omplexity of the fun
tion being modeled.For 
omparison, the same tests were run on polynomial regression with a �xeddegree. For ea
h degree from one to ten, the errors and times were measured forall 100 test 
ases. One straightforward measure of an algorithm's performan
e is itsaverage time and error over all 100 trials. These averages are shown in Table 2.Note that a baseline amount of error is 0:275, sin
e that is the average of themagnitudes of random noise that are used. By 
omparison, PRAD's overall averageerror is 0:310, with an average degree of 4:20 and time of 111 ms. The lowest �xeddegree that is able to attain PRAD's average error is 7, whi
h takes 209 ms, or 88%more time.A good measure of the fun
tion approximator's �delity is the ex
ess error, de-�ned as the di�eren
e between the amount of average error and the magnitude ofthe noise. The average ex
ess error is equivalent to the average overall error minus0:275, so it behaves identi
ally to the average error shown in Table 2. However, the
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tion Approximator for Autonomous Agents 9a b Err. Deg. ms a b Err. Deg. ms1 1 0:06 1:25 47 2 1 0:05 2:95 811 2 0:11 1:03 43 2 2 0:12 2:15 661 3 0:15 1:01 42 2 3 0:16 2:04 641 4 0:20 1:01 42 2 4 0:21 2:05 641 5 0:25 1:00 42 2 5 0:26 2:03 641 6 0:30 1:00 42 2 6 0:33 1:64 561 7 0:35 1:01 42 2 7 0:39 1:40 501 8 0:40 1:01 42 2 8 0:45 1:25 481 9 0:45 1:01 42 2 9 0:49 1:19 461 10 0:50 1:00 42 2 10 0:54 1:11 443 1 0:07 3:40 91 4 1 0:05 4:00 1043 2 0:12 3:18 86 4 2 0:10 4:00 1043 3 0:18 2:44 72 4 3 0:15 4:00 1033 4 0:23 2:22 68 4 4 0:21 3:93 1013 5 0:27 2:13 66 4 5 0:29 3:12 863 6 0:32 2:10 65 4 6 0:35 2:49 733 7 0:37 2:06 64 4 7 0:40 2:22 683 8 0:42 2:04 64 4 8 0:44 2:13 663 9 0:46 2:00 63 4 9 0:49 2:11 653 10 0:51 2:01 63 4 10 0:54 2:13 665 1 0:09 4:10 106 6 1 0:11 5:10 1285 2 0:13 4:09 106 6 2 0:14 5:07 1275 3 0:17 4:03 105 6 3 0:18 5:07 1275 4 0:22 4:06 106 6 4 0:22 5:04 1265 5 0:26 4:02 104 6 5 0:29 4:82 1215 6 0:31 4:03 105 6 6 0:34 4:62 1175 7 0:36 4:00 103 6 7 0:40 4:41 1125 8 0:43 3:87 100 6 8 0:45 4:31 1105 9 0:50 3:62 95 6 9 0:50 4:20 1085 10 0:57 3:34 89 6 10 0:56 4:05 1047 1 0:13 5:77 144 8 1 0:06 7:00 1757 2 0:16 5:46 136 8 2 0:11 6:99 1767 3 0:20 5:37 135 8 3 0:17 6:82 1707 4 0:24 5:14 128 8 4 0:26 6:04 1507 5 0:29 5:15 129 8 5 0:31 5:74 1447 6 0:33 5:07 127 8 6 0:36 5:39 1357 7 0:38 5:08 127 8 7 0:41 5:31 1337 8 0:43 5:05 126 8 8 0:46 5:12 1287 9 0:48 5:03 126 8 9 0:50 5:13 1297 10 0:53 5:01 125 8 10 0:55 5:07 1279 1 0:12 7:01 176 10 1 0:13 8:03 2049 2 0:15 7:02 177 10 2 0:17 7:91 2019 3 0:18 7:00 176 10 3 0:21 7:83 1989 4 0:23 7:01 176 10 4 0:26 7:72 1969 5 0:27 6:99 175 10 5 0:31 7:58 1919 6 0:33 6:92 173 10 6 0:37 7:35 1859 7 0:39 6:81 170 10 7 0:41 7:30 1849 8 0:46 6:56 163 10 8 0:46 7:21 1819 9 0:53 6:05 151 10 9 0:52 6:99 1759 10 0:59 5:81 146 10 10 0:58 6:78 172Fig. 2. Performan
e of PRAD under di�erent test 
onditions. All values are averaged over 100runs. The 
olumns represent the 
omplexity of the fun
tion, the amount of noise, and the averageerror, polynomial degree, and time in millise
onds.
exibility 
onstraint requires the fun
tion to be a

urately modeled in ea
h of thesettings it en
ounters. This ability is represented by the maximum amount of ex
esserror a
hieved over all of the test s
enarios. Figure 3 
ompares the maximum ex
esserror and time spent by PRAD with those of 
onstant degree polynomial regression.The �gure shows that PRAD attains a qualitatively better 
ombination of ex
esserror and time expended than polynomial regression with any of the �xed degrees
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ess Time(ms)1 0:653 0:664 392 0:536 0:635 623 0:487 0:615 844 0:441 0:600 1105 0:350 0:514 1386 0:327 0:356 1717 0:289 0:196 2098 0:281 0:083 2509 0:277 0:024 34110 0:276 0:004 398PRAD 0:310 0:094 111
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Fig. 3. The maximum ex
ess errors and times attained by polynomial regression with a �xeddegree, 
ompared to PRAD.tried. In parti
ular, the lowest degree to attain the ex
ess error a
hieved by PRADwas 8, whi
h takes 125% more time than PRAD.To test PRAD further, we 
ompare it with a powerful alternative to polyno-mial regression: natural 
ubi
 splines. These are pie
ewise 
ubi
 
urves that have a
ontinuous se
ond derivative 3. For example, 
ubi
 splines 
an be used to identifykineti
 parameters of a simulated or a
tual network of 
hemi
al rea
tions 15. Thetransition points between the 
ubi
s are known as knots, and the question of howmany knots there should be and where they should be pla
ed has re
eived mu
hattention in the literature 16;17. We are not aware of a solution to this problem thatsatis�es the 
onstraints set forth in the introdu
tion. For 
omparison purposes, wehave implemented a straightforward approa
h to knot sele
tion, spa
ing them uni-formly throughout the interval. Sin
e the method requires there to be at least 3knots, we have tested ea
h number of knots from 3 to 10. Ea
h number of knotswas tested on all 100 test 
ases, and the average errors, maximum ex
ess errors,
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orded. These values are shown in Table 3.# of Knots Avg. Err. Max. Ex
ess Time(ms)3 0:529 0:630 644 0:464 0:623 835 0:421 0:580 1086 0:313 0:380 1357 0:289 0:174 1678 0:280 0:063 2029 0:277 0:025 24110 0:276 0:010 339PRAD 0:310 0:094 111PRAD outperforms any of the �xed settings tried for the 
ubi
 splines. Thelowest number of knots that attains a better average error is 7, whi
h takes 50%moretime than PRAD. Furthermore, the lowest number that attains a better maximumex
ess error is 8, taking 82% more time than PRAD.These results should not be taken as an indi
ation that PRAD dominates 
ubi
splines, or for that matter any other fun
tion approximator, in all 
ases. Rather, theyindi
ate that for the subest of 
ases that polynomial regression is an appropriatemethod, PRAD 
an provide a more general, less brittle, solution.4.2. Mobile Robot ResultsThe true test of PRAD's e�e
tiveness is its performan
e on real autonomous agenttasks. In this se
tion we present our implementation of PRAD on a mobile robotlearning about itself and its environment. For these experiments, the algorithmand 
onstants used were exa
tly the same as the ones used for the simulated datades
ribed above, namely the algorithm spe
i�ed in Algorithm 1 and the 
onstants inTable 1. The fa
t that no additional parameter tuning was ne
essary lends 
reden
eto PRAD's robustness.The experimental setup used here is based on previous work training a mobilerobot to simultaneously 
alibrate its a
tion and sensor models 1. In this work, arobot that is equipped with a 
amera uses polynomial regression to learn a modelof a visual sensor. In the robot's 
amera image, the verti
al size of a �xed landmarkis taken as a visual sensor input. The sensor model is a fun
tion from this inputto the robot's distan
e from the landmark. The robot and the landmark, a 
olor-
oded 
ylindri
al bea
on, are depi
ted in Figure 4. While the robot walks forwardsand ba
kwards fa
ing the landmark, it uses estimates of its lo
ation (based on itsa
tion model), 
ombined with 
orresponding sensor readings, to provide trainingdata for the sensor model. In that work, the robot simultaneously learned its a
tionmodel, a fun
tion from a parameterized range of a
tion 
ommands to their resultant
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ities, also using polynomial regression.

distance

sensor
input

Fig. 4. A mobile robot with a �xed landmark. The inset depi
ts the landmark as seen throughthe robot's 
amera.Previously, both regressions relied on a manually 
hosen degree for the polyno-mial. We 
hose 3 for the sensor model and 4 for the a
tion model. These degreeswere 
hosen based on the rough intuition that those were the amounts of 
omplexityneeded to represent those fun
tions. However, the manually 
hosen degrees limit themethod's appli
ability. Here we apply PRAD to the learning of the sensor model,demonstrating PRAD's e�e
tiveness on real-world data. PRAD is implemented andtested on the Sony Aibo ERS-7 robot, shown in Figure 4. All pro
essing is performedon the robot's 576 MHz pro
essor in real time, in
luding vision and motion pro-
essing.
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Fig. 5. The measured sensor model and a learned 
ubi
 modelThe sensor model learned by PRAD is a fun
tion from the bea
on's height in
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e from the bea
on. In the s
enario used to testPRAD, an a
tion model is already known, but not a sensor model. In this situation,an appropriate polynomial degree for the sensor model would still be a priori un-known, making this s
enario a realisti
 test 
ase for PRAD. The distan
es used inthe training are based on a pre-learned a
tion model, whi
h is a fourth degree poly-nomial mapping a parameterized set of a
tions to 
orresponding velo
ities. Theseestimated velo
ities are integrated over time to yield a 
ontinual distan
e estimate.The training examples for PRAD have the bea
on's height as an input and the
orresponding estimated bea
on distan
e as an output. As PRAD learned a sensormodel, the robot walked forwards and ba
kwards via a sequen
e of randomly 
hosena
tion 
ommands.Ea
h trial run lasted �ve minutes on the robot, and PRAD was tested over 15trials. During the trials, PRAD was allowed to in
rement the degree at any time, butit never did so after two and a half minutes had passed. The fa
t that PRAD was ableto settle on a degree every time demonstrates the method's stability. Furthermore,
onsidering that ea
h time the robot is booted up, it takes about 27 se
onds toinitialize, we 
onsider this learning time of �ve minutes to be qualitatively quiteshort. Nevertheless, randomness in the training data 
aused some variation in thedegree settled on by PRAD. The average degree 
hosen was 3:33, with a standarddeviation of 1:29. This degree 
orroborates our earlier estimate that a third degreepolynomial was roughly the amount of 
omplexity needed to learn the sensor model.Figure 5 depi
ts a typi
al 
ubi
 sensor model learned by PRAD. The measured datais obtained by manual measurements 
ompared with the robot's reported bea
onheights.The learned sensor models are evaluated by 
omparing them to the measureddata. However, although the training outputs 
orrespond to relative distan
es fromthe bea
on, the robot has no a

ess to its absolute distan
e. Thus we 
an expe
t thelearned sensor model to mat
h the measured one only up to an additive 
onstant.To evaluate the learned model, we 
omputed the shifting 
onstant that minimizesthe mean squared error. On average, the root mean square error between the shiftedlearned sensor model and the measured sensor model was 10:1� 3:4 
m. Comparedto the distan
e range of 240 
m, the error is 4:2 per
ent.These experiments demonstrate that PRAD 
an be e�e
tive in the 
ontext ofan autonomous agent in the real world. It su

essfully negotiates the data obtainedfrom the robot's noisy sensors and e�e
tors and settles on an appropriate polynomialdegree.5. Related WorkPRAD 
an be seen as a type of stepwise regression algorithm. Su
h an algorithmadds to a set of basis fun
tions for the regression, one fun
tion at a time. PRAD is inthis 
ategory be
ause in
rementing the degree of the polynomial by one is equivalentto adding another exponent to a set of basis fun
tions. One 
ommon method for
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omputed statisti
alsigni�
an
e 18. When this method is applied to polynomial regression, it 
an fail to�nd the 
orre
t degree be
ause there are situations where in
rementing the degreeby one produ
es no improvement but where further in
reases 
an yield a signi�
antimprovement. PRAD 
ir
umvents this problem by in
reasing the degree until the�t is roughly as good as possible, based on an estimate of the amount of randomnoise. Other stepwise regression methods in
lude MARS 19 and CIPER 20, whi
h
ontinually add multivariable polynomials to a basis set with the goal of minimizingthe predi
tion error.PRAD 
hooses a value for the degree of the polynomial to yield a small error us-ing as little time and spa
e as possible. Other methods for automati
ally 
hoosing aparameter for a fun
tion approximator in
lude the Akaike Information Criterion 21,the Bayes Information Criterion 22, and 
ross-validation 3. However, these methodsoptimize parameters stri
tly in terms of predi
tion error, fo
using on trying to makeeÆ
ient use of a limited amount of data. PRAD di�ers from all of these methodsin that it �nds a good balan
e between predi
tion a

ura
y and resour
e eÆ
ien
yin a

ordan
e with the amount of noise and 
omplexity of the target fun
tion.6. Con
lusionWe have developed, implemented, and tested an enhan
ement to polynomial re-gression, PRAD. This te
hnique is designed to satisfy three spe
i�
 
onstraints.First, the algorithm uses only as mu
h time and spa
e as is ne
essary to representthe fun
tion being estimated. Se
ond, PRAD is robust to varied amounts of ran-dom noise. Finally, it has no parameters that need to be manually tuned for ea
hsituation.PRAD has been implemented and tested on both simulated test data and datagathered from a mobile robot. The experimental results with simulated data bearout that it 
an improve over polynomial regression with any �xed degree, a

ordingto the above 
onstraints, and also that it 
an be more e�e
tive than natural 
ubi
splines for some �xed settings of the spline knots. Furthermore, using the exa
t samealgorithm and numeri
al 
onstants, PRAD was able to automati
ally dete
t theappropriate degree for learning a sensor model on a mobile robot. These experimentssuggest that PRAD is well-suited to learning in the 
ontext of an autonomous agent.A
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