
To appear in Proceedings of IROS 2009-IEEE/RSJ International Conference on Intelligent RObots and Systems (IROS 09),
St. Louis, USA, October 2009.

Improving Particle Filter Performance Using SSE Instructions

Peter Djeu and Michael Quinlan and Peter Stone

Abstract— Robotics researchers are often faced with real-
time constraints, and for that reason algorithmic and
implementation-level optimization can dramatically increase the
overall performance of a robot. In this paper we illustrate how a
substantial run-time gain can be achieved by taking advantage
of the extended instruction sets found in modern processors,
in particular the SSE1 and SSE2 instruction sets. We present
an SSE version of Monte Carlo Localization that results in an
impressive 9x speedup over an optimized scalar implementation.
In the process, we discuss SSE implementations of atan, atan2
and exp that achieve up to a 4x speedup in these mathematical
operations alone.

I. INTRODUCTION

In robotics, it is often critical to process sensory data or

to compute decisions in real-time, that is to say at the rate

at which sensory data is captured. For example, a robot with

a camera that captures frames at 30 Hz should complete

its sense-act loop at the same rate or risk missing sensing

opportunities. Sometimes this constrains the processing al-

gorithms that can be used (e.g. Hough transforms may be

ruled out entirely) and sometimes it constrains the quality

of the processing (e.g. the number of particles that can be

processed in a particle filtering algorithm). As a result, an

important component of robotics is code streamlining and

optimization. A common source of untapped potential for

code optimization is the use of the vector unit on CPUs to

perform efficient and parallel computation.

Since 19981 most modern processors, including desktop

and notebook/netbook processors, can perform SIMD (Single

Instruction Multiple Data) operations which allow a single

instruction stream to drive parallel computation. In particular

both Intel and AMD support the SSE (Streaming SIMD

Extension) instruction set and the follow-up instruction set

SSE2 via an SSE vector unit [1]. Using the SSE vector unit

allows the CPU to perform 4-wide operations in place of 1-

wide operations; four additions can be performed in the time

it usually takes to perform one. Under ideal settings, an SSE

vector implementation can be up to 4x faster than the scalar

implementation, and in cases such as the ones described in

this paper, it can be even faster.

However, developing code that effectively uses the SSE

instruction set has generally been restricted to graphics

researchers or to the developers of heavily optimized libraries

for specific tasks such as vision [2] and linear algebra [4].

While these libraries provide excellent performance on their

intended tasks, the average roboticist has failed to take

All authors are in the Department of Computer Science, The University of
Texas at Austin. djeu,mquinlan,pstone@cs.utexas.edu

1In 1998 AMD released the K6-2 processors, this was followed in 1999
by Intel’s Pentium III processors

advantage of the SSE vector unit in developing his or her

code/algorithms.

In this paper we present ground-up SSE implementations

of key functions required in the robotics domain (atan, atan2,

exp) and apply them to a commonly used and practical

robotics algorithm: Monte Carlo Localization (MCL) [3]. In

our implementation we achieve an impressive 9x speedup,

surpassing the ideal speedup of 4x.

While this improvement in and of itself is noteworthy, one

of the main objectives of this paper is to encourage and also

instruct the robotics community on how to implement its own

algorithms using the SSE instruction set. To help facilitate

this task we are releasing the full source code for our MCL

implementation, including the SSE components.

The remainder of this paper is structured as follows: Sec-

tion II provides an overview of the basics of SSE. Section III

introduces the Monte Carlo Localization algorithm and steps

through the construction of the SSE version, with particular

focus on the development of the SSE math extensions (such

as atan2). Section IV will review and discuss the run-time

performance results of both the overall MCL algorithm and

the individual math operations. We will conclude and present

future work in Section V.

II. USING THE SSE INSRUCTION SET

Traditional CPU instructions take single values as their

operands. A typical floating point addition instruction has

the following form, which we call 1-wide addition.
�

f l o a t a = 1 . 0 f ;

f l o a t b = 5 . 0 f ;

f l o a t c = a + b ; / / c : 6 . 0 f

� �

In SSE, the data types are expanded from ‘float’ to

‘sse4Floats’2, which include the values of 4 separate floating

points. When an addition is performed on two SSE operands,

each of the 4 elements is independently summed. In other

words, element 0 in the first operand is added to element

0 in the second operand, element 1 in the first operand is

added to element 1 in the second operand, and so on. We

will refer to this operation as a 4-wide addition.

In the following example, we will use a C++ constructor

for sse4Floats that takes 4 floating point values. The ‘+’

operator is overloaded so that if both operands are sse4Floats,

the SSE unit is invoked to perform a 4-wide addition.
�

s s e 4 F l o a t s a = s s e 4 F l o a t s (1 . 0 f , 2 . 0 f , 3 . 0 f , 4 . 0 f) ;

s s e 4 F l o a t s b = s s e 4 F l o a t s (5 . 0 f , 6 . 0 f , 7 . 0 f , 8 . 0 f) ;

s s e 4 F l o a t s c = a + b ; / / c : (6 . 0 f , 8 . 0 f , 1 0 . 0 f , 1 2 . 0 f)

� �

2The built-in SSE data type is actually ‘ m128’, however we encapsulate
this type into a C++ class, which we call ‘sse4Floats’.

We will use the term 1-wide and 4-wide to refer to

mathematical operations that are performed analogously to

the addition operations. The term scalar will be used in-

terchangeably with 1-wide and vector interchangeably with

4-wide.

Apart from 4-wide floating point addition, the SSE vector

unit also provides support for other arithmetic operations,

such as subtraction, multiplication, division, minimum, max-

imum, and bitwise operations. The vector unit supports

vectors of four 32-bit integers (aka ints) and has built-in

support for addition, subtraction, and bitwise operations.

Processors which support later versions of SSE also pro-

vide multiplication, minimum, and maximum operations for

integers.

A. SSE Masks

One difficulty that occurs when using SSE is that a single

instruction stream must be used for all processing. This

is especially troubling when implementing algorithms that

would normally require branching. Consider the following

example, which returns the absolute value of f.�
f l o a t abs (f l o a t f) { re turn (f >= 0 . 0 f) ? f : −f ; }

� �

When implementing a 4-wide version of absolute value for

an sse4Floats consisting of the values (-1.0f, -2.0f, +3.0f,

+4.0f), the first 2 elements need to be negated, while the

last 2 elements do not. However, we must use the same

instruction stream on all elements as per the definition of

SIMD.

The solution is to evaluate both sides of the branch and

to mask out the result from one branch and mask in the

result from the other. The two results are then combined

and only the masked-in result survives. We now revisit the

scalar implementation to support this branching paradigm

using bitwise operations. For brevity, the implementation of

the two reinterpretation helper functions are not shown.�
i n t r e i n t f 2 i (f l o a t f) ; / / r e i n t e r p r e t f l o a t as i n t

f l o a t r e i n t i 2 f (i n t i) ; / / r e i n t e r p r e t i n t as f l o a t

f l o a t abs (f l o a t f) {
i n t MASK TRUE = 0 x f f f f f f f f ;

i n t MASK FALSE = 0 x00000000 ;

i n t mask = (f >= 0 . 0 f) ? MASK TRUE : MASK FALSE ;

i n t t r u e r e s u l t = mask & r e i n t f 2 i (f) ;

i n t f a l s e r e s u l t = ∼mask & r e i n t f 2 i (− f) ;

i n t b l e n d r e s u l t = t r u e r e s u l t | f a l s e r e s u l t ;

re turn r e i n t i 2 f (b l e n d r e s u l t) ;

}

� �

As you will notice, this version of absolute value still

contains one branch when selecting the value of the variable

‘mask’, the value being either a 32-bit int with all bits set

(the true mask) or a 32-bit int with all bits unset (the false

mask).

The SSE vector unit solves this problem by mandating that

all of its comparison operations produce either a true mask

or a false mask in each element of the 4-wide result. In the

following example, we generate an SSE mask by comparing

the input value to another sse4Floats set completely to zero.

We implement SSE masks using the sseMask data type,

which is a C++ class that encapsulates a built-in SSE data

type representing a 4-wide mask.

�
s s e 4 F l o a t s a = (1 . 0 f , 0 . 0 f , −1.0 f , −2.0 f) ;

s s e 4 F l o a t s b = (0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f) ;

sseMask mask = (a >= b) ;

/ / mask : (MASK TRUE , MASK TRUE , MASK FALSE , MASK FALSE)

� �

This sseMask can then be used in a 4-wide blend operation

which takes three operands: an sseMask, a true operand, and

a false operand. The return value is an sse4Floats that is

set to the value of the true operand at all elements where

the sseMask had value MASK TRUE. The return value is

set to the false operand at all other locations. The operators

‘&’, ‘|’, and ‘∼’ are overloaded to invoke the corresponding

bitwise operations in the SSE unit.
�

s s e 4 F l o a t s b l e nd4 (sseMask mask , s s e 4 F l o a t s i n t r u e ,

s s e 4 F l o a t s i n f a l s e) {
re turn (mask & i n t r u e) | (∼mask & i n f a l s e) ;

}

� �

The following is an SSE implementation of absolute value.

The ‘>=’ operator is overloaded to invoke the greater-than-

or-equal-to comparison operator in the SSE unit, while the ‘-’

operator is overloaded to invoke the unary negation operator

in the SSE unit.
�

s s e 4 F l o a t s abs (s s e 4 F l o a t s f) {
s s e 4 F l o a t s z e r o s = s s e 4 F l o a t s (0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f) ;

sseMask i s n o n n e g = (f >= z e r o s) ;

re turn b le nd4 (i s n o n n e g , f , −f) ;

}

� �

To summarize, masking allows us to conditionally perform

operations on only certain elements within an sse4Floats

rather than on all elements. Masking comes with a cost,

however, since both the true input and the false input must

be evaluated whenever a mask is used. In scalar code, work

can often be saved by descending down only one branch of a

conditional, while in pure SSE code both sides of the branch

must always be taken, even in cases where the sseMask

consists of 4 MASK TRUE’s or 4 MASK FALSE’s.

B. Reduction Operations

It is often necessary to perform an operation which reduces

the 4 values within an sse4Floats to a single floating point

value.
�

s s e 4 F l o a t s a = s s e 4 F l o a t s (1 . 0 f , 2 . 0 f , 3 . 0 f , 4 . 0 f) ;

f l o a t b = r e d u c e a d d (a) ; / / b : 1 0 . 0 f

� �

These operations which work internally within a single

sse4Floats are known as reduction operations. Reduction op-

erations are typically slower than their 4-wide counterparts;

however they are usually needed only sparingly. For example,

the following block of code returns the average value of

all floats in an array of sse4Floats. Notice that only one

reduction operation is needed.
�

/ / n − t h e number o f 4−wides i n a r r

f l o a t ge tAve r a ge Va lue (s s e 4 F l o a t s ∗ a r r , i n t n) {
s s e 4 F l o a t s accum = s s e 4 F l o a t s (0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f) ;

f o r (i n t i = 0 ; i < n ; i ++)

accum = accum + a r r [i] ; / / 4−wide add

f l o a t t o t a l = r e d u c e a d d (accum) ;

re turn t o t a l / (n ∗ 4 . 0 f) ;

}

� �

C. SSE Performance

Using the SSE vector unit to perform 4-wide operations

in place of 1-wide operations allows us to perform four

arithmetic operations in the time it would take to perform

one. Under ideal settings, an SSE implementation can be up

to 4x faster than the scalar implementation. We will refer to

the ratio of the scalar version’s run-time to the SSE version’s

run-time as parallel speedup.

There are many reasons why parallel speedup falls be-

low 4x. Often, reformatting data to conform to an SSE-

compatible layout is expensive, as is converting from SSE

format to an output format. More generally, we must operate

within the constraints of Amdahl’s Law, where any part of

an algorithm that cannot be parallelized will limit the overall

speedup. In applications where data is not readily available in

multiples of 4, some elements in the SSE vector will be left

empty, which further limits speedup. Finally, for algorithms

that have deep conditional branches, where one or both sides

of the branch contain a significant amount of work, the SSE

version will suffer because it must perform the work on both

sides of the branch, compared to the scalar version which

only needs to execute the taken branch.

It is possible, however, to achieve a parallel speedup that

is greater than the ideal speedup of 4x, which is evidenced

in this work. The reason this is possible is because of a

fundamental difference in the hardware that evaluates SSE

code and scalar code which exists on many platforms. For

example, on many Intel chips the ALU that performs SSE

floating point operations is faster than the ALU which han-

dles scalar floats since the latter is based on the aging design

of the x87 math co-processor. In other words, a parallel

speedup that exceeds 4x is possible due to a combination

of good data parallelism (SIMD) and intrinsic speedup due

to using better hardware (the SSE ALU is faster than the

scalar ALU).

In our experience, the best time to switch from a scalar

implementation to an SSE implementation is when the scalar

algorithm requires performing arithmetic operations indepen-

dently but identically over a large data set. For example, an

algorithm that evaluates the exp(x) function on every element

of an array is a prime candidate for conversion to SSE.

III. SSE AND MONTE CARLO LOCALIZATION

A. Monte Carlo Localization (Particle Filters)

For the purpose of this paper we will describe the im-

plementation of a simple version of Monte Carlo Local-

ization (MCL) [3]. We hope that our description provides

others with the necessary framework to begin including

SSE in deployable real-world implementations. We have

chosen to keep the example as straightforward as possible

(see Algorithm 1) in an attempt to clearly demonstrate the

modifications needed to use the SSE instruction set. Notice

that in Line 10 of our implementation, we compute particle

likelihoods by accumulating the exponent of the probability

in the inner loop and perform the exponentiation later in

the estimatePose() helper function (Line 13). Both versions

of the MCL algorithm (scalar and SSE) benefit from this

optimization.

Our MCL implementation will be taking observations

(measurements) in the form of the distance (mm) and bearing

(radians) to known reference objects. Figure 1 presents the

output of the algorithm when either one or three objects are

being observed.

Algorithm 1 Particle Filter Localization

1: for all p ∈ particles do

2: p.exponent ← 0

3: end for

4: for all o ∈ observations do

5: for all p ∈ particles do

6: distexpected ← getDistanceToPoint(p.pos,o.pos)

7: bearexpected ← getBearingToPoint(p.pos,o.pos)

8: pedist ← getDistanceSimExponent(distexpected ,o.dist)

9: pebear ← getBearingSimExponent(bearexpected ,o.bear)

10: p.exponent ← p.exponent + pedist + pebear

11: end for

12: end for

13: estimatePose(particles)

Fig. 1. Example Particles: In the left image, the robot (drawn as an X)
observes a single object. One reference object is not enough for localization,
which results in the most likely particles forming a ring around that object.
In the image on the right, the robot is observing all three objects, resulting
in the most likely particles clustering around the robot’s true location.

B. SSE Math Extensions

The processor’s built-in support for SSE, which in this

paper is considered to be the SSE instruction sets ‘SSE1’ and

‘SSE2’, is sufficient for implementing many algorithms [1].

We choose to limit our scope to these two instruction

sets in order to support older processors. For Monte Carlo

localization, we need to evaluate atan2(y, x) and exp(x) for

4-wide inputs and return results that are also 4-wide. Neither

function is part of the built-in instruction set so we will

provide details on our implementations.

C. SSE Data Structures

For our SSE implementation, we use SSE data structures

to represent four particles at a time. Our 4-wide particle data

structure represents 4 separate particles, where each particle

consists of an x coordinate, a y coordinate, an orientation

(aka bearing), a probability exponent, and a probability.
�

c l a s s P a r t i c l e 4 W i d e {
s s e 4 F l o a t s x ; / / 4−wide x c o o r d i n a t e

s s e 4 F l o a t s y ; / / 4−wide y c o o r d i n a t e

s s e 4 F l o a t s o ; / / 4−wide b e a r i n g

s s e 4 F l o a t s e x p o n e n t ; / / prob e x p o n e n t

s s e 4 F l o a t s prob ; / / e q u a l t o exp (e x p o n e n t)

}

� �

We reuse the basic outline for a particle filter from

Algorithm 1 for our SSE implementation, where we overload

our functions from our scalar version to recognize and return

an sse4Floats in place of a float and a Particle 4Wide in place

of a Particle.

Another modification we need for the SSE particle filter

is to expand the observations. Normally, observations and

particles are both 1-wide. However, now that particles are

4-wide, the observation must also be 4-wide. This is ac-

complished by duplicating the data from one observation

across all elements of a 4-wide in a process called expansion.

The expanded observation can now be compared against the

4-wide particle. To implement expansion, we will use the

function, expand(float x), which creates an sse4Floats from

a single float.

D. Bearing To A Point

Calculating the expected bearing from a single particle

to an object (Line 4 in Algorithm 1) requires the following

code. The normalizeAngle() function converts an angle from

the interval (-∞, ∞) to the interval [-π , π].
�

AngRad g e t B e a r i n g T o P o i n t (P a r t i c l e p a r t i c l e , Poin t2D o b j) {
f l o a t dx = o b j . x − p a r t i c l e . x ;

f l o a t dy = o b j . y − p a r t i c l e . y ;

AngRad t h e t a = a t a n 2 (dy , dx) ;

re turn n o r m a l i z e A n g l e (t h e t a − p a r t i c l e . o) ;

}

� �

Notice that we need to perform an atan2 during the

bearing computation for every combination of observation

and particle. To implement atan2(y, x), we will first imple-

ment the helper function atan(x). In the following sections,

we describe our SSE implementations for both of these

functions.

1) Function 1: atan: The atan(x) function determines the

angle theta on [-π/2, π/2] for which tan(theta) = x. Our

implementation computes atan by evaluating the first seven

terms in Euler’s power series for atan. This series expansion

converges more rapidly than the more commonly used power

series for atan. The helper method atan rd(x) evaluates the

actual power series on the reduced domain (rd) of [0, 1],

which guarantees that the power series will converge. In

order to convert a generic input to atan rd(x)’s reduced

domain, we use the following two trigonometric identities:
�

T r i g I d e n t 1 : a t a n (x) = −a t a n (−x)

T r i g I d e n t 2 : a t a n (x) = PI / 2 − a t a n (1 / x)

� �

These two identities can be used to transform any input

x from the real number line to the interval [0, 1]. We will

call this process of compressing inputs to a smaller interval

domain reduction. When domain reduction is used, it usually

has a corresponding range expansion. In this case, we first

apply domain reduction in atan() in preparation for the call

to atan rd(x). After atan rd(x) is evaluated, we use range

expansion to fix the sign of the return value from atan rd(x)

if we used the first trigonometric identity during domain

reduction. The second part of range expansion is to subtract

from π/2 if we used the second trigonometric identity during

domain reduction. We provide a further optimization by

subtracting from either -π/2 or π/2 to guarantee that the

output from atan(x) is in the range [-π/2, π/2].

In order to improve the accuracy of the atan rd(x)

function, we provide a small fix for values of x that are near

0. These values will undergo floating point underflow during

self-multiplication, which drives the output of atan rd(x) to

zero. To alleviate this problem, we simply return the value

of x for all values for which the reference implementation

of atan() from math.h also returns the value x. The largest

such value of x is about 0.000352.�
/ / domain : [0 . 0 , 1 . 0] , range : [−PI / 2 , PI / 2]

s s e 4 F l o a t s a t a n r d (s s e 4 F l o a t s x) {
s s e 4 F l o a t s ps ; / / c o n t a i n s r e s u l t o f power s e r i e s

/ / . . . e v a l u a t i o n o f power s e r i e s o m i t t e d . . .

/ / f i x v a l u e s t h a t g e n e r a t e 0 b u t s h o u l d j u s t be x

s s e 4 F l o a t s t h r e s h = expand (0 . 0 0 0 3 5 2 f) ;

re turn b le nd4 (x < t h r e s h , x , ps) ;

}

� �
�

/ / domain : [−INF , INF] , range : [−PI / 2 , PI / 2]

s s e 4 F l o a t s a t a n (s s e 4 F l o a t s x) {
s s e 4 F l o a t s z e r o = expand (0 . 0 f) ;

s s e 4 F l o a t s one = expand (1 . 0 f) ;

s s e 4 F l o a t s p i o v e r t w o = expand (M PI ∗ 0 . 5 f) ;

/ / t a k e a b s o l u t e v a l u e

sseMask neg x = x < z e r o ;

s s e 4 F l o a t s s i g n c o n v = b le nd4 (neg x , −one , one) ;

s s e 4 F l o a t s a b s x = s i g n c o n v ∗ x ;

/ / i n v e r t a l l v a l u e s t h a t are g r e a t e r than one

sseMask n e e d s i n v e r t = (a b s x > one) ;

s s e 4 F l o a t s i n v a b s x = one / a b s x ;

s s e 4 F l o a t s x r d = b le nd4 (n e e d s i n v e r t , i n v a b s x , a b s x) ;

s s e 4 F l o a t s r a w a t a n = a t a n r d (x r d) ;

/ / f i x s i g n s based on t h e s i g n s o f t h e i n p u t

s s e 4 F l o a t s t h e t a = s i g n c o n v ∗ r a w a t a n ;

/ / c o r r e c t o u t p u t range by s u b t r a c t i n g from PI / 2 or −PI / 2

s s e 4 F l o a t s cons = b le nd4 (neg x ,− p i o v e r t w o , p i o v e r t w o) ;

re turn b le nd4 (n e e d s i n v e r t , cons−t h e t a , t h e t a) ;

}

� �

2) Function 2: atan2: The atan2(y, x) function is a more

robust version of atan(x). The atan2(y, x) function returns the

angle theta on [-π , π] that is formed by the positive x axis

and the line segment connecting the origin to the point (x, y).

The atan2(y, x) function is used during bearing computations

in the particle filter.

Our implementation uses atan(x) as a helper method by

computing y/x and then invoking atan(x). The raw result

from atan(x) is then put through a range expansion based on

the quadrant in which the input to atan2(y,x) lies. The range

expansion takes the return value of atan(x) and converts it

from either quadrant 4 to quadrant 2 by adding π or from

quadrant 1 to quadrant 3 by subtracting π , as necessary.�
/ / r e t u r n s MASK TRUE i f e l e m e n t has i t s s i g n b i t s e t ,

/ / r e t u r n s MASK FALSE o t h e r w i s e

sseMask i s n e g s p e c i a l (s s e 4 F l o a t s x) ;

/ / domain [−INF , INF] x[−INF , INF] , range : [−PI , PI]

s s e 4 F l o a t s a t a n 2 (s s e 4 F l o a t s y , s s e 4 F l o a t s x) {
s s e 4 F l o a t s p i = expand (M PI) ;

s s e 4 F l o a t s t h e t a = a t a n (y / x) ;

/ / t r e a t −0 as though i t were n e g a t i v e

sseMask neg x = i s n e g s p e c i a l (x) ;

sseMask neg y = i s n e g s p e c i a l (y) ;

/ / move from q u a d r a n t 4 t o 2 by add ing PI / 2

sseMask i n q 2 = neg x & ∼neg y ;

s s e 4 F l o a t s q2f = b l e nd4 (in q2 , t h e t a +pi , t h e t a) ;

/ / move from q u a d r a n t 1 t o 3 by s u b t r a c t i n g PI / 2

sseMask i n q 3 = neg x & neg y ;

re turn b le nd4 (in q3 , t h e t a−pi , q2f) ;

}

� �

E. Distance/Bearing Similarity

Typically, the distance and bearing similarity are computed

by evaluating an exponential ex for each similarity within

the inner loop of the particle filter. These similarities are

then accumulated into a total likelihood for the particle via

multiplication. However, we can reduce the number of expo-

nentiations that are needed by deferring the exponentiation

until pose estimation for the robot. To do so, we simply sum

the exponents of the similarity values within the inner loop

of the particle filter (Lines 8–10 in Algorithm 1). Later, we

produce a mathematically identical result by evaluating the

exponential in the call to the estimatePose() helper function

(Line 13 of Algorithm 1). Note the use of exp(x) in Line 4

of Algorithm 2.

Algorithm 2 estimatePose() function

1: poseaccum ← 0

2: probaccum ← 0

3: for all p ∈ particles do

4: p.prob ← exp(p.exponent)

5: poseaccum ← poseaccum + p.pose * p.prob

6: probaccum ← probaccum + p.prob

7: end for

8: posemean ← poseaccum / probaccum

9: posestddev ← computeStdDev(particles, posemean)

By deferring the evaluation of exp(x) until estimatePose(),

we can reduce the number of exponentiations needed by a

factor of N, where N is the number of observations from

Algorithm 1. In the remainder of this section we describe

our SSE implementation of exp(x).

1) Function 3: exp: The exp(x) function evaluates ex.

The exp(x) function is used for computing likelihoods in

the particle filter. Our implementation for exp(x) is broken

down into three helper methods, exp rd(x) and its helper

methods exp exponent(ipart) and exp mantissa(x).

The first step in the exp(x) function is to pass its input

to exp rd(x), which works on the reduced domain of

approximately (−87.3, 88.7). Inputs outside of this domain

are trivial to evaluate and will be handled by the main exp(x)

function later.

The exp rd(x) function evaluates ex by evaluating the

result in two parts based on the composition of a 32-bit float.

Recall that a 32-bit float consists of 1 bit for the sign, 8

bits for the exponent, and 23 bits for the mantissa. The first

part of our algorithm determines the correct 8 bits for the

exponent in the helper function exp exponent(ipart). The

second part of our algorithm determines the correct 23 bits

for the mantissa in the helper function exp mantissa(x).

These results are combined and returned by the function

exp rd(x). Finally, for any input that exceeds the reduced

domain of exp rd(x), the main exp(x) function masks in

either 0.0 or ∞ based on whether the input is less than or

greater than the reduced domain, respectively.

It should be noted that exp mantissa(x) evaluates ex on

the reduced domain [0.0, log2(e)] based on a special seven-

term power series that has been fitted for high accuracy on

the reduced domain. The coefficients differ from the ones

used in the standard series expansion for ex so we refer the

reader to our code release.

The following code uses the new data type sse4Ints. This

data type is a C++ class that encapsulates an ‘ m128i’,

which represents four 32-bit integers rather than four 32-bit

floats. For this class we have overloaded the << operator to

invoke the SSE unit’s bitwise left shift instruction.
�

/ / domain : [−126 , 127] , range : [2ˆ−126 , 2 ˆ 127]

s s e 4 F l o a t s e x p e x p o n e n t (s s e 4 I n t s i p a r t) {
s s e 4 F l o a t s one = expand (1 . 0 f) ;

s s e 4 I n t s f a s i = (i p a r t << 23) + r e i n t f 2 i (one) ;

re turn r e i n t i 2 f (f a s i) ;

}
/ / domain : [0 . 0 , l o g 2 (e)] , range : [1 . 0 , 2 . 0)

s s e 4 F l o a t s e x p m a n t i s s a (s s e 4 F l o a t s x) {
s s e 4 F l o a t s ps ; / / c o n t a i n s r e s u l t o f power s e r i e s

/ / . . . e v a l u a t i o n o f power s e r i e s o m i t t e d . . .

re turn ps ;

}
/ / domain : approx (−87.3 , 8 8 . 7) , range : [0 , INF]

s s e 4 F l o a t s e x p r d (s s e 4 F l o a t s x) {
s s e 4 F l o a t s l o g e 2 = expand (0 . 6 9 3 1 4 7 f) ;

s s e 4 F l o a t s l o g 2 e = expand (1 . 4 4 2 6 9 5 f) ;

s s e 4 I n t s i p a r t = c a s t f 2 i (l o g 2 e∗x) ;

s s e 4 F l o a t s f p a r t = x − l o g e 2∗ c a s t i 2 f (i p a r t) ;

re turn e x p e x p o n e n t (i p a r t)∗ e x p m a n t i s s a (f p a r t) ;

}

� �
�

/ / domain : [−INF , INF] , range : [0 , INF]

s s e 4 F l o a t s exp (s s e 4 F l o a t s x) {
s s e 4 F l o a t s raw exp = e x p r d (x) ;

/ / f i x v a l u e s t h a t are below or above a c e r t a i n t h r e s h o l d

s s e 4 F l o a t s z e r o = expand (0 . 0 f) ;

s s e 4 F l o a t s i n f i n i t y = expand (INF) ;

s s e 4 F l o a t s m i n t h r = expand (−87.336548 f) ;

s s e 4 F l o a t s m a x t h r = expand (88 .722839 f) ;

s s e 4 F l o a t s m i n f i x = b le nd4 (x<=m i n t h r , ze ro , raw exp) ;

re turn b le nd4 (x>=max thr , i n f i n i t y , m i n f i x) ;

}

� �

IV. RESULTS

Three experiments were performed to test various aspects

of run-time performance. The first experiment tests how

well both the scalar and SSE particle filters scale with the

number of particles as well as their respective accuracy.

The second experiment examines how many particles each

version can support when there is a hard real-time constraint.

The third experiment isolates the performance of the SSE

versions of the advanced math operations. All experiments

were conducted on a 2.66 GHz Core 2 Duo using the Intel

Compiler version 10.1.029.

A. Scaling Experiment

The purpose of this experiment is to measure the run-

time performance the SSE and scalar particle filters while

varying the number of particles. Maximum optimization

settings were used for both the scalar and SSE versions.

These experiments were run with noise-free observations and

with three observations at each measurement update. The

results are shown in Table I and Figure 2.

We achieve a consistent parallel speedup of at least 7.6x

in all of our runs, surpassing the ideal limit of 4x due

to a combination of good data parallelization and use of

better ALUs in the SSE version. This result provides strong

motivation for using an SSE implementation over a scalar

implementation.

As expected, localization error decreases as the number of

particles increased. We reach a saturation point at ≥ 16384

particles, where additional particles no longer improve the

accuracy of the pose estimate. Notice that for sufficiently

low n, the particles are too sparsely distributed and all have

0 likelihood. When this occurs, the pose of the robot cannot

be estimated and the error is infinite, which is represented

by N/A in the table.

n Scalar SSE Speed-up Error

(s) (s) mm rad

4 0.000023 0.000003 7.7 N/A N/A

16 0.000028 0.000003 9.3 N/A N/A

64 0.000047 0.000006 7.8 1590.0 0.513

256 0.000116 0.000015 7.7 820.0 0.307

1024 0.000403 0.000053 7.6 359.6 0.155

4096 0.001607 0.00020 7.7 171.0 0.0742

16384 0.006647 0.000831 8.0 109.0 0.0447

65536 0.031178 0.003308 9.4 108.0 0.0446

262144 0.125763 0.013664 9.2 110.0 0.0450

1048576 0.460547 0.057089 8.1 109.0 0.0446

TABLE I

SCALING RESULTS OVER n PARTICLES. ERROR IS THE AVERAGE ERROR

OVER 100 RANDOM CONFIGURATIONS OF PARTICLES.

Fig. 2. Timing results for our scalar and SSE implementations of MCL.

B. Real-time Experiment

This experiment determines the number of observations we

can process at real-time rates without ever going over a hard

deadline of 30 Hz. We use 16384 particles, the saturation

point determined in the scaling experiment. We vary the

number of observations until we find the largest value

that can meet the real-time deadline for 500 consecutive

invocations of the particle filter, where each invocation is

given a new set of observations.

The scalar version of the particle filter can handle up to 20

observations in this test, while the SSE version can handle

157 observations. The observed increase in particles by using

SSE is a factor of 7.9x, which closely matches the speedup

of 8.0x for 16384 particles from Table I.

C. Performance of SSE Math Functions

In this section we present the raw performance of the SSE

math algorithms (atan, atan2 and exp). Table II summarizes

the performance. Notice the exp() function approaches the

optimal 4x speedup.

Function Scalar (sec) SSE (sec) Speedup

atan 38.086196 20.303419 1.8769
atan2 65.351570 28.582232 2.2644
exp 19.501226 4.967288 3.9259

TABLE II

SSE MATH RESULTS: exp TESTS ALL FLOATS ON THE INTERVAL [-80.0,

80.0]. atan TESTS ALL FLOATS ON THE INTERVAL [-∞, ∞]. atan2 TESTS

ALL PAIRS OF FLOATS ON THE UNIT CIRCLE.

V. CONCLUSION AND FUTURE WORK

This article described the construction of an SSE version

of a Monte Carlo Localization algorithm, including develop-

ing SSE mathematical operations that are frequently required

in the robotics domain. We have shown that a 9x speedup

is possible over optimized scalar code. This speedup allows

us to either a) process the same number of particles in less

time or b) increase the accuracy of our localization by using

a greater number of particles. The ability to support more

particles also reduces the need for MCL algorithms to per-

form sophisticated and often expensive particle resampling.

Almost all processors on the market directly support SSE.

Our results demonstrate that there is significant untapped

potential in the SSE vector unit on these processors. To

facilitate the exploration of this potential by the robotics

community, we have developed and will open-source the

implementation of our SSE particle filter and underlying

components.

In future work we will extend our library to additional

mathematical operations and sub-routines. We hope to roll

out fully vectorized versions of common robotics algorithms

and to take advantage of SSE in loop-heavy tasks such as

processing lidar sensor readings.

We refer the reader to our source code release for addi-

tional implementation details not covered in this paper:

http://www.cs.utexas.edu/users/mquinlan/mcl sse.html

ACKNOWLEDGEMENTS

We would like to thank Warren Hunt for contributing the design
and implementation of the exp function. This research is supported
in part by grants and funding from the National Science Foun-
dation (CNS-0615104), DARPA (FA8750-05-2-0283 and FA8650-
08-C-7812), the Federal Highway Administration (DTFH61-07-H-
00030), General Motors. and Intel Corporation. The authors also
thank Donald Fussell and Katherine Bontrager for comments and
feedback on the paper.

REFERENCES

[1] Intel Corporation, Getting started with SSE/SSE2
for the Intel Pentium 4 Processor, White paper,
http://www.developers.net/intelisnshowcase/view/116.

[2] Intel Open Source Computer Vision Library (OpenCV),
http://opencvlibrary.sourceforge.net.

[3] Sebastian Thrun and Wolfram Burgard and Dieter Fox, Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents, The MIT
Press, 2005.

[4] R. Clint Whaley and Jack Dongarra, Automatically Tuned Linear
Algebra Software, Ninth SIAM Conference on Parallel Process-
ing for Scientific Computing, 1999, Latest library at http://math-
atlas.sourceforge.net/.

