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Grounded Linguistic Semantics

• Service robots are present in stores, factory 
floors, hospitals, and offices

• Need to understand language commands about 
the environment
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Grounded Linguistic Semantics

• “Bring me the empty cup”

• Learn word meanings in terms of robot 
perception
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Grounded Linguistic Semantics

• Traditionally done in vision space
• Predicates like “red” and “rectangle” can be 

learned through vision alone
• But looking isn’t all humans do
• “Empty”, “heavy”, “rattles”
• To understand some predicates, need to 

interact with objects beyond vision
• Equip a robot with both a camera and an arm
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Multi-Modal
Grounded Linguistic Semantics

• Interact with objects beyond just looking
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Multi-Modal
Grounded Linguistic Semantics

• Represent objects with features from all 
behaviors

• Traditional and deep vision features from 
looking

• Audio, haptic, and proprioceptive features 
from manipulation behaviors

• Different types of features form sensory 
modalities
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Multi-Modal
Grounded Linguistic Semantics

• Every combination of behavior and modality 
forms an understanding context

• “Red” in the look + color context
• “Empty” in the lift + haptic context
• “Tall” in look + shape, press + auditory 

contexts
• Predicate classifiers composed of confidence-

weighted votes from context classifiers
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Learning Multi-Modal
Grounded Linguistic Semantics

• Connect human language to features of 
sensory contexts

• Need labeled training data
– This object is pink and short

• How do humans describe
objects in question?

• Past work uses “I Spy” game
(Parde 2015)
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Learning Multi-Modal
Grounded Linguistic Semantics

by Playing “I Spy”

• Let the human and robot take turns describing 
objects

• Human descriptions give positive examples
• Robot descriptions followed up with dialog for 

positive and negative examples
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“An empty metallic aluminum container”
“An empty metallic aluminum container”
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Initially, robot has no training data and 
randomly guesses objects.



Learning Multi-Modal
Grounded Linguistic Semantics

by Playing “I Spy”

• System remembered positive and negative 
object examples for each predicate
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Learning Multi-Modal
Grounded Linguistic Semantics

by Playing “I Spy”

• Train predicate classifiers from positive and 
negative object examples
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empty: positive negative



Learning Multi-Modal
Grounded Linguistic Semantics

by Playing “I Spy”

• Predicate classifiers are a weighted vote of 
trained context classifiers giving decisions in 
[-1, 1] representing confidence
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empty?
Behavior / 
Modality

color … audio haptics

look 0.02 - -

… … … … …

lift - … -0.04 0.8

drop - … 0.4 0.02



Learning Multi-Modal
Grounded Linguistic Semantics

by Playing “I Spy”

• Use predicate classifiers confidences to decide 
how to describe a chosen object to the human
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tub (+.8)
light (+.7)
tall (+.9)
pink (+.02)

short (-.8)
half-full (-.05)
empty (+.6) 



• Follow-up dialog gathers both positive and 
negative examples
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“I am thinking of an object I would describe as 
light and tall and tub.”

Robot Turn
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“Would you describe this object as light?”
“Would you describe this object as tall?”
“Would you describe this object as tub?”
---
“Would you describe this object as pink?”
“Would you describe this object as half-full?”

Robot Turn



Playing “I Spy”

• Divided 32 objects into training folds of 8 each
• 10 participants played 4 games each with the 

robot; 4 objects per game
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Playing “I Spy”

• Robot started with no vocabulary for first fold 
of 8 objects

• After each fold, learning phase allowed lexical 
acquisition and grounding

• Measured game performance on novel 
objects as more learning had taken place
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Evaluating Multi-Modal Grounding

• Two learning algorithms compared
• Vision only baseline and multi-modal system
• During learning, vision only baseline only 

considered look behavior
• Users were unaware of multiple systems but 

interacted with both in 2 games each
– All 8 objects seen by both systems per user

• Measured robot guesses for correct object
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Results for Robot Guesses
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Bold: Lower than fold 0 average. *: Lower than vision only baseline



Results for Predicate Agreement
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• Leave-one-object-out cross validation across 
predicate labels on objects (74 total learned)

• *: significantly greater with p < 0.05
• +: trending greater with p < 0.1

Metric System
vision only multi-modal

precision .250 .378+
recall .179 .348*
F1 .196 .354*



Correlations to Physical Properties

• Pearson’s r between predicate decision in [-1, 
1] on object and height and weight

• vision only system learns no predicates with 
correlations p < 0.05 and |r| > 0.5

• multi-modal learns correlated predicates:
– “tall” with height (r = .521)
– “small” against weight (r = -.665)
– “water” with weight (r = .549)
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“A tall blue cylindrical container”
“A tall blue cylindrical container”



Conclusions

• We move beyond vision for grounding 
language predicates

• Auditory, haptic, and proprioceptive senses 
help understand words humans use to 
describe objects

• Some predicates assisted by multi-modal
– “tall”, “wide”, “small”

• Some can be impossible without multi-modal
– “half-full”, “rattles”, “empty”
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Future Work

• Use one-class classification to remove need 
for negative examples
– Move beyond “I Spy” to object retrieval alone

• Detect polysemy across modalities, as for the 
predicate “light” (color versus weight)

• Explore only as needed on novel objects
– If predicate is “pink” with known relevant context 

look + color, only perform look behavior to decide
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Learning Multi-Modal
Grounded Linguistic Semantics

by Playing “I Spy”
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https://youtu.be/jLHzRXPCi_w


