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Abstract— Layered learning is a general hierarchical machine of each subtask directly facilitates the learning of thetnex
learning paradigm that leverages a given task decomposition to higher subtask layer. Layered learning has been used previ-
learn complex tasks efficiently. Though it has been validated ously to generate complex, multi-layer behaviorsimulated

previously in simulation, this paper presents the first application . h .
of layered learning on a physical robot. In particular, it enables environments [11], [3], [2], [12]. This paper presents thstfi

the learning of a high-level grasping behavior that relies on a gait implementation of layered learning onphysical robot with
which itself must be learned. All learning is done autonomously all training performed in the real world.

onboard a commercially available Sony Aibo robot, with no  The two learned layers enable i) fast locomotion, and ii)
human intervention other than battery changes. We demonstra robust object “grasping” (for manipulation) given this ¢ac

that our approach makes it possible to quickly learn both a fast . ' :
gait and a reliable grasping behavior which, in combination, Motion. The first learned layer, reported previously, gatest

significantly outperform our best hand-tuned solution. a fast walk directly on a robot via a policy gradient seardh [6
This paper builds on that work to learn a higher-level, more

goal-oriented behavior using a similar approach. As this ne
behavior relies on the learned walk, the overall learnecgbeh
. INTRODUCTION ior can be characterized as an instance of layered learning.
In order for robots to be useful for many real-world appli- The main contributions of this paper are i) the first instan-
cations, they must be able to adapt to novel and changitigtion of layered learning on a real robot, and ii) the fully
environments. Ideally, a robot should be able to respoidplemented and tested learned grasping behavior.
to a change in its surroundings by adapting both its low- The remainder of this paper is organized as follows. Sec-
level skills, such as its walking style, and the higher-lev&ion Il describes the background and motivation for this kvor
behaviors which depend on these skills. This adaptationldhoSection Il specifies the tasks to be learned and how theeayer
occur as autonomously as possible, because hand-codinge#ning paradigm can be used to relate them, as well as
time-consuming and often leads to brittle solutions. Maehi how the training scenario is set up for each task. Section IV
learning promises a way to generate solutions with littman  describes the primary machine learning algorithm used in
interaction, so that when the environment changes theisolutthe work. Section V details the results of the training, and
can be revised with no more than a few hours of machir8ection VI discusses the contributions of this work, as asll
time. It is also possible for machine learning to lead tpossible directions for the future.
better solutions than hand-tuning, because humans are ofte
biased toward exploring a small part of the space of possible
solutions, whereas machine learning explores the space in dhis section summarizes the layered learning formalism
systematic way. (Section II-A). It also describes the robot hardware used in
Current |earning methods typ|ca||y need a |arge amount @H eXperimentS and introduces the target task towardshwhic
training data to be effective. Thus, an appealing approachit is trained. (Section II-B).
creating learningobotsis to train behaviors first in simula-A Layered leaming
tion before implementing them in the real world. However,"
especially when concerned with complex perception or ma- The main principles of the layered learning paradigm (sum-
nipulation tasks, we cannot assume an adequate simuldtor Wiarized in Table 1) aré:
always exist for a given robot. With no simulator, each trial
requires interaction with the physical world in real timéni§
means it is not possible to offset the costs of an inefficient
learning algorithm with a faster processor. The learnigpal ~ 1) Learning a mapping directly from inputs to outputs is nattable.

rithm must make efficient use of the information gained from 2) A bottom-up, hierarchical task decomposition is given.
each trial 3) Machine learning exploits data to train and/or adapt.rhiég occurs

. . . . . . separately at each level.
Layered learning[11] is a hierarchical machine learning 4) The output of learning in one layer feeds into the nexttaye

paradigm that leverages a given task decomposition to learn
complex tasks efficiently. A key feature is that the learning This section is adapted from [11].

Keywords: learning/adaptive systems, legged robots, agents @n
agent based systems

Il. BACKGROUND

TABLE |
THE KEY PRINCIPLES OF LAYERED LEARNING




« Tractability: Layered learning is designed for domain®Note that a layer describes more than a subtask; it also
that are too complex for learning a mapping directlgescribes an approach to solving that subtask and theirgsult
from the input to the output representation. Instead, tis®lution.
problem is broken down into several task layers. At each As stated in the Decomposition principle of layered learn-
layer, a concept needs to be acquired, and any appropriag, the definitions of the layerd; are givena priori. The
machine learning (ML) algorithm can be used for thignteraction principle is addressed via the following skipion.
purpose. Vi < n, h; directly affectsL;; in at least one of three ways:

« Decomposition: Layered learning uses a bottom-up in- . A, is used to construct one or more featui%l-
cremental approach to hierarchical task decomposition.. h; is used to construct elements Bf, ;; and/or
Starting with low-level subtasks, the process of creating. 1, is used to prune the output s@t, ;.
new ML subtasks continues until the high-level tasks, |; is noted above in the definition of, that vy, Flj cS.

that deal with the full domain complexity, are reachedgjnce F; | can consist of new features constructed using

The appropriate learning granularity and subtasks to Bgs more general version of the above special case i¥/ihat
learned are determined as a function of the specifigi o S UL Oy.

domain. The task decomposition in layered leaming iS\when training a particular component, layered learning
not automated. Instead, the layers are defined by the Mleezes the components trained in previous layers, thereby
opportunities in the domain. adding additional constraints to the learning processlsib a

« Learning: Machine learning is used as a central part ofyqs guidance, by training each layer in a special envirotme
layered learning to exploit data in order t@in and/or yiended to prepare it well for the target domain.

adaptthe overall system. ML is useful for training func- e original implementation of the layered learning
tions that are difficult to fine-tune manually. It is “Sef“baradigm was on the full robot soccer task in the RoboCup
for adaptation when the task details are not completedyccer simulator [11]. First, a neural network was usedamle
known in advance or when they may change dynamicallyy interception behavior. This behavior was used to train a
Like the task decomposition itself, the choice of machingecision tree for pass evaluation, which was in turn used to
learning method depends on the subtask. enerate the input representation for a reinforcementilegur
« Interactions: The key defining characteristic of Iayeredgpproach to pass selection.

Iearn?ng is that each learned layer directly affects the p subsequent application of layered learning uses two
learning at the next layer. A learned subtask can affeglarned layers, each learned via genetic programming, for

the subsequent layer by: a soccer keepaway task in a simplified abstraction of the
— constructing the set of training examples; TeamBots environment [3]. In the full TeamBots environment
— providing the features used for learning; and/or  four learned layers were used, also on a keepaway task [12].
— pruning the output set. To our knowledge, there has been no previous implementation

Layered learning is formally defined as follows. Conside?f layered learning on a physical robot.
the learning task of identifying a hypothesisfrom among B. Ball acquisition
a class of hypothese& which map a set of state feature iy . . .
variabless to a set of output®) such that, based on a set of ACAUiring an object is a prerequisite for many types of
training examplesh is most likely (of the hypotheses if) manipulations in the world [1], [4]. For example, in the ca$e
to represent unseen examples. a Sony Aibo robot playing soccer, one of our motivating test-
When using the layered learning paradigm, the complekfgd domains [9], [10], it is much easier to design effective

learning task is decomposed into hierarchical subtaskr$ay¥vays for the ropot to k'CI,(_the b"?‘l_l if we may assume that
(L, L L.} with each layer defined as the ball starts in a specific position relative to the robot.

Furthermore, if the robot cagraspthe ball securely enough,
L; = (F;,0;,T;, M;, hy) it can move the ball by turning with it until the ball reaches a
field position from which the kick is likely to move it to the
where: desired destination (such as in the opponent’s goal). Témis,
F, is the input vector of state features relevant for learnirg representative task, we consider the goal of having a robot
subtaskL;. F; = <F! F2,...>.Vj, Fl € S. walk up to a ball and gain control of it. For the purposes of
; is the set of outputs from among which to choose fdhis paper, we defineontrol to mean that the robot holds the
subtaskrZ;. O,, = O. ball under its chin in a way that allows it to turn with the ball
is the set of training examples used for learning subtask shown in Figure 1.
L;. Each element ofl; consists of a correspondence As the robot platform for this research, we use the com-
between an input feature vectﬁre F; ando € O;. mercially available Sony Aibo ERS-7, a quadruped robot [7].
is the ML algorithm used at laydr; to select a hypothesis The ERS-7 has four legs with three degrees of freedom in
mappingF; — O; based orfl}. each, a head with three degrees of freedom, and a CMOS
h; is the result of running\Z; on T;. h; is a function from camera in the head. It has several pressure sensors and two
13,; to O;. infrared range sensors, as well as position sensors in dach o
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Fig. 2. The training paradigm used in gait learning. EachoAimes itself
as it moves between a pair of landmarké énd A’, B and B/, or C' and

Fig. 1.  An Aibo with control of a ball. Achieving this positiowithout 7). Reproduced with permission from Kohl and Stone [6].

knocking the ball away in the process is a challenge; laykadhing allows

the Aibo to learn to do this more reliably without sacrificinglking speed. .. . .
Y giHing sp Ti: the set of training examples obtained by recording the

its joints. The robot is able to capture frames from the camer ~ time it takes to walk back and forth across a fixed

at a rate of 30 Hz. From these images, our software recognizes distance;

objects such as the orange ball based on color segmentatioa the policy gradient algorithm described in Section IV;

and aggregation [8]. This variety of sensors allows us tg ref:: the parameters of the fastest discovered gait, and its

on local sensing alone. In addition, the 576 MHz 64 bit RISC  speed.

processor allows all necessary processing to be done ahboar The details of the learned walk, including detailed empiric

In this work, we use a system for vision processing, walkingnalyses, were reported previously [6], [5]. With threeatsb

and kicking that was developed as part of our larger robobntinually walking across the field more than 1000 totakm

soccer project [9], [10]. for approximately 3 hours, they were able to almost doulde th

speed of their walk, achieving the fastest known walk on the

Aibo at the time: 291 mm/secNotably, the robots learned
The process of approaching a ball and then gaining contigithout any human intervention other than battery changes

of it relies on the gait that allows the robot to move towarel ”hpproximately once an hour.

ball. Thus, we have a layered learning hierarchy consisting The formulation of the walking task within the framework of

two layers, with previously learned gait as the bottom lay@iyered learning is novel to this paper. Section 111-B inlioes

(L1) and the novel acquisition behavior as the top laye)( a novel learned behavior in full detail within the layered

learning framework. The new behavior uses the learned walk

A. Learning a gait . o :
(h1) as a part of its training scenario.
By the method of Kohl and Stone [6], the gait is defined by

a set of 12 continuous parameters specifying, among otffr Learning to acquire the ball
things, the shape of the trajectory through which each legThe task of learning to capture a ball under the robot’s chin
moves as well as the target heights of the front and rear of tisemotivated by our ongoing development of the UT Austin
body. Thus, gait learning is framed as a parameter optiiizat Villa four-legged robot soccer team [9], [10]. The robot i€y
problem, with forward speed as the objective function. Thable to kick in certain directions, so it is useful to be alde t
learning is accomplished via the policy gradient algorithroapture the ball and turn with it before kicking. Our team
described in detail in Section IV. adopted the following strategy for getting the ball intosthi
The fitness of a policy, or set of values for the 12 parametegsition: when the Aibo is walking to a ball with the intent of
is obtained by having one or more Aibos time themselvégcking it and gets close enough, it first slows down to allow
as they walk a fixed, known distance indicated by a paior more precise positioning, and then it lowers its head to
of landmarks. To reduce the effect of noise, this evaluati@apture the ball under its chin (tlwpturing motio.
process is performed three times for each policy, and theExecuting the capturing motion without knocking the ball
resulting times are averaged to get the fitness of the polieyvay is a challenge: if the head is lowered when the ball is

IIl. L AYERED LEARNING ON A PHYSICAL ROBOT

Figure 2 depicts the setup of the training process. too far away, the head may knock the ball away; but if it is

In the notation of layered learning, the gait layér ) can not lowered in time, the body of the robot may bump the ball
thus be defined as follows: away. Furthermore, certain aspects of the acquisitionanoti
Fp: 0;

) | f h 2 defini . | 2That speed was achieved on the ERS-210A model. It was subggque
O,: values for the 12 parameters defining a gait, plus ﬂP@trained on the ERS-7 model used in this paper and achievedeanfaster

speed of the resulting gait; walk of 335-370 mm/sec (depending on the surface on which itdkiated).



interact, such as the perceived ball distance at which tad heeward of 0. The Aibo can determine autonomously whether

should be lowered and the amount that the robot slows dovtrhas captured the ball by trying to put its chin all the way

when close to the ball. Parameters like these must therbforedown to its chest and then taking note of the value of the

tuned simultaneously. This entire process is time-consgmiposition sensor in its head tilt joint; if the ball is indeedder

to perform by hand. its chin, the head tilt motor will stop moving before gettiteg
The parameters that control the transition from walking tive requested position. During training, the score for &giv

capturing the ball are as follows: policy is determined by running a fixed number of trials (12)

« slowdown _dist : the ball distance (in millimeters) atWith that policy and averaging the reinforcement signalrove
which slowing down begins; those trials (thus producing a discrete reinforcementasjgn

« slowdown factor : the (multiplicative) factor, in the  Each trial consists of the robot approaching the ball from
range [0,1], by which the gait slows down at this pointa random location on the standard field used in RoboCup,
- capture _angle : the maximum ball angle (in degrees)which is surrounded by a short wall designed to keep the ball
at which the capturing motion may begin (see Figure 3jom leaving the field (see Figure 2). The training procedure

o capture _dist : the ball distance (in millimeters) atis summarized in pseudocode in Figure 4.
which the capturing motion begins (if the ball is within

the specified angle);

1: totalscore — 0

2: for j € [1,n] do

. locate ball

while ball farther thanslowdown _dist do
walk to ball at maxspeed

end while

while ball farther tharcapture _dist and outside of

capture _angle do

: walk to ball at maxspeedtowdown _factor

9: end while

10: lower head over ball

o turn _cutoff : the minimum ball angle (in degrees) at
which the robot will not move directly toward the ball at
all, but instead will turn in place to face the ball more
directly. This parameter controls how straight the final
part of the robot’s approach will be.

N ahrw

capiure angle £ = =
= _ 11:  if head tilt position sensor senses kakn
A b\ S 12 totalscore «— totalscore + 1
13: if center of field to robot’s lefthen
14: kick to left
15: else
16: kick to right
17: end if
18: end if

Fig. 3. lllustration ofcapture _angle . If the Aibo believes that the center 19:  turn 180°
of the ball is to the right of the thick white lines, then it idlontinue to turn  20: end for
toward the ball rather than beginning the capturing motiseneif the ball

distance is believed to be less theapture _dist . 21: policy-score « totalscore/n

) ) o ] Fig. 4. Method for evaluating policies while learning to agpgch the ball.
Given this parameterization, we are faced with a parameteis the number of trials per policy; in our experiments, we uaeg 12.

optimization problem in five dimensions. Because our pefici
can be expressed in this way, and because our domain has th®ne goal of the training procedure is to generate as many
same efficiency constraints as that of learning fast loc@not trials as possible in the open field, rather than with the
for the Aibo, the policy gradient learning algorithm used thall starting against the wall. The latter trials are somawh
learn the gait (see Section |V) is again a natural choice. less informative because capturing the ball along the vgall i
However, one new challenge in learning ball acquisitioconsiderably harder; even a good policy will fail much more
is defining an appropriate reward signal. The policy gradiefrequently along the wall, which can lead to a smaller spread
algorithm relies on the magnitude of the fitness differena® scores among policies. In order to keep the ball in the
between policies. This magnitude is readily available ia thopen field, if the Aibo successfully captures it, it kicksit i
learned walking scenario, because speed provides a natwhichever direction it estimates is away from the wall (fine
and continuous measure of fitness. But in the case of bafl-15 in Figure 4). Before starting the next trial, the Aibo
acquisition, there is no straightforward way to rate a paflér turns around approximately80° in place in order to knock
policy with regard to “how well” it captures the ball: it egh the ball away from it if it is still close (line 17). Once it has
does or it does not. done this, it begins the next trial by searching for the bad a
Therefore, we use a binary reinforcement signal: if the tobthen approaching it with the parameters of the current polic
captures the ball, it receives a reward of 1; if not, it reesia (lines 2—8). Videos depicting the training process in actoe



available onlin€. a scalar step sizg, so that the policy is adjusted by a fixed
In the formal notation of layered learning, we thus have ttemount each time. The above process comprises one iteration

following definition of the acquisition layerL(,): of the algorithm. This algorithm is specified in pseudocode
Fy: {BallAngle, BallDistancé € {[—180, 180], [0, 00)}. The in [6]. For the parameters used in learning ball acquisjtion
five thresholds that comprise an acquisition policy TABLE Il
_(S|0Wd0Wﬂ dist , etc.) relate to these two Sensor read- parameTERS FOR THE POLICY GRADIENT ALGORITHM IN THE BALL
INgs alone; ACQUISITION LEARNING TASK
0s: Whethe'r or not to Iovyer the head at the current time; Parameter Value
T,: evaluations of mappings from; to O;, obtained by re- Policies per iterationt] 8
peatedly trying to grasp the ball by the process described | Incremetn:( forlslovgdown fﬁditst (6(1)) l%nlm
. . . . ncrement rorsiowdown _ractor €2 .
above and summanzed in .F|gure. 4 In particular, the Increment forcapture _angle (s) 50
learned walk %) is used during training; Increment forcapture _dist (e4) 10mm
Ms,: the policy gradient algorithm described in Section IV; Increment forturn _cutoff  (e5) 10°
hs: the final learned acquisition policy. Scalar step sizen] 2
All learning is done on the Aibo itself, including all caleul
V. RESULTS

tions necessary to execute the learning algorithm. Inpéions
caused by dead batteries are of little consequence, siece thThe success of layek, at producing a significantly faster
learning algorithm we use has practically no state: if wirward gait has been demonstrated in previous work [6]. It
resume from its last base policy, we will never lose as muechmains to demonstrate that, in the layered learning pgmadi
as an entire iteration of the algorithm. With the algorithmve present herel, can build upon the gait improvement
parameters used in our experiments, a battery typicallg lasonferred byL;. In particular, we hypothesize the ability to
for the amount of time necessary to complete two iterationgarn a significantly improved ball-acquisition behaviorgo
SO on average a run requires about 4 battery changes.  with the significantly improved gait.
To test this hypothesis, we learn ball acquisition using
three gaits learned by separate runs of lager All three of
The learning algorithm common to both learned layetgese learned gaits represent significant improvementseiecs
estimates the gradient of the policy’s value function in thever the initial hand-tuned gait. The initial (before leiar)
neighborhood of the current policy via efficient experimemall acquisition policy was hand-tuned for the initial hand
tation. It then takes a step in the direction of the estimatégned gait from which gait learning began. The ball-acdjaisi
gradient and repeats the process. This algorithm is fulyarning paradigm described by lay&s was then applied
specified and compared against alternatives on the learf@tach of these gaits, and significantly improved acquoisiti
walk comprising our layerl [5] This section summarizes policies were discovered for all three.
the algorithm in task-independent terms and points out somerigure 5 shows the learning curve for one of these gaits,
of its advantages for the purpose of ball acquisition. which we will refer to as gait A. For this gait, the initial
Starting from a base polic{f, ...,0n }, t — 1 new policies ball acquisition policy acquires the ball roughly 26% of the
are chosen by selecting one gf; —¢;,0;,0; + ¢;} randomly time, whereas the best learned policy acquires the ball ap-
for each dimensior, wheree; is a fixed increment particular proximately 77% of the time. This improvement was reached
to dimensioni. Theset policies (the base policy and thejn 8 iterations, which requires 768 attempted acquisitions
t — 1 randomly selected policies) are then evaluated for thgpproximately 3 hours).
fitness. Their scores are used to estimate the partial tigeva  Gajt A has a speed of approximately 315mm/sec, whereas
of fitness with respect to each of th€ dimensions, which the initial hand-tuned gait from which it was learned has a
leads to a new base policy. speed of approximately 245mm/sec. The gait training pces
The estimation of partial derivatives works as follows. Foflso requires roughly 3 hours [6], [5]. Therefore, with 6 tou
each dimensiori, the policies are divided into three setpf training7 our robot’s Wa|k|ng Speed increased 29% and
according to the value of parameterif its value isf; —€;, its reliability at acquiring the ball more than doubfeih
the policy is in setS_ ;; if it is 0;, the policy is in setSo;;  comparison with the original hand-coded solution.
and if it is 6; + ¢;, the policy is in setS, ;. Then the average  Taple 11l shows a summary of the ball acquisition policies
score over all the policies in each set is computed and usggred for all three gaits. It also shows the success rate of
to build an adjustment vectot of size N. For eachi, if the  each when tested on the gait with which it was learned. These
average score over the s&f; is greater than the average scorgyccess rates were obtained by running 100-trial evahmtio
over each of the other two sets, theln = 0; otherwise,4;  of the policy (except for gait A, where the data is the result

becomes the difference between the average scores overgsefll 500 trials run to establish statistical significancethe
St and setS_. ;. A is then normalized and multiplied by

IV. THE PoLICY GRADIENT ALGORITHM

4The initial ball-acquisition behavior had a success rat@6# with the
Shttp://www.cs.utexas.edu/ AustinVilla/legged/ initial gait, and was the result of extensive tuning invaolyithe testing of
learned-acquisition/ dozens of parameter settings over the course of several days.



TABLE Ill
POLICY VALUES LEARNED FOR EACH GAIT, AND THE APPROXIMATE SUCCESS RATE OF EACH

Policy sl owdown_di st | sl owdown_factor | capture_angle | capture.dist | turn_cutoff Success rate

Initial 200 0.8 15 110 90 26%/14%/14%
Best: gait A 193 1 32 155 80 7%
Best: gait B 187 1 19 155 69 84%
Best: gait C 228 1 31 129 84 52%

100

other two learned gaits, there was no significant differénce
oof 1 performance — if anything, the acquisition policy learned o
gait A performs better in each case, as shown in Table IV.
Nonetheless, the layered learning paradigm enabled the

separation of the learning for the walk and ball acquisititn

two distinct phases. Given that they learn most efficiently i
different training environments, such a hierarchical apph

is an essential component of our successful behavior legrni

80

701

60

50

40-

30

successful captures out of 100 trials

TABLE IV
2r SUCCESS RATES OF BEST NATIVELY LEARNED ACQUISITION POLICY AR
10t g BEST ACQUISITION POLICY LEARNED ON GAITA
o1 2z 3 a4 ) s s 7 8 9 10 Gait | Natively learned  Best on gait A
iterations B 84% 91%
C 52% 53%
Fig. 5. Progress of acquisition learning on gait A. This té@g curve was
produced by running 100-trial evaluations on the base palfie@ach iteration.
Error bars (showing the 95% confidence interval) are degitie the initial VI. CONCLUSION
and best learned policy; these error bars were obtained rinying five 100- o .
trial evaluations on each of these policies. We have presented an efficient and effective means of

learning a high-level behavior on a physical robot. Thisgrap
makes two main contributions: i) the first instantiation of
data in Figure 5). The success rate of the initial hand-codkgered learning on a physical robot, and ii) a significantly
policy is 26% for gait A, 14% for gait B, and 14% for gait C.improved grasping behavior achieved via fully autonomous
Note that in all cases, the method learned not to slow dowtachine learning with all training and computation exedute
at all (slowdown _factor =1). Whenslowdown _factor on-board the robot.
is 1, the parameteslowdown _dist has no effect on the The layered learning approach to locomotion and ball acqui-
robot’'s behavior, which is presumably why learning resiiltesition learning that we describe here is very useful in pcact
in such a wide range of values for this parameter. Compared to manually tuning these skills, this method saves
The fact that, in all cases, our method learns not to slaivme and can generate better policies. Indeed, we used the
down is a demonstration of the advantage that machidescribed automated training paradigms for both the gait an
learning can bestow because of its unbiased explorationth& acquisition in our competitive team development for the
the space. In hand-tuning, we believed that slowing dowRoboCup 2004 robot soccer competitions, finishing in 3rd
would make the ball approach more reliable at the expenskce (out of 8) at the U.S. Open and reaching the quartesfinal
of speed, since the estimates of ball distance should chariget of 24) at the international event [10].
less rapidly if the robot is walking more slowly. However In our ongoing research, we aim to identify additional
our system, which optimized only for reliability, found thabehaviors that can be learned in a similarly autonomous and
slowing down is in fact a disadvantage: in all learning fialefficient fashion. Several candidates for @5 that builds
it actively increased thelowdown _factor parameter from on the grasping behavior learned I exist. Currently, for
its initial value of 0.8 to 1.0. example, all design and tuning of kicks for our RoboCup team
We originally hypothesized that different gaits would reis done by hand. If this process could be automated, it would
quire different acquisition policies. This hypothesis veap- likely save time and might also lead to improved solutions.
ported by the fact that the initial ball acquisition policyHowever, since most kicks begin by grasping the ball, au-
dropped in effectiveness from approximately 36% on the gagnomous learning of kicks would be intractable without a
for which it was hand-tuned to 14-26% on the learned gaigood grasping behavior. Another possible candidate fakan
However, it turned out not to be the case with these learnttht builds on the learned grasping behavior is the tuning of
gaits and their trained acquisition policies. Rather, uigsting walks that manipulate the ball, such as the one used in the
the best acquisition policy learned with gait A on each of thirning-with-ball behavior which makes grasping so crlcia



in the first place (see Section 1I-B). Ultimately, we hope to
characterize the full range of characteristics of tasks on a
mobile robot that may be improved by these methods.
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