
In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019),
Macao, China, August 2019

Ad Hoc Teamwork with Behavior Switching Agents

Manish Ravula , Shani Alkoby and Peter Stone
The University of Texas at Austin, Texas, USA

manishreddy@utexas.edu, shani@cs.utexas.edu, pstone@cs.utexas.edu

Abstract
As autonomous AI agents proliferate in the real
world, they will increasingly need to cooperate
with each other to achieve complex goals with-
out always being able to coordinate in advance.
This kind of cooperation, in which agents have to
learn to cooperate on the fly, is called ad hoc team-
work. Many previous works investigating this set-
ting assumed that teammates behave according to
one of many predefined types that is fixed through-
out the task. This assumption of stationarity in be-
haviors, is a strong assumption which cannot be
guaranteed in many real-world settings. In this
work, we relax this assumption and investigate set-
tings in which teammates can change their types
during the course of the task. This adds com-
plexity to the planning problem as now an agent
needs to recognize that a change has occurred in
addition to figuring out what is the new type of
the teammate it is interacting with. In this paper,
we present a novel Convolutional-Neural-Network-
based Change Point Detection (CPD) algorithm for
ad hoc teamwork. When evaluating our algorithm
on the modified predator prey domain, we find that
it outperforms existing Bayesian CPD algorithms.

1 Introduction
Autonomous agents, both in software and robotics, are be-
coming increasingly capable of solving complex tasks. How-
ever, if these agents are to perform day to day activities as
a part of society, they will need to be able to cooperate with
other agents. Often in studies of cooperative agents, the co-
ordination strategy is either learned or decided a priori while
assuming full knowledge of the teammates and the task at
hand. However, as agents become more robust and diverse, it
will become progressively more difficult to ensure that all the
agents share the same communication and coordination pro-
tocols. Thus, these agents will need to be able to cooperate
on the fly. For example, in case of a disaster, it might not be
possible (due to lack of time or resources), to reprogram the
existing heterogeneous robots deployed in the area and pro-
vide them with the knowledge of each other’s capabilities to
assist the search and rescue operations. The Drop-in Player

competition at RoboCup [MacAlpine et al., 2014] is another
setting that necessitates ad hoc cooperation. In this variant
of robot soccer, new robot teams are formed by mixing robot
players from different teams. They have to cooperate and play
together to win. Such challenging tasks can only be accom-
plished if these robots are able to work together without the
need to be explicitly provided with strategies in advance.

This problem, in which a team of agents is formed ad hoc,
for a particular purpose, and the team strategies cannot be
developed a priori, is called the “ad hoc teamwork“ prob-
lem [Stone et al., 2010]. Several works approach this set-
ting by assuming that every agent behaves according to one
out of a set of predefined behaviors [MacAlpine et al., 2014;
Albrecht and Ramamoorthy, 2015; Albrecht et al., 2016;
Auer et al., 2002; Barrett et al., 2012; 2011]. These, be-
haviors (also called types), are often assumed to be defined
in the form of probability distributions mapping states to ac-
tions. Cooperation then is effectively split into reasoning and
planning, where the ad hoc agent first reasons about the team-
mates’ capabilities and behaviors and then plans actions to
optimally accomplish the task at hand. If the types are suffi-
ciently descriptive and the reasoning algorithms are capable
enough, the agent’s beliefs regarding the other agents’ type
will rapidly converge, leading to successful performance of
the task. Common to all past work is the assumption that
teammates maintain the same type throughout the entire task.
Real world teammates, however, may not be static in terms of
agent behaviors. If the ad hoc agent doesn’t swiftly recognize
such changes and adapt accordingly, teamwork will surely de-
grade. Search and rescue tasks are an important class of such
examples.

In this paper, we relax the assumption of the agents’ types
being fixed through the task and consider the more realis-
tic problem of agents dynamically switching between types
through the course of the task. We formulate this problem
as a Change Point Detection (CPD) problem in which ad hoc
agents are required to identify throughout the task, whether
a change in the type of the other agents has occurred and if
so, what the new type is. We investigate the use of exist-
ing CPD algorithms and propose a new CNN (Convolutional
Neural Network)-based CPD algorithm. Finally, using a mod-
ified version of the predator prey domain we find that our
algorithm outperforms other CPD algorithms in detecting and
adapting to changes in agent types.

2 Related Work
In this section we discuss the current state of the art in the area
of ad hoc teamwork, specifically in the type-based approach.
Next, we discuss the change point detection problem and its
connection to our research.

2.1 Type-Based Ad Hoc TeamWork
Approaches to ad hoc teamwork broadly fall into two cate-
gories based on how the ad hoc agent models the rest of the
team [Albrecht and Stone, 2018]. The well-studied first cate-
gory involves modeling agents individually with distributions
over action probabilities at each timestep [Brown, 1951]. The
second approach involves modeling the group as a whole and
its joint action/planning dynamics [Tambe, 1996]

Type-based reasoning falls into the first category. In the
last decade, multiple works have studied this problem in
various contexts and experimental domains. Several works
have concentrated on investigating likelihood methods for ef-
ficient inference of type given the predefined behavior/type
set, using Monte Carlo Tree Search (MCTS) for planning ac-
tions accordingly [Barrett et al., 2011; Stone et al., 2010;
Albrecht et al., 2016; Albrecht and Stone, 2017]. Going one
step further, a number of works have investigated algorithms
that can build this set of behaviors while performing the task
instead of assuming that it is given beforehand [Nikolaidis
and Shah, 2013; Nikolaidis et al., 2014].

All of the above works assume however, that the team-
mates’ types remains fixed and do not account for type
switches. The only paper that does consider non-stationary
teammates [Hernandez-Leal et al., 2017] focuses on detect-
ing drift between a learned set of types and the agent’s cur-
rent behavior to help decide when the current type set isn’t
expressive enough of the behavior. While their work aims to
build a repertoire of behavior types, ours focuses more on the
immediate problem of co-operation in the presence of type-
changing teammates.

2.2 Change Point Detection
Change points are abrupt variations in time series data. Such
abrupt changes may represent transitions that occur between
states. Change Point Detection (CPD) has been investigated
in many application areas such as climate change detec-
tion [Reeves et al., 2007] and robotics [Aminikhanghahi and
Cook, 2017]. Various algorithms have been proposed to de-
tect and track these changes, both offline and online. Algo-
rithms like the CUMSUM [Page, 1954], KLIEP [Sugiyama et
al., 2008] and SPLL [Kuncheva, 2013], that work with re-
peated hypothesis tests fall under the category of Likelihood
based statistical methods and are strongly tailored to numer-
ical time series sampled from parametric probability distri-
butions. Bayesian Methods ([Xuan, 2007; Fearnhead and
Liu, 2007; Niekum et al., 2015]) involve priors on change
point locations and can work on arbitrary, non-parametric
model specifications. Both the online and offline versions
of Bayesian CPD algorithms often grow in O(T 2) in com-
plexity as the total number of timesteps increases. Finally, re-
cent work on LSTM-RNN based change point detection [Meng
et al., 2017] has been promising due to the representational

power afforded by the neural networks as well as the long
range time dependencies captured by the LSTM architectures.
These methods first learn a predictive model of the time-series
data distributions and then measure the drift from the pre-
dicted value to the true value to identify changes.

All of the aforementioned algorithms assume that the time-
series data at any given timestep within a segment is gen-
erated from a stationary random process. This assumption
proves detrimental when we want to infer switches in types
solely based on observing an agent’s actions. Since an agent’s
probability distribution over actions is generally conditionally
dependent on its state at every timestep, this assumption of
stationarity is invalid and as will be shown, affects the perfor-
mance of current CPD algorithms. The algorithm presented in
this paper does not make this assumption and is specifically
tailored to work with non-stationary agent models.

3 Preliminaries
This paper’s terminology and notation follows that of Al-
brecht and Stone [2017].

3.1 Model
We consider a multi-agent model where agents interact with
each other in order to achieve a common goal. The process
starts at time t = 0. At time t, each agent i receives a signal
sti and independently chooses an action ati from some count-
able set of actions Ai. We do not put any limitations on sti’s
structure and dynamics. This process continues indefinitely
or until some termination criterion is satisfied (i.e., a goal is
achieved).

We will use P (ati|Ht
i , θi) to denote the probability with

which the action ati is chosen whereHt
i = (s0

i , ..., s
t
i) is agent

i’s history of observations and θi is i’s type. Since this work
mainly focuses on detecting type changing points and since
the work of Albrecht et al. provided a method for reason-
ing about the values of any bounded continuous parameters
within types, we will assume that the types are characterized
without the need of parameters.

To simplify the exposition, we assume that we control a
single agent, i, which reasons about the behavior of another
agent, j. We also assume that i knows j’s action spaceAj and
that it can observe j’s past actions, i.e. at−1

j ∈ Ht
i for t > 0.

The true type of j, denoted θ∗j is unknown to i. However, i has
access to a finite set of hypothetical types θj ∈ Θj , with θ∗j ∈
Θj . We furthermore assume that all agents share the same
global state and by extension, i has all information relevant to
j’s decision making, so that Ht

j is a function of Ht
i . Finally,

we assume that agent j will change its type during the process
at a number of chosen time points set exogenously.

Our goal is twofold. First, we aim to devise a method
which allows agent i to be able both to identify the specific
time point in which the change in agent j’s type has occurred
and to identify its new type, based only on agent j’s observed
actions. Second, we aim to adapt the planning method to cope
with these changes.

3.2 Reasoning in the Absence of Change points
Without considering the option that agents are allowed (or
able) to change their type during the task to be accomplished,

Algorithm 1 MAP Type Estimation

Given type space Θ, initial belief P (θi|Ht
i)

Output: Type estimates at each timestep, θ̂t
1: for each timestep t > 0 do
2: Observe action atm of mth agent
3: for each type θi in type space Θj do
4: P (θi|Ht

i)← P (atm|θi) ∗ P (θi|Ht
i − 1)

5: end for
6: set θ̂t ← argmaxθi(P (θi|Ht

i))
7: end for

our agent will use the MAP type estimation method as defined
in the work of [Albrecht and Stone, 2017] in order to identify
the other agents’ type and plan accordingly. According to the
MAP type estimation method, our agent maintains individual
probability for each possible type in Θj and updates them
after each observation. This process is formally described in
Algorithm 1.

3.3 Planning

Given an assumption of teammate types, the agent can then
plan a sequence of actions that, in conjunction with the pre-
dicted actions of teammates, will lead to the best team utility.
Previous work for planning [Fridman, 2018] has used Monte
Carlo Tree Search (MCTS) as it has relatively few restric-
tions on the domain and often works quite well for short-term
planning. To reduce computational complexity and simplify
exposition and since planning itself is not the focus of our
work, we use a simple, domain-specific planning algorithm
that is described in Section 5.4.

4 Proposed Methodology
Algorithm 1 does not explicitly consider the possibility of
teammates changing types. Since the belief is propagated
from the beginning, it often takes many timesteps of lag for
the posterior P (θi|Ht

i) to reflect the changed type, owing to
drift in belief. Hence, identifying change points in this way
can be detrimental to fast inference of the new type after a
change occurs. We aim to solve this belief-drift problem by
incorporating a change point detection phase where the ad
hoc agent inspects the history to identify possible switches in
its teammates’ types. If any such switches are found, then the
reasoning algorithm resets its recent history to begin just after
the change point and uses only the reset history for inference.
Specifically, we reset the evidence P (θi|Ht

i) immediately af-
ter a change point is observed. This modification in reasoning
strategy helps rapid convergence of the type-inference proce-
dure to the new type after a change point and consequently
aids in minimizing planning lag.

Since the choice of the change point algorithm is not
straightforward, we compare existing algorithms with a
newly proposed CNN-based change point detection method.
This new algorithm is described in detail in the following sec-
tion, while the existing algorithms are described in Section
5.3.

4.1 Convolutional CPD Network
Convolutional Neural Networks [LeCun et al., 2015] have
shown remarkable performance on many image-related tasks.
Effective composition of convolutions coupled with non-
linear transformations give CNNs the power to learn and dis-
tinguish spatial patterns accurately. We aim to leverage this
power by representing our change point detection problem as
a 2D image classification like problem. This process is il-
lustrated in Figure 1. The figure illustrates how different the
likelihood matrices P (aT |θi), called L|Θ|×nt

are, for a given
timestep T and observed action aT . In the ideal case, when
the types are very different from each other, an observed ac-
tion should have a high likelihood only from the actual type
that generated it and near zero likelihood from all others 1.
Thus, when a change point occurs, the likelihood mass must
also shift towards the new type. Such a shift in likelihood
will show up as a break in the highest likelihood line (col-
ored yellow), as illustrated in the figure. Thus, recognizing
this break in the image-like representation can help us detect
change points.

Since detecting such a pattern requires both horizontal
(time) and vertical (type) related analysis, Convolutional
Neural Networks are a natural fit. Thus, we can pose the
change point detection problem as an image-classification
problem, where each likelihood-matrix when interpreted as
an image can be classified into one of nclasses = |Θ|P 2 +1 =
|Θ| × (|Θ| − 1) + 1 labels based on the presence/absence of
a change point and the pre-change-point type, post-change-
point type.

The architecture we used to solve this classification prob-
lem is summarized in Table 1. The network takes as in-
put the matrix L|Θ|×nt

. The first layer has multiple 40 2d-
convolutional filters followed by a max-pooling layer. The
activations are then passed through the ReLU non linearity
into a series of fully-connected (FC) layers. Finally, the out-
put is soft-maxed to get the probability of each of nclasses
happening in the last T-timesteps. Here, the width nt of
L|Θ|×nt

is considered a hyper-parameter and is chosen to fa-
cilitate the best accuracy for a particular task and type-set at
hand. Larger widths translate to access to increased length of
history and hence better accuracy. This trade-off is discussed
further in the experiments section.

At each timestep, we pass the last nt timesteps’ likelihood
information to the matrix and retrieve the output probabilities
for all possible switches at T − nt

2 . This process is simi-
lar to a sliding-window approach, where we are sliding over
likelihood matrices. If the network outputs the highest prob-
ability for a change-point at timestep T, then a change-point
is marked at timestep T − nt

2 .
The network is trained using the likelihood matrices

derived from simulation. Inside each simulation run, we
infuse changepoints randomly in a teammate and collect
likelihood matrices pertaining to its actions centered around
the change-point. The changepoints are sufficiently spaced
apart so that the likelihood matrices collected only contain

1In the extreme-ideal case, the types would be sufficiently dif-
ferent to have non-overlapping likelihoods for each action: in every
state, each type generates a different action.

Figure 1: Image-like representation of P (aT |θi) ∀{θi ∈ Θ , |Θ| =
5} where aT is the action observed at timestep T . The image-like
patterns are starkly different for change points vs no change point.

Algorithm 2 Convolutional Changepoint Detection
(ConvCPD) for each agent

Output: pm,nc = Probability of a type change from m to n
occurring within the last hl timesteps).

1: out1← ConvCP1.forward(Lt)
2: pm,nc ← Softmax(out1)

return pm,nc

information about a single changepoint. This set of matrices
is augmented with another set of matrices which is collected
without changepoints so as to have a balanced dataset. The
details are further described in Section 5.

Layer Name Layer Dimensions
Input (|Θ|, nt)

Conv1 (40 x 3 x 3)
Maxpool (2x2)
ReLU1 -

FC1 (40 ∗ ((ns × 2)− 2)× (nt − 2)× 100)
ReLU2 -

FC2 (100 X 100)
ReLU3 -

FC3 (100 X 20)
ReLU4 -

FC4 (20, nclasses)

Table 1: Architecture of the CPD Network used in our experiments.
The choice of layer sizes are specific to our experiments and can be
changed/resized accordingly for other applications

5 Experimental Evaluation
We provide a detailed experimental evaluation of the pro-
posed method in a modified predator-prey domain [Benda et
al., 1986].

5.1 Domain Description
Our domain is a modified version of the predator-prey do-
main. The domain models the environment as a square grid in

Figure 2: An example state in the modified predator prey domain.

which two agents (predators) are acting and n ∈ N preys are
present. A prey is stationary, i.e., cannot change position on
the grid during the task. A predator however, can change po-
sition during the game by executing one out of the following
actions: U for moving up, D for moving down, R for moving
right, and L for moving left. Predators can also stay put by ex-
ecuting the action N. At each timestep, both predators decide
separately upon an action they are interested in performing. A
conflict can occur if both agents chose actions that move them
to the same position on the grid. In case of such conflicts, ties
are resolved randomly and the losing predator is forced to per-
form action N (i.e stay put). Otherwise, they simply proceed
by performing their chosen actions. We denote the amount
of timesteps that the task is allowed to continue by NMAX .
Other than moving across the grid, the predator can capture a
prey by performing the C (for CAPTURE) action. C can be ex-
ecuted only when the predator neighbors the prey (no matter
from which direction). Once an agent performs a C action, it
remains locked onto the target and can no longer execute any
other action, i.e., remains in its current position in a captur-
ing mode for the rest of the time left. If both agents perform
the C action on the same prey, the prey is captured. If the
predators were able to capture one of the preys, then the task
terminates successfully. However, if a prey is not captured
within NMAX timesteps, the task is terminated as a failure.
Figure 2 depicts an example grid configuration of our domain
where n = 3, i.e., there are 3 preys (yellow squares) and 2
predators (blue circles). Finally, we note that in our experi-
ments, only one agent is an ad hoc agent trying to track the
other agent’s type. The other agent’s type is randomly chosen
at the beginning of the simulation episode.

5.2 Agent Types
We consider the pre-planned predator agent’s type character-
ized by the prey it currently is in pursuit of, i.e., its type is
θi if it pursues prey number i.2 At each timestep the agent
calculates a path to its prey using the A∗ algorithm. It then
assigns a high-probability (0.9), to the action suggested by
the path-planning algorithm and a low-probability (0.1 evenly
distributed over the rest) to all other valid actions. This dis-
tribution is passed through a softmax() function to infuse ran-
domness in actions. The introduction of the softmax() func-
tion enables adjustment of agent behavior with a single pa-
rameter - alpha. Finally, the agent samples an action from
this distribution and executes it if there are no conflicts with

2The ad hoc agent does not have a type since its goal is to identify
the other agent’s type and to best cooperate with it, i.e., choose the
prey it will pursue based on the prey the pre-planned agent chose.

Algorithm 3 Template for Agent Types

Type θi
Output: (pa, a

t
i) = P (ati|Ht

i , θi), a
t
i

1: Target← Objects[θi]
2: initialize the probability vector pa to 0s.
3: if Agent is a neighbor of Target then
4: Assign probability 1 to C - CAPTURE action;
5: break
6: else
7: Use A∗ to estimate path to Target
8: Assign probability 0.9 to first move from the path
9: Distribute the remaining probability of 0.1 equally and

assign the parts to valid moves apart from the move gen-
erated by A*.

10: Perform softmax(pi) =
eα∗pi∑
eα∗pi

with temperature

α = 2 over non-zero probabilities pi to derive final action
probabilities.

11: end if
12: ati ← sample(pa)
13: return (pa, a

t
i)

other agents. The full algorithm for the predator agent’s be-
havior given its type is described in Algorithm 3. This algo-
rithm outputs a probability distribution over actions (pa) and
a single action (ati) sampled from pa to perform at time-step
t.

Both pre-planned and ad hoc agents navigate to their target
prey using the A∗ algorithm.

If the adhoc agent doesn’t correctly infer the type of its
teammate, the simulation can result in failed termination be-
cause both agents perform the CAPTURE action on different
preys.

5.3 Bayesian Change Point Detection Algorithm
The widely used Bayesian model-based change point detec-
tion algorithm was first presented by [Fearnhead and Liu,
2007]. Their model assumes time-series observations y1:n =
(y1, y2, ..., yn) and a set of candidate models Q. The goal is
to infer the number of changepoints m and their MAP (Max-
imum A-Posteriori) times c1, c2, ..., cm, where c0 = 0 and
cm+1 = n (i.e., there exist m + 1 segments). The observa-
tions yci+1:ci+1 forming the ith segment are assumed to be
produced by the associated model qi ∈ Q with parameters θi.

The basic assumption in this model is that data after a
change point is independent of data prior to that change point.
Thus, we can model the change point positions as a Markov
chain in which the transition probabilities are defined by
the time since the last change point in the following way:
Pr(ci + 1 = t|ci = s) = g(t − s), where g(x) is a prob-
ability distribution over time.

The model evidence for a model q and a given seg-
ment starting from a time point s and ending at a time
point t is defined by: L(s, t, q) = Pr(ys+1:t|q) =∫
Pr(ys+1:t|q,Θ)Pr(θ)dθ.
We denote the event that a change point will occur at time

j by ψj and the event that given a change point at time j, the

MAP choice of change points has occurred prior to time j by
ωj . We can now use the notations: Prt(j, q) = Pr(FCt =
j, q, ωj , y1:t) and PMAP

t = Pr(ψj , ωj , y1:t), where FCt is
the distribution over the position of the first change point prior
to time twhich can be efficiently estimated using the standard
Bayesian filtering recursions and an on-line Viterbi algorithm
[Forney, 1973].

From the problem setup, we proceed to derive:

Prt(j, q) = (1−G(t− j − 1))L(j, t, q)Pr(q)PMAP
j (1)

PMAP
t = max

j,q

[g(t− j)
1−G(t− j − 1)

Prt(j, q)
]

(2)

Here, G(x) is the cumulative distribution function of g(x).
Finally, the Viterbi path can be recovered by finding the j and
q values that maximize (2) at time t. We then can repeat the
process again in order to find the values which maximize (2)
at time j or any time point beforehand until reaching zero.
The algorithm is fully on-line, but requires O(n2) computa-
tion at each timestep.

5.4 Results
In our experiments we simulate agents’ behaviors at every
timestep. The ad hoc agent runs Algorithm 2. The ConvCPD
algorithm is trained with 10,000 samples (batch size = 64,
learning rate = 0.01, decay = 0.1, optimizer = SGD) involv-
ing equal proportions of all classes. After passing the matrix
through the CNN, we retrieve the probabilities of all possi-
ble sequences of types before and after the center-point in the
matrix, i.e at time T − nt

2 . Using these probabilities, we com-
pute the location and nature of the change point as the class
with the maximum probability output by the CNN. The ad hoc
agent plans simply by moving to the prey that it infers as the
target of the other agents’ type. Since the task at hand is sim-
ple, this planning algorithm works well. Results are averaged
over 150 trials.

Table 2 displays the influence of nt (the width ofL) on both
the change point detection accuracy and the mean squared
error (MSE) of change point time estimation. From looking at
the table, one can see that as nt increases, the accuracy of the
detection increases and the MSE decreases. This result makes
sense, since the more timesteps the agent has as an input to
the CNN, the more information it has on which to base its
prediction.

nt = 20 nt = 16 nt = 14 nt = 10

Accuracy 88% 72% 53% 22%
MSE 1.2 2.4 3.5 4.2

Table 2: Change point detection accuracy and the mean squared er-
ror (MSE) of change point time estimation for different values of nt.

For evaluating the overall improvement in the teamwork
performance where agents’ types are dynamic, we tested the
average number of timesteps it took the agents to success-
fully finish the task where there are 6 preys on the grid, i.e.,
|Θ| = 6. Figure 3 depicts the number of time-steps the

Figure 3: The number of timesteps required for completing the task using the different change point detection algorithms for both stationary
and dynamic types.

team required to successfully complete the task using dif-
ferent change point detection algorithms both for the case
where agents are stationary (left) and dynamic (right). We
note that for the dynamic case, if the ad hoc agent knew the
pre-planned agent’s type at every timestep, i.e., has perfect
information, the number of timesteps needed for successfully
completing the task, as can be seen from the figure, is the
lowest possible. Thus, we consider this case to be our (un-
achievable) lower bound.

As mentioned above, when using the Conv-CPD algorithm,
the network performs with highest accuracy when nt is 20.
This is also observed from the right graph appearing in Fig-
ure 3. As the value of nt decreases the number of timesteps
it takes the team to complete the task increases. Moreover,
in the case where nt = 14 or 10 it takes the team longer to
complete the task than it would have taken them to complete
it in the case of no information, i.e., without any awareness
to the fact that agents are changing their types throughout the
task.3 If using the Bayesian CPD (BCPD) however, the num-
ber of timesteps it takes the team to complete the task is the
highest observed.

Finally, in many real life situations, agents may not know
in advance whether their teammates will change their type
throughout the task or not. Therefore we want to make sure
that applying a change point detection algorithm even if the
types are fixed will not lead to falsely detecting of change
points and decrease in performance. The left graph in Fig-
ure 3 illustrates the number of timesteps it takes the team to
complete the task under the different algorithms when agents
do not change their types throughout the task. Here again,
using ConvCPD with nt = 20 the team performs just as well
(statistically) as the case of N Information. In the case where
nt = 16 it takes the team a bit longer to finish but still no
more than the case of no information. When nt is 14 or 10, or
when using BCPD, however, the number of timesteps it takes
the team to complete the task is higher than the no informa-
tion case. Overall, our results indicate that with the proper
window length, our novel CNN-based CP-detection algorithm
performs better than the existing alternatives and can be used

3In the no information case, the ad hoc agent uses CP-unaware
reasoning for figuring out the agent’s type.

without any prior knowledge regarding whether agents’ types
are stationary or not.

6 Conclusions
This paper considered an extended version of the ad hoc
teamwork problem in which agents can change their behav-
ior types through the task. We approached the resulting
problem by treating it as a change-point detection problem.
Then, we solved it efficiently by proposing a new change-
point detection algorithm based on convolutional neural net-
works. The proposed algorithm’s efficacy over classical
Bayesian changepoint detection algorithms was verified by
experiments in a modified predator-prey domain. The exper-
iments reveal that the algorithm improves performance even
when there are no changepoints and hence can be added as an
additional layer on current reasoning algorithms.

This paper opens several interesting possibilities for fu-
ture research. We wish to investigate the problem of de-
tecting changepoints in parameterized types by the proposed
ConvCPD, and hope to solve this problem in interesting do-
mains/settings like the more complicated variant of the mod-
ified Pursuit Domain in [Albrecht and Ramamoorthy, 2015]
and Half Field Offense in robot soccer [Hausknecht et al.,
2016]. In addition, whereas the current MCTS planning algo-
rithm executes its entire look-ahead with the current models,
there is an opportunity to augment our approach with novel
planning algorithms that take predicted future type changes
into account.

Acknowledgements
This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported in
part by NSF (IIS-1637736, IIS-1651089, IIS-1724157), ONR
(N00014-18-2243), FLI (RFP2-000), ARL, DARPA, Intel,
Raytheon, and Lockheed Martin. Peter Stone serves on the
Board of Directors of Cogitai, Inc. The terms of this arrange-
ment have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity in
research.

References
[Albrecht and Ramamoorthy, 2015] Stefano V. Albrecht and Sub-

ramanian Ramamoorthy. A Game-Theoretic Model and Best-
Response Learning Method for Ad Hoc Coordination in Multia-
gent Systems. arXiv, Jun 2015.

[Albrecht and Stone, 2017] Stefano V Albrecht and Peter Stone.
Reasoning about hypothetical agent behaviours and their param-
eters. In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, pages 547–555. International
Foundation for Autonomous Agents and Multiagent Systems,
2017.

[Albrecht and Stone, 2018] Stefano V. Albrecht and Peter Stone.
Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 5
2018.

[Albrecht et al., 2016] Stefano V. Albrecht, Jacob W. Crandall, and
Subramanian Ramamoorthy. Belief and truth in hypothesised be-
haviours. Artificial Intelligence, 235:63–94, 6 2016.

[Aminikhanghahi and Cook, 2017] Samaneh Aminikhanghahi and
Diane J Cook. A survey of methods for time series change point
detection. Knowledge and information systems, 51(2):339–367,
2017.

[Auer et al., 2002] Peter Auer, Nicol Cesa-Bianchi, and Paul Fis-
cher. Finite-time Analysis of the Multiarmed Bandit Problem.
Machine Learning, 47(2/3):235–256, 2002.

[Barrett et al., 2011] Samuel Barrett, Peter Stone, and Sarit Kraus.
Empirical evaluation of ad hoc teamwork in the pursuit do-
main. Autonomous Agents and Multiagent Systems (AAMAS),
(May):567–574, 2011.

[Barrett et al., 2012] Samuel Barrett, Peter Stone, Sarit Kraus, and
Avi Rosenfeld. Learning teammate models for ad hoc teamwork.
In AAMAS Adaptive Learning Agents (ALA) Workshop, pages
57–63, 2012.

[Benda et al., 1986] Benda, V Jagannathan, and R Dodhiawala. On
optimal cooperation of knowledge sources - an empirical investi-
gation. (BCSG201028), 1986.

[Brown, 1951] George W Brown. Iterative solution of games by
fictitious play. Activity analysis of production and allocation,
13(1):374–376, 1951.

[Fearnhead and Liu, 2007] Paul Fearnhead and Zhen Liu. On-
line inference for multiple changepoint problems. Journal of
the Royal Statistical Society. Series B: Statistical Methodology,
69(4):589–605, 2007.

[Forney, 1973] G. D. Forney. The viterbi algorithm. Proc. IEEE,
61(3):268–278, Mar 1973.

[Fridman, 2018] Lex Fridman. 6.S094: Deep Learning for Self-
Driving Cars. (January), 2018.

[Hausknecht et al., 2016] Matthew Hausknecht, Prannoy Muppa-
raju, Sandeep Subramanian, Shivaram Kalyanakrishnan, and Pe-
ter Stone. Half field offense: An environment for multiagent
learning and ad hoc teamwork. In AAMAS Adaptive Learning
Agents (ALA) Workshop, May 2016.

[Hernandez-Leal et al., 2017] Pablo Hernandez-Leal, Yusen Zhan,
Matthew E Taylor, L Enrique Sucar, and Enrique de Cote. Effi-
ciently detecting switches against non-stationary opponents. Au-
tonomous Agents and Multi-Agent Systems, 31(4):767–789, 7
2017.

[Kuncheva, 2013] Ludmila I. Kuncheva. Change Detection in
Streaming Multivariate Data Using Likelihood Detectors. IEEE
Transactions on Knowledge and Data Engineering, 25(5):1175–
1180, 5 2013.

[LeCun et al., 2015] Yann LeCun, Yoshua Bengio, and Geoffrey
Hinton. Deep learning. nature, 521(7553):436, 2015.

[MacAlpine et al., 2014] Patrick MacAlpine, Katie Genter, Samuel
Barrett, and Peter Stone. The RoboCup 2013 drop-in player chal-
lenges: Experiments in ad hoc teamwork. In 2014 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages
382–387. IEEE, 9 2014.

[Meng et al., 2017] Zhao Meng, Lili Mou, and Zhi Jin. Hierarchi-
cal RNN with Static Sentence-Level Attention for Text-Based
Speaker Change Detection. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management - CIKM
’17, pages 2203–2206, New York, New York, USA, 2017. ACM
Press.

[Niekum et al., 2015] Scott Niekum, Sarah Osentoski, Christo-
pher G. Atkeson, and Andrew G. Barto. Online Bayesian change-
point detection for articulated motion models. Proceedings -
IEEE International Conference on Robotics and Automation,
2015-June(June):1468–1475, 2015.

[Nikolaidis and Shah, 2013] Stefanos Nikolaidis and Julie Shah.
Human-robot cross-training: Computational formulation, mod-
eling and evaluation of a human team training strategy. 2013 8th
ACM/IEEE International Conference on Human-Robot Interac-
tion (HRI), pages 33–40, Mar 2013.

[Nikolaidis et al., 2014] Stefanos Nikolaidis, Keren Gu, Ramya
Ramakrishnan, and Julie Shah. Efficient Model Learning for
Human-Robot Collaborative Tasks. arXiv, May 2014.

[Page, 1954] E. S. Page. Continuous Inspection Schemes.
Biometrika, 41(1-2):100–115, 6 1954.

[Reeves et al., 2007] Jaxk Reeves, Jien Chen, Xiaolan L. Wang,
Robert Lund, and Qi Qi Lu. A review and comparison of change-
point detection techniques for climate data. Journal of Applied
Meteorology and Climatology, 46(6):900–915, 2007.

[Stone et al., 2010] Peter Stone, Gal A. Kaminka, Sarit Kraus, and
Jeffrey S. Rosenschein. Ad Hoc Autonomous Agent Teams: Col-
laboration without Pre-Coordination. Twenty-Fourth AAAI Con-
ference on Artificial Intelligence, 7 2010.

[Sugiyama et al., 2008] Masashi Sugiyama, Shinichi Nakajima,
Hisashi Kashima, Paul V. Buenau, and Motoaki Kawanabe. Di-
rect Importance Estimation with Model Selection and Its Appli-
cation to Covariate Shift Adaptation, 2008.

[Tambe, 1996] Milind Tambe. Tracking dynamic team activity. In
Proceedings of the Thirteenth National Conference on Artificial
Intelligence - Volume 1, AAAI’96, pages 80–87. AAAI Press,
1996.

[Xuan, 2007] Xiang Xuan. Bayesian inference on change point
problems. PhD thesis, University of British Columbia, 2007.

