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Abstract

One goal of Artificial Intelligence is to enable the
creation of robust, fully autonomous agents that can
coexist with us in the real world. Such agents will
need to be able to learn, both in order to correct and
circumvent their inevitable imperfections, and to
keep up with a dynamically changing world. They
will also need to be able to interact with one an-
other, whether they share common goals, they pur-
sue independent goals, or their goals are in direct
conflict. This paper presents current research di-
rections in machine learning, multiagent reasoning,
and robotics, and advocates their unification within
concrete application domains. Ideally, new theoret-
ical results in each separate area will inform prac-
tical implementations while innovations from con-
crete multiagent applications will drive new theo-
retical pursuits, and together these synergistic re-
search approaches will lead us towards the goal of
fully autonomous agents.

1 Introduction

Much of the past research in Artificial Intelligence has
focused either on high-level reasoning from abstract, un-
grounded representations or on interpreting raw sensor data
towards building grounded representations. However, neither
of these foci taken alone is sufficient for deploying practical,
real-world Al systems. In recent years, an active contingent
within the field has focused on creating complete autonomous
agents: those that sense their environment, engage in high-
level cognitive decision-making, and then execute their ac-
tions in the environment.

As the field progresses in this direction, individual au-
tonomous agents, either in software or physically embodied,
are becoming more and more capable and prevalent. Multi-
agent systems consisting of homogeneous or similar agents
are also becoming better understood. However, to success-
fully interact in the real world, agents must be able to reason
about their interactions with heterogeneous agents of widely
varying properties and capabilities.

Some of these other agents will have similar or identical
goals, in which case there may be some advantage to explic-
itly coordinating their activities. On the other hand, some of

the other agents will have opposing or uncorrelated goals. In
both cases, when dealing with other agents, it is beneficial
from the points of view of robustness and flexibility for an
agent to be able to learn or adapt how it interacts with them.

As such, learning, interaction, and their combination are
key necessary capabilities on our path towards creating robust
autonomous agents. To enable these capabilities, we need to
combine 1) basic, algorithmic research on machine learning
and multiagent systems with 2) application-oriented research
threads aimed at studying complete agents in specific, com-
plex environments, with the ultimate goal of drawing general
lessons from the specific implementations.

This paper illustrates this research methodology, drawing
heavily on concrete examples from my own research, and
suggests research directions for the future aimed at creating
fully autonomous agents, including robots, capable of learn-
ing and interacting. It represents my own perception of the
important and interesting research topics in the field as of
2007. It is not intended to be comprehensive — there are cer-
tainly other Al areas that are active, interesting, and likely to
be fruitful. My ambition for the paper is that it will inspire
some of my current and future colleagues to take an interest
in the problems presented here, and perhaps that it will inspire
others to formulate opposing arguments that entirely different
topics are more worthy of pursuit than those advocated here.

The remainder of this paper is organized as follows. First,
in Sections 2 and 3, learning and multiagent reasoning are
considered separately. Next, in Section 4, related issues on
the path towards robust physical agents (robots) that can learn
and interact are addressed.

Although Sections 2—4 treat agent components, the essence
of creating complete autonomous agents is putting all the
pieces together. Indeed, Daphne Koller organized her 2001
Computers and Thought lecture around the notion of three
conceptual bridges connecting representation, reasoning, and
learning as a way of mitigating her observation that:

In Al, as in many communities, we have the ten-
dency to divide a problem into well-defined pieces,
and make progress on each one. But as we make
progress, the problems tend to move away from
each other. [Koller, 2001]

In Section 5, I argue that creating fully functional agents in

complex application environments is another excellent way
to combat such fragmentation. Finally, Section 6 concludes.



2 Learning

Machine Learning has been an active area within Al for many
years. Indeed Tom Mitchell’s Computers and Thought paper
more than two decades ago refers to “a resurgence of inter-
est in machine learning” due to advances in general prob-
lem solving and knowledge-based expert systems [Mitchell,
1983]. Since then, supervised learning methods, for both
classification and regression, have matured to the point of
enabling a general purpose toolkit that can be used produc-
tively by experts and novices alike [Witten and Frank, 1999].
Similarly, unsupervised learning algorithms for data cluster-
ing have advanced nicely. But from the point of view of au-
tonomous agents, it is the relatively recent development of
reinforcement learning (RL) algorithms, designed to learn
action selection from delayed reward in sequential decision
making problems, that is most significant.!

Unlike classical supervised and unsupervised learning
where the learner must be supplied with training data so that it
can learn a function from features to the target set, the premise
of RL matches the agent paradigm exactly: the learner gath-
ers its own training data by interacting with the environment
so that it can learn a policy mapping states to actions. An RL
agent repeatedly takes actions that both move it to a new state
in its environment and lead to some immediate reward signal.
The learner must explicitly tradeoff between exploration and
exploitation in an effort to maximize the long-term reward
that it will receive.

One common approach to reinforcement learning relies on
the concept of value functions, which indicate, for a particular
policy, the long-term value of a given state or state-action pair.
Temporal difference (TD) methods [Sutton, 1988], which
combine principles of dynamic programming with statistical
sampling, use the immediate rewards received by the agent
to incrementally improve both the agent’s policy and the es-
timated value function for that policy. Hence, TD methods
enable an agent to learn during its “lifetime” from its individ-
ual experience interacting with the environment.?

For small problems, the value function can be represented
as a table. However, the large, probabilistic domains which
arise in the real world usually require coupling TD methods
with a function approximator, which represents the mapping
from state-action pairs to values via a more concise, parame-
terized function and uses supervised learning methods to set
its parameters. Many different methods of function approx-
imation have been used successfully, including CMACs, ra-
dial basis functions, and neural networks [Sutton and Barto,
1998]. However, using function approximators requires mak-
ing crucial representational decisions (e.g. the number of hid-
den units and initial weights of a neural network). Poor de-

I'This is not to say that classical learning is irrelevant to agents.
An autonomous agent may well incorporate learned predictions as a
part of its world model. For example an autonomous bidding agent
may use regression to predict the future closing price of an auction,
and then use this information to evaluate its potential bids [Stone er
al., 2003].

>TD methods contrast with policy search methods which learn
based on the results of holistic policy evaluations rather than from
individual action effects.

sign choices can result in estimates that diverge from the
optimal value function [Baird, 1995] and agents that per-
form poorly. Even for reinforcement learning algorithms with
guaranteed convergence [Baird and Moore, 1999; Lagoudakis
and Parr, 2003], achieving high performance in practice re-
quires finding an appropriate representation for the function
approximator. As Lagoudakis and Parr observe,

The crucial factor for a successful approximate al-
gorithm is the choice of the parametric approxima-
tion architecture(s) and the choice of the projection
(parameter adjustment) method. [Lagoudakis and
Parr, 2003]

Nonetheless, representational choices are typically made
manually, based only on the designer’s intuition.

Despite an early emphasis in the field on “tabula rasa”
learning, it is becoming increasingly accepted that the process
of designing agents for complex, real-world domains will al-
ways require some manual input of this sort. The key to suc-
cess will be limiting the requirements for human knowledge
to tasks and representations for which humans have good in-
tuitions. As referred to above, the existence of a general
purpose toolkit that can be used without expert knowledge
of the underlying algorithms suggests that supervised learn-
ing methods are mature enough for use in robust, complex
systems. That is not yet the case for RL. Despite the ele-
gant theory that accompanies TD methods, most notably that
Q-learning converges to an optimal value function if every
state is visited infinitely often [Watkins, 1989], and despite
a limited number of successes that have been reported in
large-scale domains [Tesauro, 1994; Crites and Barto, 1996;
Stone et al., 2005], crucial, somewhat unintuitive decisions
about representations need to be made based on a deep un-
derstanding of the underlying algorithms and application do-
main.

The remainder of this section outlines directions for re-
search that will help current reinforcement learning, and other
machine learning, methods scale up to the point that they can
become core components of fully autonomous agents in real-
world tasks. Sections 2.1 and 2.2 deal with automatically
adjusting knowledge representations used for learning. Sec-
tions 2.3 and 2.4 address ways in which humans can provide
intuitive knowledge to learning agents, either by providing
a subtask decomposition or by suggesting related tasks for
knowledge transfer.

2.1 Adaptive Function Approximation

In order to address the observation of Lagoudakis and Parr
above, Whiteson and Stone [2006] automate the search for
effective function approximators for RL agents by applying
optimization techniques to the representation problem. In
that research, we propose using evolutionary methods [Gold-
berg, 1989] for optimizing the representation because of
their demonstrated ability to discover effective representa-
tions [Gruau et al., 1996; Stanley and Miikkulainen, 2002].
Synthesizing evolutionary and TD methods results in a new
approach called evolutionary function approximation, which
automatically selects function approximator representations
that enable efficient individual learning. Thus, this method



evolves individuals that are better able to learn. This bi-
ologically intuitive combination has been applied to com-
putational systems in the past [Hinton and Nowlan, 1987,
Ackley and Littman, 1991; Boers et al., 1995; French and
Messinger, 1994; Gruau and Whitley, 1993; Nolfi et al.,
1994] but never, to our knowledge, to aid the discovery of
good TD function approximators.

Specifically, we use NeuroEvolution of Augmenting
Topologies (NEAT) [Stanley and Miikkulainen, 2002]
to select neural network function approximators for Q-
learning [Watkins, 1989], a popular TD method. The result-
ing algorithm, called NEAT+Q, uses NEAT to evolve topolo-
gies and initial weights of neural networks that are better able
to learn, via backpropagation, to represent the value estimates
provided by Q-learning.

In experimental evaluation, we test Q-learning with a series
of manually designed neural networks and compare the re-
sults to NEAT+Q and regular NEAT, which learns direct rep-
resentations of policies. The results demonstrate that evolu-
tionary function approximation can significantly improve the
performance of TD methods, thus providing a much-needed
practical approach to selecting TD function approximators,
automating a critical design step that is typically performed
manually.

Though that research takes a step towards automating the
choice of representations for learning, there is still much
room for future work, including extending it to use dif-
ferent policy search methods such as PEGASUS [Ng and
Russell, 2000] and policy gradient methods [Sutton et al.,
2000]; and perhaps more importantly, optimizing function
approximators other than neural networks, such as CMACs
and radial basis functions. Research on feature selection
to adapt the inputs to the representation [Fawcett, 1993;
Whiteson et al., 2005] is also in this space of adaptive rep-
resentations.

2.2 Learned Abstractions

Another approach to adjusting problem representation is state
abstraction, which maps two distinct ground states to a sin-
gle abstract state if an agent should treat the ground states in
exactly the same way. The agent can still learn optimal behav-
ior if the environment satisfies a particular condition, namely
that each action has the same abstract outcome (next state and
reward) for all primitive states that are mapped to the same
abstract state: ground states that are grouped together must
share the same local behavior in the abstract state space [Dean
and Givan, 1997; Ravindran and Barto, 2003]. However, this
cited research only applies in a planning context, in which the
domain model is given, or if the user manually determines
that the condition holds and supplies the corresponding state
abstraction to the RL algorithm.

Jong and Stone [2005] propose an alternative condition for
state abstraction that is more conducive to automatic discov-
ery. Intuitively, if an agent can behave optimally while ignor-
ing a certain variable of the state representation, then it might
be able to learn successfully while ignoring that state vari-
able. Recognizing that discovering such qualitative structure
tends to require more time than learning an optimal behav-
ior policy [Thrun and Schwartz, 1995], this approach sug-

gests a knowledge-transfer framework, in which we analyze
learned policies in one environment to discover abstractions
that might improve learning in similar environments.

We introduce an efficient algorithm that discovers local re-
gions of the state space in which the same action would be op-
timal regardless of the value of a given set of state variables.
For example, you would take the same route to work in New
York no matter what the weather is in London. This algorithm
depends on determining what set of actions is optimal in each
state; we give two statistical tests for this criterion that trade
off computational and sample complexity. We then general-
ize this learned structure to a similar environment, where an
agent can ignore each set of state variables in the correspond-
ing learned region of the state space.

We must take care when we apply our discovered abstrac-
tions, since the criteria we use in discovery are strictly weaker
than those given in other work on safe state abstraction [Li et
al., 2006]. Transferring abstractions from one domain to an-
other may also introduce generalization error. To preserve
convergence to an optimal policy, we encapsulate our state
abstractions in temporal abstractions, or options, which con-
strue sequences of primitive actions as constituting a single
abstract action [Sutton et al., 1999]. In contrast to previ-
ous work with temporal abstraction, we discover abstract ac-
tions intended just to simplify the state representation, not to
achieve a certain goal state. RL agents equipped with these
abstract actions thus learn when to apply state abstraction the
same way they learn when to execute any other action.

The fact that abstractions are the building blocks for hi-
erarchical RL suggests the recursive application of our ab-
straction discovery technique to create hierarchies of tempo-
ral abstractions that explicitly facilitate state abstractions, as
in MAXQ task decompositions [Dietterich, 2000]. This pos-
sibility highlights the need for robust testing of optimal ac-
tions, since each application of our method adds new poten-
tially optimal actions to the agent. Learning MAXQ hierar-
chies based on our method is a natural direction for future
research.

2.3 Layered Learning

Hierarchies in general are powerful tools for decomposing
complex control tasks into manageable subtasks. As a case
in point, mammalian biology is a composition of hierarchi-
cally organized components, each able to perform specialized
subtasks. These components span many levels of behavior
ranging from individual cells to complex organs, culminat-
ing in the complete organism. Even at the purely behavioral
level, organisms have distinct subsystems, including reflexes,
the visual system, etc. It is difficult to imagine a monolithic
entity that would be capable of the range and complexity of
behaviors that mammals exhibit.

As covered in the previous section, initial steps have
been made towards learning hierarchies automatically in rel-
atively simple domains. However, in complex tasks, the hi-
erarchies still need to be defined manually [Brooks, 1986;
Gat, 1998]. Layered learning [Stone and Veloso, 1998;
2000a] is a hierarchical paradigm that similarly requires a
given task decomposition, but that then relies on learning the
various subtasks necessary for achieving the complete high-



level goal. Layered learning is a bottom-up paradigm by
which low-level behaviors (those closer to the environmen-
tal inputs) are trained prior to high-level behaviors.

The layered learning approach is somewhat reminiscent of
Rodney Brooks’ subsumption architecture as summarized in
his Computers and Thought paper [Brooks, 1991]. The sub-
sumption architecture layers control modules, allowing high-
level controllers to override lower-lever ones. Each control
level is capable of controlling a robot on its own up to a
specified level of functionality. In order to focus on learning
and to move quickly to high-level behaviors, layered learning
abandons the commitment to have every layer be completely
able to control a robot. Instead, many situation-specific (but
as general as possible) behaviors are learned which are then
managed by higher-level behaviors. Nevertheless, the idea of
building higher levels of functionality on top of lower levels
is retained.

Table 1 summarizes the principles of the layered learning
paradigm which are described in detail in this section.

1. A mapping directly from inputs to outputs is not
tractably learnable.

2. A hierarchical task decomposition is given.

3. Machine learning exploits data to train and/or adapt.
Learning occurs separately at each level.

4. The output of learning in one layer feeds into the next
layer.

Table 1: The key principles of layered learning.

Principle 1

Layered learning is designed for domains that are too com-
plex for learning a mapping directly from the input to the
output representation. Instead, the layered learning approach
consists of breaking a problem down into several task lay-
ers. At each layer, a concept needs to be acquired. A ma-
chine learning (ML) algorithm abstracts and solves the local
concept-learning task.

Principle 2

Layered learning uses a bottom-up incremental approach to
hierarchical task decomposition. Starting with low-level sub-
tasks, the process of creating new ML subtasks continues un-
til the high-level tasks, that deal with the full domain com-
plexity, are reached. The appropriate learning granularity and
subtasks to be learned are determined as a function of the
specific domain. The task decomposition in layered learning
is not automated. Instead, the layers are defined by the ML
opportunities in the domain.

Principle 3

Machine learning is used as a central part of layered learning
to exploit data in order to train and/or adapt the overall sys-
tem. ML is useful for training functions that are difficult to
fine-tune manually. It is useful for adaptation when the task
details are not completely known in advance or when they
may change dynamically. Like the task decomposition itself,

the choice of machine learning method depends on the sub-
task.

Principle 4

The key defining characteristic of layered learning is that each
learned layer directly affects the learning at the next layer. A
learned subtask can affect the subsequent layer by:

e constructing the set of training examples;
e providing the features used for learning; and/or
e pruning the output set.

Layered learning was originally applied in a complex,
multi-agent learning task, namely simulated robot soccer in
the RoboCup soccer server [Noda er al., 1998]. An exten-
sion that allows for concurrent training of multiple layers was
also implemented in simulation [Whiteson and Stone, 2003].
As described below in Section 4.1, layered learning has re-
cently been applied successfully on physical robots. In all
these cases, the subtask decomposition is supplied manually
and if relatively intuitive to construct. Nonetheless, discover-
ing ways to automate this decomposition, perhaps by leverag-
ing the abstraction discovery work described in Section 2.2,
is an important future goal.

2.4 Transfer Learning

A particularly topical area of Al research in 2007 is trans-
fer learning: leveraging learned knowledge on a source task
to improve learning on a related, but different, rarget task.
Transfer learning can pertain to classical learning, but it is
particularly appropriate for learning agents that are meant to
persist over time, changing flexibly among tasks and envi-
ronments. Rather than having to learn each new task from
scratch, the goal is to enable an agent to take advantage of its
past experience to speed up new learning.

For a reinforcement learning agent, there are several ways
in which the source and target may differ in a transfer prob-
lem. For example, source and target tasks with the following
differences have been studied in the literature:

e Transition function: Effects of agents’ actions dif-
fer [Selfridge et al., 1985]

e Reward structure: Agents have different goals [Singh,
1992]

o State space: Agents’ environments differ [Konidaris and
Barto, 2006; Fernandez and Veloso, 2006]

e Initial state: Agents start in different locations over
time [Asada et al., 1994]

e Actions: Agents have different available actions [Maclin
et al., 2005; Taylor et al., 2005; Soni and Singh, 2006]

o State variables: Agents’ state descriptions differ [Maclin
et al., 2005; Taylor et al., 2005; Soni and Singh, 2006]

In the most general case, the source and target can differ
in all of these ways. For such cases, Taylor et al. [2005] in-
troduce a method for transferring the learned value function
in a source RL task to seed learning in the target. The key
technical challenge is mapping a value function in one repre-
sentation to a meaningful value function in another, typically



larger, representation, despite the fact that state-action values
are inherently task-specific.

Past research confirms that if two tasks are closely related
the learned policy from one task can be used to provide a good
initial policy for the second task. For example, Selfridge et
al. [1985] showed that the 1-D pole balancing task could be
made harder over time by shortening the length of the pole
and increasing its mass; when the learner was first trained
on a longer and lighter pole it could more quickly learn to
succeed in the more difficult task with the modified transition
function. In this way, the learner is able to refine an initial
policy for a given task.

We consider the more general case where tasks are related
but distinct in that their state and/or action spaces differ. To
use the source policy g as the initial policy for a TD learner
in the target task, we must transform the value function so
that it can be directly applied to the new state and action
space. We introduce the notion of a behavior transfer func-
tional p(mg) = mr that will allow us to apply a policy in
the target task. The policy transform functional, p, needs to
modify the source policy and its associated value function so
that it accepts the states in the target task as inputs and allows
for the actions in the target task to be outputs, as depicted in
Figure 1.

Defining p to do this modification in such a way that wp
is a good starting point for learning in the target is the key
technical challenge to enable general behavior transfer. Cur-
rent results indicate that such p’s do exist, at least for some
tasks [Taylor et al., 2005]. However, automating the discov-
ery of the inter-task mapping between the state variables and
actions in the source and target tasks remains an open chal-
lenge, as does automatically selecting the source and target
tasks themselves.

3 Multiagent Reasoning

In addition to learning, a second essential capability of robust,
fully autonomous agents is the ability to interact with other
agents: multiagent reasoning. As argued in the introduction,
to successfully interact in the real world, agents must be able
to reason about their interactions with heterogeneous agents
of widely varying properties and capabilities. Once we have
a single complete agent that is able to operate autonomously
for extended periods of time in the real world, it is inevitable
that soon after we will have many. And they will need to
interact with one another.

Though more recent to our field than Machine Learning,
in the past decade Multiagent Systems (MAS) has begun to
come to the forefront. As with any methodology, two impor-
tant questions about MAS are:

e What advantages does it offer over the alternatives? and

e In what circumstances is it useful?

It would be foolish to claim that MAS should be used when
designing all complex systems. Like any approach, there are
some situations for which it is particularly appropriate, and
others for which it is not. In a survey of the field, Stone and
Veloso [2000b] summarized the circumstances in which MAS
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Figure 1: p is a functional which transforms a value function
@ from one task so that it is applicable in a second task that
has different state and action spaces.

is appropriate.® For example, some domains require MAS,

such as those in which agents represent people or organiza-
tions with different (possibly conflicting) goals and propri-
etary information; having multiple agents may speed up com-
putation via parallelization; MAS can provide robustness via
redundancy; MAS may be more scalable as a result of mod-
ularity; and they can be useful for their elucidation of funda-
mental problems in the social sciences and life sciences [Cao
et al., 1997], including intelligence itself [Decker, 1987]. Re-
garding this last point, as Weifl [1996] put it: “Intelligence
is deeply and inevitably coupled with interaction.” In fact, it
has been proposed that the best way to develop intelligent ma-
chines might be to start by creating “social” machines [Daut-
enhahn, 1995]. This theory is based on the socio-biological
theory that primate intelligence first evolved because of the
need to deal with social interactions [Minsky, 1988].

Multiagent systems differ from single-agent systems in that
several agents exist that model each other’s goals and ac-
tions. In the fully general multiagent scenario, there may be
direct interaction among agents (communication). Although
this interaction could be viewed as environmental stimuli, we
present inter-agent communication as being separate from the
environment.

From an individual agent’s perspective, multiagent systems
differ from single-agent systems most significantly in that the
environment’s dynamics can be affected by other agents. In
addition to the uncertainty that may be inherent in the domain,
other agents intentionally affect the environment in unpre-
dictable ways. Thus, all multiagent systems can be viewed as
having dynamic environments. Figure 2 illustrates the view

30Other takes on the same issue appear elsewhere [Bond and
Gasser, 1988; Sycara, 1998].



that each agent is both part of the environment and modeled
as a separate entity. There may be any number of agents,
with different degrees of heterogeneity and with or without
the ability to communicate directly.

Environment

o Goals
° Actions

knowledge

Figure 2: The fully general multiagent scenario. Agents
model each other’s goals, actions, and domain knowledge,
which may differ as indicated by the different fonts. They
may also interact directly (communicate) as indicated by the
arrows between the agents.

Most MAS research assumes that the protocol for inter-
action among agents is fixed from the outset. Perhaps they
will interact via a well-defined communication language as
represented by the arrows between the agents in Figure 2, or
perhaps they will interact just through observation of one an-
other’s actions as is often the case in adversarial domains.
However robust agents should also be able to cope with flex-
ible forms of interaction. In Section 2, the focus was on re-
search areas of Machine Learning that pertain to changing the
representation of learned knowledge (e.g. function approx-
imators, abstractions, and inter-task mappings for transfer)
more so than the learning algorithms themselves. An ana-
log in MAS is considering that the patterns and very rules of
interaction among agents may be able to change over time.
This section considers cases in which the rules of interaction
can change (Sections 3.1 and 3.2) as well as cases in which
the behaviors or capabilities of other agents change or are not
known in advance so that adaptive agent modeling is useful
or necessary (Section 3.3).

3.1 Adaptive Mechanism Design

The first such case we consider is adaptive mechanism de-
sign, which lies in the space considered by Tuomas Sand-
holm’s Computers and Thought lecture, namely agent-based
electronic commerce [Sandholm, 2003]. This area falls at the
intersection of Computer Science and Economics.

Recent years have seen the emergence of numerous auction
platforms that cater to a variety of markets such as business-

to-business procurement and consumer-to-consumer transac-
tions. Many different types of auction mechanisms defining
the rules of exchange may be used for such purposes. Vary-
ing parameters of the auction mechanism, such as auctioneer
fees, minimum bid increments, and reserve prices, can lead to
widely differing results depending on factors such as bidder
strategies and product types. Mechanism design is the chal-
lenge of optimizing auction parameters so as to maximize an
objective function, such as auctioneer revenue.

Mechanism design has traditionally been largely an ana-
Iytic process. Assumptions such as full rationality are made
about bidders, and the resulting properties of the mechanism
are analyzed in this context [Parkes, 2001]. Even in large-
scale real-world auction settings such as the FCC Spectrum
auctions, game theorists have convened prior to the auction
to determine the best mechanism to satisfy a set of objec-
tives. Historically, this process has been incremental, requir-
ing several live iterations to iron out wrinkles, and the results
have been mixed [Cramton, 1997; Weber, 1997]. An impor-
tant component of this incremental design process involves
reevaluating the assumptions made about bidders in light of
auction outcomes. These assumptions pertain to bidders’ in-
trinsic properties and to the manner by which these properties
are manifested in bidding strategies.

Pardoe et al. [2006] address this problem by considering
an adaptive mechanism that changes in response to observed
bidder behavior through the use of a learning algorithm. Our
view of adaptive mechanism design is illustrated in Figure 3.
A parameterized mechanism is defined such that the seller can
use an adaptive algorithm to revise parameters in response
to observed results of previous auctions, choosing the most
promising parameters to be used in future auctions. Upon
execution, the parameterized mechanism clears one or more
auctions involving a population of bidders with various, gen-
erally unknown, bidding strategies. The results of the auction
are then taken as input to the adaptive algorithm as it revises
the mechanism parameters in an effort to maximize an objec-
tive function such as seller revenue. Any number of contin-
uous or discrete auction parameters may be considered, such
as reserve prices, auctioneer fees, minimum bid increments,
and whether the close is hard or soft [Wurman et al., 2001].

The bidders in Figure 3 may use a variety of different bid-
ding strategies, including heuristic, analytic, and learning-
based approaches. For the latter to make sense, the same
bidders must interact repeatedly with the mechanism, lead-
ing to a potential co-evolutionary scenario in which the bid-
ders and mechanism continue to adapt in response to each
other [Phelps et al., 2002]. However, our approach does not
depend on repeated interactions with the same bidders. The
only required assumption about the bidders is that their be-
havior is somewhat consistent (e.g. bidders associated with a
particular industry tend to bid similarly) for a sufficient pe-
riod of time to allow for prediction of auction results as a
function of the mechanism, at least in expectation. The main
contribution of our work in this area is the presentation of
a metalearning technique with which information about po-
tential bidder behavior can be used to guide the selection of
the method of adaptation and significantly improve auction-
eer revenue.
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Figure 3: A high-level illustration of the concept of adaptive
mechanisms. From the point of view of the seller, the bidder
behaviors are unknown aspects of the environment.

There are several directions in which this work could be
extended. Many auction parameters are available for tuning,
ranging from bidding rules to clearing policies. The problem
becomes more challenging in the face of multidimensional
parameterizations. The choice of metalearning algorithm it-
self is a possible area for improvement as well. And perhaps
most interestingly, the effects of including some adaptive bid-
ders in the economies that are treated by adaptive mechanisms
are currently unknown.

3.2 General Game Playing

As presented in the previous section, the idea behind adaptive
mechanism design is that an agent may actively change the
rules of market interaction for bidding agents as time goes
on. For such an approach to be feasible in practice, 1) there
will need to be a way to specify the current rules of interaction
to the participating agents, and 2) the agents must be able to
figure out for themselves how to bid in any mechanism that
is so specified. Challenges similar to both of these have been
recently addressed in the context of general game playing.

Creating programs that can play games such as chess,
checkers, and backgammon, at a high level has long been a
challenge and benchmark for AI. While several game-playing
systems developed in the past, such as Deep Blue [Camp-
bell et al., 2002], Chinook [Schaeffer et al., 1992], and TD-
gammon [Tesauro, 1994] have demonstrated competitive play
against human players, such systems are limited in that they
play only one particular game and they typically must be
supplied with game-specific knowledge. While their perfor-
mance is impressive, it is difficult to determine if their success
is due to the particular game-playing technique or due to the
human game analysis.

A general game playing agent [Pell, 1993] must be able to
take as input a description of a game’s rules and proceed to
play without any human input, despite having had no prior
experience in that game. Doing so requires the integration of
several Al components, including theorem proving, feature

discovery, heuristic search, and potentially learning.

Kuhlmann er al. [2006a] present a complete and fully au-
tonomous general game playing agent designed to participate
in the first AAAI General Game Playing (GGP) Competi-
tion which was held at AAAI 2005 [Genesereth and Love,
2005]. In that setting, a restricted class of games is consid-
ered, namely discrete state, deterministic, perfect information
games. The games can be single or multi-player and they can
be turn-taking or simultaneous decision.

Our main contribution in this setting is a novel method for
automatically constructing effective search heuristics based
on the formal game description. The agent analyzes the game
description to automatically detect relevant features, such as
the number of white pieces on a board, to encode within
heuristic evaluation functions for use in iterative-deepening
alpha-beta search. Banerjee and Stone [2007] have also
shown the applicability of RL transfer learning in this setting.

Research on GGP is still in its very early stages, with cur-
rent agents performing far worse than agents with domain-
specific evaluation functions. Though perhaps GGP agents
will never rival special-purpose game players, there are many
open research directions pertaining to automatically generat-
ing heuristic evaluation functions that may help close the gap.

3.3 Agent Modeling

For fully autonomous agents in multiagent environments, the
ability to predict the behavior of other agents in the environ-
ment can be crucial to one’s own performance. Specifically,
knowing the likely actions of other agents can influence an
agent’s expected distribution over future world states, and
thus inform its planning of future actions.

In an adversarial environment, this predicted behavior of
other agents is referred to as an opponent model. Opponent
models are particularly useful if they include some identifi-
cation of potential patterns or weaknesses on the part of the
opponent. For example, a chess grandmaster may study past
games of a future opponent so as to determine how best to
play away from that opponent’s strengths.

In multiagent adversarial settings, in which the adversary
consists of a team of opponents, it can be useful to explic-
itly model the opponent as engaging in team activities. For
example, Tambe [1996] presents a simulated air-combat sce-
nario in which an individual’s behavior can indicate the com-
mencement of a team “pincer” maneuver that requires multi-
ple participants, thus enabling the prediction of other oppo-
nents’ future actions as well.

One setting in which opponent modeling research has been
conducted is the RoboCup simulation coach competition.
RoboCup is an international research initiative that uses the
game of soccer as a testbed to advance the state of the art in
Al and robotics [Kitano et al., 1997al. In most RoboCup soc-
cer leagues the goal is to create complete teams of agents that
can succeed at the task of winning soccer games. Though
opponent modeling can play a part in this task, it is often
the case that opponents cannot be observed prior to playing
against them (at least not by the agents themselves). Even
when they can be observed, opponent modeling challenges
are easily overshadowed by challenges such as vision, local-



ization, locomotion, individual ball manipulation, and team-
work.

In contrast, the goal of the simulation coach competition is
to focus entirely on opponent modeling. This focus is accom-
plished by 1) providing entrants with recordings of the oppo-
nents’ past play that is understandable by the coach agent; 2)
providing each entrant with an identical team of fully compe-
tent player agents; and 3) restricting the actions available to
advice regarding how the team should alter its playing style
to fit a particular opponent.

In this context, Riley et al. [2002] approach advice-giving
as an action-prediction problem. Both offensive and defen-
sive models are generated using the C4.5 [Quinlan, 1993]
decision tree learning algorithm. Their work also stresses
the importance of learned formation advice. Subsequently,
Kuhlmann et al. [2005; 2006b] decompose the problem sim-
ilarly, but using different model representations and advice-
generation procedures.

In other work, Riley and Veloso [2002] use Bayesian mod-
eling to predict opponent movement during set plays. The
model is used to generate adaptive plans to counter the op-
ponent’s plays. In addition, Riley and Veloso [2000] have
tried to model high-level adversarial behavior by classifying
opponent actions as belonging to one of a set of predefined
behavioral classes. Their system could classify fixed duration
windows of behavior using a set of sequence-invariant action
features.

Opponent team modeling has also been studied in military-
like scenarios. In addition to Tambe’s work mentioned
above [Tambe, 1996], Sukthankar and Sycara [2005] use
HMMs to monitor and classify human team behavior in a
MOUT (military operations in urban terrain) scenario, espe-
cially focusing on sequential team behaviors.

As the number and variety of agents increases, methods for
agent modeling will only become more central to enabling
agent autonomy. Whether through recursive modeling meth-
ods based on deep knowledge of the other agents’ internal
states [Vidal and Durfee, 1995]; strictly via observation of
the other agents’ actions [Huber and Durfee, 1995]; or some-
where in between, there will continue to be a need for meth-
ods that enable prediction of other agents’ future actions.

4 Robotics

The general topics of learning and multiagent reasoning are
relevant to autonomous agents of all kinds, including software
agents. But to the extent that one goal of Al is to enable
the creation of intelligent physical agents, or robots, that can
coexist with us in the real world, it is important to consider to
what extent these topics must be tailored to facilitate learning,
interacting robots.

Compared to other machine learning scenarios such as
classification or action learning by an individual agent in sim-
ulation, multiagent learning on physical robots presents sev-
eral formidable challenges, including the following.

Sparse Training Data: It is often prohibitively difficult to
generate large amounts of data due to the maintenance
required on robots, such as battery changes, hardware
repairs, and, usually, constant human supervision. Thus

learning methods designed for physical robots must be
effective with small amounts of data.

Dynamic Environments: Robots are inherently situated in
a dynamically changing environment with unpredictable
sensor and actuator noise, namely the real world. When
acting in teams, they must adapt to each other’s chang-
ing behaviors in addition to changes in the environment.
Thus learning algorithms designed for teams of physical
robots must be able to adapt quickly and continually.

Due at least in part to these challenges, most research on
learning robots to date has focused on individual tasks or rel-
atively simple multi-robot tasks. However, recent success-
ful applications of machine learning to complex dynamic en-
vironments with limited training examples, both with mul-
tiple agents in simulation and with individual robots in the
real world, suggest that the time is right for a concerted ef-
fort towards further developing learning methods that can be
deployed on teams of physical robots. As such, this section
focuses on research pertaining to learning and multiagent rea-
soning on physical robots.

4.1 Learned Behaviors on Physical Robots

Ideally, a robot should be able to respond to a change in its
surroundings by adapting both its low-level skills, such as
its walking style, and the higher-level behaviors that depend
on them. Because hand-coding is time-consuming and often
leads to brittle solutions, one would like this adaptation to
occur as autonomously as possible.

Unfortunately, current learning methods typically need a
large amount of training data to be effective. If that data
must be gathered by a robot in the real world, the amount of
time required for learning could become prohibitively large.
One possible way to alleviate this problem is to train behav-
iors first in simulation before implementing them in the real
world [Davidor, 1991; Gat, 1995; Porta and Celaya, 2001].
However, especially when concerned with complex percep-
tion or manipulation tasks, we cannot assume an adequate
simulator will always exist for a given robot. With no simula-
tor, each trial requires interaction with the physical world in
real time. In such cases, it is not possible to offset the costs
of an inefficient learning algorithm with a faster processor.
The learning algorithm must make efficient use of the infor-
mation gained from each trial (i.e., it must have low sample
complexity).

For this reason, until recently, most of the locomotion ap-
proaches for quadrupedal robots have focused on hand-tuning
a parameterized gait. This approach has been somewhat fruit-
ful: since the introduction of the Sony Aibo robot [Sony,
2004] in 1998, the walking speed of the Aibos has increased
significantly via manual gait tuning. However, the process of
hand-tuning a parameterized gait both can be time-consuming
and can require a good deal of human expertise. Furthermore,
a change of robot hardware and/or the surface on which it is
to walk necessitates retuning.

As an alternative to hand-tuning a parameterized gait, ma-
chine learning can be used to automate the search for good pa-
rameters. Various machine learning techniques have proven
to be useful in finding control policies for a wide variety of



robots including helicopters [Bagnell and Schneider, 2001;
Ng et al., 2004], biped robots [Zhang and Vadakkepat, 2003]
and Aibos [Hornby ef al., 1999; 2000; Kim and Uther, 2003].
Kohl and Stone [2004b] present a policy gradient learning ap-
proach for generating a fast walk on legged robots. Using this
method, we have created a walk that is faster than hand-tuned
gaits and was among the fastest learned gaits of its time.* A
key feature of our approach is that the robots time themselves
walking across a known, fixed distance, thus eliminating the
need for any human supervision.

Fidelman and Stone [2007] further demonstrate that it is
possible to similarly learn a higher-level fine-motor skill,
again with all learning occurring directly on the robot. In par-
ticular, the Aibo is able to learn a ball-grasping skill with no
human intervention other than battery changes. The learned
skill significantly outperforms our best hand-tuned solution.

As the learned grasping skill relies on a learned walk, we
characterize our learning implementation within the frame-
work of layered learning, as introduced in Section 2.3. This
research represents the first implementation of layered learn-
ing on a physical robot, with all training performed in the
real world. Extending this approach to other robots and ad-
ditional hierarchical behavior layers is a promising direction
for future research.

4.2 Learned Sensor and Actuator Models

One popular approach towards achieving the goal of robust
autonomy in robots is to imbue the robot with a general rea-
soning capability that relies on 1) a model of the current state
of the world; and 2) a model of the effects of the robot’s ac-
tions on the world. Given these models, the robot can then
plan its actions so as to best achieve its goals given the cur-
rent state of the world.

For such a model-based approach to be effective, the sensor
and actuator models must be accurate and well-calibrated, at
least in relation to one another. For example, state-of-the-art
robot localization algorithms such as particle filtering [Del-
laert et al., 1999; Kwok er al., 2003] rely on calibrated sensor
and actuator (odometry) models to fuse sensory and action
history information into a unified probabilistic estimate of the
robot’s location.

Currently, these sensor and actuator models are typically
calibrated manually: sensor readings are correlated with ac-
tual measured distances to objects, and robot actuator com-
mands are measured with a stopwatch and a tape measure.
However this type of approach has three significant draw-
backs. First, it is labor intensive, requiring a human opera-
tor to take the necessary measurements. Second, for sensors
and actuators with many (perhaps infinitely many) possible
readings or parameter settings, the measured model can only
be made to coarsely approximate the complete model. Third,
and perhaps most importantly, the model is necessarily tuned
to a specific environment and may not apply more generally.

4Since our original report on this method [Kohl and Stone,
2004al, there has been a spate of research on efficient learning al-
gorithms for quadrupedal locomotion [Chen, 2005; Chernova and
Veloso, 2004; Cohen et al., 2004; Dueffert and Hoffmann, 2005;
Kim and Uther, 2003; Quinlan ez al., 2003; 2005; Roefer et al., 2005;
Rofer, 2004; Rofer et al., 2003].

This brittleness is a major motivation for the automatic model
building advocated by Stronger and Stone [2006].

When considered in isolation, there is no choice but to
build each individual sensor and action model manually. In
practice, however, each of the robot’s sensors as well as its
action selection mechanism can be related through their re-
flection on the world state, as illustrated in Figure 4.

Sensor
Raw Input Model Extracted
Sensor 1 Information
Raw Input Extracted
Sensor 2 Information
g g World State
Estimate
[e] [e]
Raw Input Extracted
Sensor N Information
Action Changes to
Selection Action World State
Model

Figure 4: The flow of information on an autonomous robot.
The data from each sensor and the action selections are inter-
preted based on the robot’s action and sensor models, repre-
sented by arrows here. The resulting Extracted Information
can then be used to inform the robot’s estimate of the state of
the world.

Motivated by this relationship, Stronger and Stone [2006]
introduce ASAMI (Autonomous Sensor and Actuator Model
Induction), a general methodology by which a robot can learn
its action and sensor models from each other. Because the
world state can be estimated from independent, redundant
sources of information, the robot can use this information to
learn a model of any given individual source. It learns each
model by comparing the input to that model to an estimate of
the world state based on all of the other information sources.
Figure 5 shows (in a simplified setting) how the robot can use
redundant information to learn its action and sensor models.
For the sensor model, the world state estimate is first relayed
back through arrow A to the “information about world state”
from the sensor model. This tells us what the output of the
sensor model should have been assuming the world state es-
timate is perfectly accurate. When this data is combined with
the raw sensory input via arrow B, the result is training data
for learning the sensor model. This data can be processed
by supervised learning method based on the structure of the
sensor model. Similarly, the world state estimate can be re-
layed back to the “changes to world state” from the action
model (arrow C). In this case, the world state, if accurate, in-
dicates how the world actually changed as a result of previous
actions. This information can be combined with the action se-
lections (arrow D) to train the action model.

The benefit of ASAMI is that it enables a robot to induce
models of its sensors and actions without any manually la-
beled training data. That is, the only inputs to the learning
process are the data the robot would naturally have access
to: its raw sensations and its knowledge of its own action se-
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Figure 5: Dashed arrows A through D show how information
can be propagated back from a redundantly informed world
state estimate to calibrate the action and sensor models.

lections. This general methodology promises to increase the
robustness and general applicability of autonomous robots. If
a fully featured robot could automatically calibrate all of its
processing modules, it would be able to navigate under a va-
riety of environmental conditions without any human super-
vision. However, achieving this goal is not straightforward.
Standard techniques for model induction require accurately
labeled training data; in the absence of manually labeled data,
the robot must combine information from its actuators and
sensors to bootstrap accurate estimates of both models.

ASAMI is instantiated in a broad class of settings, namely
those in which an agent navigates through a one-dimensional
state space with a sensor that provides information about the
state of the world and actions that determine the world state’s
rate of change. Examples of such settings include a robot on a
track with a global positioning sensor and a velocity control;
a temperature regulator; and a vehicle with a throttle whose
settings correspond to accelerations. ASAMI works by simul-
taneously learning an action model and a sensor model, each
one based on the current estimate of the other one. This boot-
strapping process enables the agent to learn accurate approx-
imations to its true action and sensor models, starting with
only a very simplistic action model estimate. Furthermore,
the learning process is completely autonomous and unsuper-
vised, so that no human oversight or feedback is necessary.

ASAMI is implemented and validated in a robotic test-bed
domain based on the Sony Aibo ERS-7. In experimental tests,
the robot learns models from its action commands to the re-
sultant velocities and from its visual sensor readings to the
corresponding distances. The learning process takes only two
and a half minutes of completely autonomous behavior.

Looking forward, we consider ASAMI to be a first step to-
wards enabling a robot to autonomously navigate through a
very high-dimensional space while learning many functions
with various numbers of input and output variables. Extend-
ing ASAMI in this direction raises two main challenges. First,
ASAMI currently allows a robot to learn two functions: one
sensor model and one action model. With more than two
models to learn, the robot will have multiple sources of in-
formation that can be used to train each model. This situ-
ation raises the question of how these sources can best be
integrated with each other to provide effective training data
for each model. Second, ASAMI currently assumes that the

robot operates in a one-dimensional state space, thus restrict-
ing its learned models to being from one variable to one other
variable. For many applications, it will be necessary or use-
ful to learn functions with multiple input and output vari-
ables. In this case, straightforward polynomial regression, as
used in the initial implementation, is insufficient. In princi-
ple, the ASAMI methodology should extend to other general-
purpose function approximators such as neural networks and
CMACs. However, additional research is needed to deter-
mine how these methods may need to be adapted for auto-
mated model learning.

4.3 Learned Vision

To operate in the real world, autonomous robots depend on
their sensory information. Visual input, in the form of color
images from a camera, should be an excellent and rich source
of such information. But color, and images in general, have
been used sparingly on mobile robots, where people have
mostly focused their attention on other sensors such as tactile
sensors, sonar, and laser. There are three main reasons for this
reliance on other relatively low-fidelity sensors. First, most
sophisticated vision algorithms require substantial amounts
of computational and/or memory resources, making them in-
feasible to use on mobile robotic systems that demand real-
time processing. Second, most vision algorithms assume a
stationary or slowly moving camera and hence cannot ac-
count for the rapid non-linear camera motion that is charac-
teristic of mobile robots. Third, the variation of illumination
over the operating environment causes a nonlinear shift in
color distributions that is difficult to model; mobile robots,
while moving around the world, often go into places with
changing illumination.

Even in the face of these formidable challenges, one fac-
tor that can be leveraged is that many mobile robot applica-
tions involve a structured environment with objects of unique
shape and color — information that can be exploited to help
overcome the problems mentioned above. Sridharan and
Stone focus on designing algorithms that can work within the
robot’s computational and environmental constraints while
making the best use of the available information.

First, we present a prototype vision system that works
on-board an autonomous robot using vision as the primary
source of information [Sridharan and Stone, 2005b]. This
baseline system includes solutions to two main vision chal-
lenges, color segmentation® and object recognition, that can
run within the robot’s hardware constraints. The system is
robust to the presence of jerky non-linear camera motion and
noisy images. However, the baseline system relies on man-
ually labeled training data and operates in constant (and rea-
sonably uniform) illumination conditions.

Second, we use the structure inherent in the environment
to eliminate the need for manual labeling. The robot uses the
knowledge of the location of unique objects in its world to
autonomously learn the desired colors required for color seg-
mentation, thereby eliminating the time-consuming and brit-

3Color segmentation is the problem of mapping 3-dimensional
integral pixel values € [0, 255]° to color labels such as red, orange,
or blue.



tle manual calibration process. This information is also used
by the robot to navigate around its environment [Sridharan
and Stone, 2005al.

Third, we enable the robot to perform efficiently even
in the presence of illumination variations, a challenging vi-
sion problem because of the corresponding non-linear shift in
color distributions: the very same pixel values corresponding
to a color in one illumination may correspond to a completely
different color in another illumination. As the robot navigates
in its moderately structured world, it autonomously detects
and adapts to the changes in illumination conditions [Sridha-
ran and Stone, 2005c].

Fourth, we unify these results by enabling a robot 1) to
recognize when the illumination has changed sufficiently to
require a completely new color map rather than using one
of the existing ones; and 2) to plan its own action sequence
for learning the new color map on-line [Sridharan and Stone,
20071.

All of the algorithms above run in real-time on a physi-
cal Aibo ERS-7 robot enabling it to operate autonomously in
an uncontrolled environment with changing illumination over
an extended period of time. In the end, the robot is able to
detect changes in illumination robustly and efficiently, with-
out prior knowledge of the different illumination conditions.
When the robot detects an illumination condition that it has
already learned, it smoothly transitions to using the corre-
sponding color map.

One direction of future work is to have the robot adapt
to minor illumination changes by suitably modifying specific
color distributions. The ultimate research goal along this path
is to develop efficient algorithms for a mobile robot to func-
tion autonomously under uncontrolled natural lighting condi-
tions.

4.4 Communication Connectivity

Many applications of distributed autonomous robotic systems
can benefit from, or even may require, the team of robots stay-
ing within communication connectivity. For example, con-
sider the problem of multirobot surveillance [Parker, 2002;
Ahmadi and Stone, 2006b], in which a team of robots must
collaboratively patrol a given area. If any two robots can di-
rectly communicate at all times, the robots can coordinate
for efficient behavior. This condition holds trivially in en-
vironments that are smaller than the robots’ communication
ranges. However in larger environments, the robots must ac-
tively maintain physical locations such that any two robots
can communicate, possibly through a series of other robots.
Otherwise, the robots may lose track of each other’s activi-
ties and become miscoordinated. Furthermore, since robots
are relatively unreliable and may need to change tasks (for
example if a robot is suddenly called by a human user to per-
form some other task), in a stable multirobot surveillance sys-
tem, if one of the robots leaves or crashes, the rest should still
be able to communicate. Some examples of other tasks that
could benefit from any pair of robots being able to commu-
nicate with each other, are space and underwater exploration,
search and rescue, and cleaning robots.

We say that robot R; is connected to robot Ry if there is a
series of robots, each within communication range of the pre-

vious, which can pass a message from R; to Ry. In order for
the team to stay reliably connected, it must be the case that
every robot is connected to each other robot either directly
or via two distinct paths that do not share any robots in com-
mon. We call this property biconnectivity: the removal of any
one robot from the system does not disconnect the remaining
robots from each other.

Ahmadi and Stone [2006a] study this problem of enabling
robots to remain connected in the face of robot failures. We
address this problem by dividing it into three main steps:
1) checking whether a team of robots is currently bicon-
nected, 2) maintaining biconnectivity should a robot be re-
moved from (or added to) the team, and 3) constructing a
biconnected multi-robot structure from scratch. To be appli-
cable for teams of autonomous robots, all algorithms must be
fully distributed.

Our work to date addresses Step 1 under the assump-
tion that robots have constant and identical communication
ranges. This assumption applies in the case of homogeneous
robot teams (or at least teams with homogeneous transmit-
ters) such that the range is not dependent on a robot’s battery
level. This assumption allows us to assume the connection
graph among robots is undirected: if robot A can send a mes-
sage to robot B, then the reverse is also true. The heteroge-
neous case, along with Steps 2 and 3 are natural directions for
future work in this area.

5 Applications

Sections 2—4 treated learning and multiagent reasoning as
components of autonomous agents. But as pointed out in the
introduction courtesy of Koller’s quote, doing so has the risk
of fragmenting the field. Her reaction to this risk was to pro-
vide conceptual bridges among three different Al topics. But
another way to address the risk is to build applications that
require the practical unification of the various topics into a
complete agent, in our case one that learns, interacts, and per-
haps acts in the real world.

This notion of starting research from applications is com-
plementary to Stuart Russell’s metaphor in his Computers and
Thought paper. He wrote:

Theoreticians can produce the Al equivalent of
bricks, beams, and mortar with which Al archi-
tects can build the equivalent of cathedrals. [Rus-
sell, 1995]

On the other hand architects may, by creating new artifacts
that exhibit previously unseen properties, lead theoreticians
to the possibility of, or even need for, new bricks and beams.
In other words, one valuable way to advance the field is to
study complete agents in specific, complex domains, with the
ultimate goal of drawing general lessons from the specific im-
plementations. From this point of view, theoreticians and ar-
chitects share a complementary, bi-directional dependency on
one another. Theory paves the way for practice and also vice
versa: it is not a one-way road.

Consistent with this view, Russell writes that “Al is a field
defined by its problems, not its methods” [Russell, 1995].
In the remainder of this section, I briefly describe four such
problems that have been useful to me in my pursuit of agents



that can learn and interact with one another: robot soccer,
autonomous bidding agents, autonomic computing, and au-
tonomous vehicles. The first and last are physical domains
with real robots, while the other two focus on software agents.
The second and third are also interesting for the connections
they provide between Al and other research areas, namely
economics and computer systems respectively.® Most im-
portantly, all four are well-suited for the integration of ma-
chine learning and multiagent reasoning, including opportu-
nities for leveraging the research directions emphasized in
Sections 2 and 3 such as adaptive and hierarchical representa-
tions, layered learning, transfer learning, adaptive interaction
protocols, and agent modeling.

5.1 Robot Soccer

The original motivating domain for my research on multia-
gent learning was robot soccer. Robot soccer pits two teams
of independently-controlled agents against each other. Orig-
inated by Mackworth [1993], it has been gaining popularity
over the past decade, with several international “RoboCup”
competitions taking place [Kitano, 1998; Asada and Ki-
tano, 1999; Veloso et al., 2000; Stone et al., 2001a; Birk
et al., 2002; Kaminka et al., 2003; Polani et al., 2004;
Nardi ef al., 2005; Noda er al., 2006]. It was the subject
of an official IJCAI-97 Challenge [Kitano et al., 1997b] and
poses a long-term grand challenge to the field, namely the
creation of a team of humanoid robots that can beat the best
human soccer team on a real soccer field by the year 2050.
RoboCup’s explicit goal is to encourage research in the fields
of Al and robotics, with a particular emphasis on collabora-
tive and adversarial reasoning among autonomous agents in
dynamic multiagent environments. One advantage of the do-
main is that robot soccer can be used to evaluate different Al
techniques in a direct manner: teams implemented with dif-
ferent algorithms can play against each other.

Currently, RoboCup includes five robot soccer leagues
(simulation, small-size, mid-size, four-legged, and hu-
manoid), with each one emphasizing slightly different re-
search issues depending on the physical properties of the
robots. The commonalities across the leagues are that they
are run in dynamic, real-time, distributed, multiagent envi-
ronments with both feammates and adversaries. In general,
there is hidden state, meaning that each agent has only a
partial world view. The agents also have noisy sensors and
actuators, meaning that they do not perceive the world ex-
actly as it is, nor can they affect the world exactly as in-
tended. In addition, the perception and action cycles are asyn-
chronous, prohibiting the traditional Al paradigm of using
perceptual input to trigger actions. Communication oppor-
tunities are limited; and the agents must make their decisions
in real-time. These italicized domain characteristics combine
to make robotic soccer a realistic and challenging domain.

Much of the research described in Sections 2—4 has been
directly motivated by the challenges posed by the various
RoboCup leagues.

®Russell also specifically portrays the “influx of new methods
from other fields” and the embracing of Al methods by other fields
as positive developments [Russell, 1995].

5.2 Autonomous Bidding Agents

In contrast to robot soccer, in which all the agents are either
fully collaborative teammates or fully adversarial opponents,
research on autonomous bidding agents presents an opportu-
nity to consider agents whose goals are independent: an eco-
nomic agent seeks to maximize its own profit regardless of
the effects on the profits of other agents.

Like RoboCup, autonomous bidding has been the subject
of annual competitions for several years. The first Trad-
ing Agent Competition (TAC) was held in 2000 [Wellman
et al., 2001] with the goal of providing a benchmark prob-
lem in the complex and rapidly advancing domain of e-
marketplaces [Eisenberg, 2000] and motivating researchers
to apply unique approaches to a common task.

One key feature of TAC is that it requires autonomous bid-
ding agents to buy and sell multiple interacting goods in auc-
tions of different types. Another key feature is that participat-
ing agents compete against each other in preliminary rounds
consisting of many games leading up to the finals. Thus, de-
velopers change strategies in response to each other’s agents
in a sort of escalating arms race. Leading into the day of
the finals, a wide variety of aggregate economic scenarios is
generally possible. A successful agent needs to be able to
perform well in any of these possible circumstances.

Current TAC domains include a travel scenario in which
agents procure flights, hotels, and entertainment tickets for
clients with various travel preferences; and a supply chain
management scenario in which agents manage a PC manu-
facturing process, purchasing components from suppliers, de-
ciding what computers to produce, and bidding for customer
orders. The next TAC is planned to focus on adaptive mecha-
nism design, as described in Section 3.1.

In these domains, the multiagent learning opportunities
tend to pertain to modeling the aggregate effect of the
other agents on the economy, either from extensive off-
line data [Stone et al., 2003], or in response to short-term
changes in the other agents’ strategies [Stone ef al., 2001b;
Pardoe and Stone, 2006]. Note that even though it is a do-
main for strictly software agents, autonomous bidding is very
much a real-world problem, with potential high-stakes eco-
nomic impact.

5.3 Autonomic Computing

At the intersection of Al and computer systems research, au-
tonomic computing [Kephart and Chess, 2003] has the poten-
tial to address shortcomings in today’s systems and to enable
future systems. Autonomic computing refers to a broad set
of strategies to reduce the amount of complexity exposed to
human operators of computing systems. Autonomic systems
need to intelligently make complex decisions based on large
amounts of uncertain, heterogeneous information. The area
of machine learning has made significant progress in develop-
ing methods that automate the construction of such complex
decision-making systems by inducing robust models directly
from relevant empirical data.

Many recent papers have identified systems problems that
can benefit from machine learning [Wildstrom er al., 2005;
Chen et al., 2004; Liblit et al., 2003; 2005; Mesnier et
al., 2004; Fern et al., 2004; Kolter and Maloof, 2004,



Chang et al., 2004; Fox et al., 2004; Gomez et al., 2001;
Walsh et al., 2004; Murray et al., 2005; Newsome et al.,
2005]. My own experience, and the experience of others,
shows that machine learning cannot be integrated into sys-
tems as a simple black box. Rather, to achieve the goals of
autonomic computing we will need to achieve a much tighter
coupling between systems and machine learning in which
system designs are adapted to facilitate machine-learning-
based control, and in which machine learning techniques are
advanced to meet the demands of large-scale systems.

Autonomic computing may be a candidate for the next suc-
cessful application of layered learning. For entire systems to
be able to self-diagnose failures and repair themselves, there
will need to be learning components at multiple levels, in-
cluding the OS, databases, and networking modules. Thus a
paradigm like layered learning may be essential to keeping
the entire system operating smoothly.

In addition to learning, autonomic commuting is also fun-
damentally a multiagent problem. In today’s highly in-
terconnected world, computers are generally networked to-
gether such that failures or upgrades on one system can have
internet-wide effects, for instance with respect to packet rout-
ing or grid services.

Like autonomous bidding agents, autonomic computing is
a software agents domain with high potential for real-world
impact. I believe that autonomic computing will become an
increasingly important domain for testing, deployment, and
development of machine learning and multiagent reasoning
advances in the years to come.

5.4 Autonomous Vehicles

Enabling cars to drive autonomously in cities is currently
technologically feasible, and will likely be economically fea-
sible within the next 5-10 years. Indeed, General Motors has
announced that it plans to release a nearly autonomous vehi-
cle under its European “Opel” brand. The 2008 Opel Vectra
will be able to drive itself at speeds up to 60 miles per hour,
even in heavy traffic.

Such autonomous vehicles will change the way we think
about transportation, for example enabling people to concen-
trate on other activities while “driving,” and enabling minors
and the elderly to be transported on their own. As a result,
once there’s a single autonomous vehicle, there will likely be
many more, and every major automobile company will need
to respond.

The successful DARPA Grand Challenge [DARPA, 2006]
has shown that current Al can produce autonomous, embod-
ied agents capable of navigating the Mojave Desert. While
certainly no small feat, traversing a barren desert devoid
of pedestrians, narrow lanes, and multitudes of other fast-
moving vehicles solves at best half the problem. As Gary
Bradski, a researcher at Intel Corp. said following the suc-
cessful completion of the 2005 Grand Challenge by “Stan-
ley,” a modified Volkswagen Touareg [Montemerlo et al.,
2006], “Now we need to teach them how to drive in traf-
fic” [Johnson, 2005].

While autonomous vehicles driving in traffic may seem to
be a long way off, advances in Al, and more specifically,
Intelligent Transportation Systems [Bishop, 2005], suggest

that it may soon be a reality. Cars can already be equipped
with features of autonomy such as adaptive cruise control,
GPS-based route planning [Rogers ef al., 1999; Schonberg
et al., 1995], and autonomous steering [Pormerleau, 1993;
Reynolds, 1999]. Some current production vehicles even
sport these features. In addition to the Opel Vectra mentioned
above, DaimlerBenz’s Mercedes-Benz S-Class has an adap-
tive cruise control system that can maintain a safe following
distance from the car in front of it, and will apply extra brak-
ing power if it determines that the driver is not braking hard
enough. Both Toyota and BMW are currently selling vehicles
that can parallel park completely autonomously, even finding
a space in which to park without driver input.

Once such autonomous vehicles are possible, it is only a
matter of time before they become affordable, and then ubiq-
uitous. A natural question that then arises is whether the cur-
rent traffic control paradigms, which are designed for human
drivers, are appropriate for such autonomous drivers. Dresner
and Stone [2004] have created and implemented a novel algo-
rithm that enables cars and intersections to autonomously ne-
gotiate fine-grained reservations for the cars to pass through.
We demonstrate that our approach can lead to more than a
100-fold decrease in delays at busy intersections when com-
pared to standard approaches such as traffic lights. This foun-
dational result opens the way to the investigation of multia-
gent learning and market-based methods for autonomous ve-
hicle navigation, a direction of inquiry that promises several
years’ worth of fruitful research challenges in multiagent rea-
soning and machine learning.

6 Conclusion

In summary, the most exciting research topics to me are those
inspired by challenging real-world problems. Furthermore,
successful research results involve 1) fully implemented so-
lutions; 2) general algorithms that transcend individual do-
mains; and 3) theoretical explanations for, or bounds on, the
effectiveness of these algorithms. From where we stand to-
day, there is both the need and the foundation for such con-
tributions in Al aimed at enabling fully autonomous agents,
both in software and physically embodied, to learn and inter-
act with one another.

Throughout this paper I have summarized what I see to be
the most interesting and promising areas for current and fu-
ture research pertaining to machine learning, multiagent rea-
soning, and robotics with the ultimate goal of enabling the
creation of robust, fully autonomous agents that are able to
learn and interact with one another. By leveraging new theo-
retical results to inform practical implementation, and by tak-
ing advantage of innovations from concrete multiagent ap-
plications to inspire new theory, I believe that the field can
continue to make fast and exciting progress towards this goal.
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