
Layered Learning on a Physical Robot
Peggy Fidelman and Peter Stone

Department of Computer Sciences, The University of Texas atAustin
1 University Station C0500, Austin, Texas 78712-0233

{peggy,pstone}@cs.utexas.edu
http://www.cs.utexas.edu/˜{peggy,pstone}

Abstract— Layered learning is a general hierarchical machine
learning paradigm that leverages a given task decomposition to
learn complex tasks efficiently. Though it has been validated
previously in simulation, this paper presents the first application
of layered learning on a physical robot. In particular, it enables
the learning of a high-level grasping behavior that relies on a gait
which itself must be learned. All learning is done autonomously
onboard a commercially available Sony Aibo robot, with no
human intervention other than battery changes. We demonstrate
that our approach makes it possible to quickly learn both a fast
gait and a reliable grasping behavior which, in combination,
significantly outperform our best hand-tuned solution.

Keywords: learning/adaptive systems, legged robots, agents and
agent based systems

I. I NTRODUCTION

In order for robots to be useful for many real-world appli-
cations, they must be able to adapt to novel and changing
environments. Ideally, a robot should be able to respond
to a change in its surroundings by adapting both its low-
level skills, such as its walking style, and the higher-level
behaviors which depend on these skills. This adaptation should
occur as autonomously as possible, because hand-coding is
time-consuming and often leads to brittle solutions. Machine
learning promises a way to generate solutions with little human
interaction, so that when the environment changes the solution
can be revised with no more than a few hours of machine
time. It is also possible for machine learning to lead to
better solutions than hand-tuning, because humans are often
biased toward exploring a small part of the space of possible
solutions, whereas machine learning explores the space in a
systematic way.

Current learning methods typically need a large amount of
training data to be effective. Thus, an appealing approach to
creating learningrobots is to train behaviors first in simula-
tion before implementing them in the real world. However,
especially when concerned with complex perception or ma-
nipulation tasks, we cannot assume an adequate simulator will
always exist for a given robot. With no simulator, each trial
requires interaction with the physical world in real time. This
means it is not possible to offset the costs of an inefficient
learning algorithm with a faster processor. The learning algo-
rithm must make efficient use of the information gained from
each trial.

Layered learning[11] is a hierarchical machine learning
paradigm that leverages a given task decomposition to learn
complex tasks efficiently. A key feature is that the learning

of each subtask directly facilitates the learning of the next-
higher subtask layer. Layered learning has been used previ-
ously to generate complex, multi-layer behaviors insimulated
environments [11], [3], [2], [12]. This paper presents the first
implementation of layered learning on aphysical robot, with
all training performed in the real world.

The two learned layers enable i) fast locomotion, and ii)
robust object “grasping” (for manipulation) given this loco-
motion. The first learned layer, reported previously, generated
a fast walk directly on a robot via a policy gradient search [6].
This paper builds on that work to learn a higher-level, more
goal-oriented behavior using a similar approach. As this new
behavior relies on the learned walk, the overall learned behav-
ior can be characterized as an instance of layered learning.

The main contributions of this paper are i) the first instan-
tiation of layered learning on a real robot, and ii) the fully
implemented and tested learned grasping behavior.

The remainder of this paper is organized as follows. Sec-
tion II describes the background and motivation for this work.
Section III specifies the tasks to be learned and how the layered
learning paradigm can be used to relate them, as well as
how the training scenario is set up for each task. Section IV
describes the primary machine learning algorithm used in
the work. Section V details the results of the training, and
Section VI discusses the contributions of this work, as wellas
possible directions for the future.

II. BACKGROUND

This section summarizes the layered learning formalism
(Section II-A). It also describes the robot hardware used in
all experiments and introduces the target task towards which
it is trained. (Section II-B).

A. Layered learning

The main principles of the layered learning paradigm (sum-
marized in Table I) are:1

TABLE I

THE KEY PRINCIPLES OF LAYERED LEARNING.

1) Learning a mapping directly from inputs to outputs is not tractable.
2) A bottom-up, hierarchical task decomposition is given.
3) Machine learning exploits data to train and/or adapt. Learning occurs

separately at each level.
4) The output of learning in one layer feeds into the next layer.

1This section is adapted from [11].

• Tractability: Layered learning is designed for domains
that are too complex for learning a mapping directly
from the input to the output representation. Instead, the
problem is broken down into several task layers. At each
layer, a concept needs to be acquired, and any appropriate
machine learning (ML) algorithm can be used for this
purpose.

• Decomposition: Layered learning uses a bottom-up in-
cremental approach to hierarchical task decomposition.
Starting with low-level subtasks, the process of creating
new ML subtasks continues until the high-level tasks,
that deal with the full domain complexity, are reached.
The appropriate learning granularity and subtasks to be
learned are determined as a function of the specific
domain. The task decomposition in layered learning is
not automated. Instead, the layers are defined by the ML
opportunities in the domain.

• Learning: Machine learning is used as a central part of
layered learning to exploit data in order totrain and/or
adapt the overall system. ML is useful for training func-
tions that are difficult to fine-tune manually. It is useful
for adaptation when the task details are not completely
known in advance or when they may change dynamically.
Like the task decomposition itself, the choice of machine
learning method depends on the subtask.

• Interactions: The key defining characteristic of layered
learning is that each learned layer directly affects the
learning at the next layer. A learned subtask can affect
the subsequent layer by:

– constructing the set of training examples;
– providing the features used for learning; and/or
– pruning the output set.

Layered learning is formally defined as follows. Consider
the learning task of identifying a hypothesish from among
a class of hypothesesH which map a set of state feature
variablesS to a set of outputsO such that, based on a set of
training examples,h is most likely (of the hypotheses inH)
to represent unseen examples.

When using the layered learning paradigm, the complete
learning task is decomposed into hierarchical subtask layers
{L1, L2, . . . , Ln} with each layer defined as

Li = (~Fi, Oi, Ti,Mi, hi)

where:
~Fi is the input vector of state features relevant for learning

subtaskLi. ~Fi = <F 1
i , F 2

i , . . .>. ∀j, F j
1 ∈ S.

Oi is the set of outputs from among which to choose for
subtaskLi. On = O.

Ti is the set of training examples used for learning subtask
Li. Each element ofTi consists of a correspondence
between an input feature vector~f ∈ ~Fi ando ∈ Oi.

Mi is the ML algorithm used at layerLi to select a hypothesis
mapping ~Fi 7→ Oi based onTi.

hi is the result of runningMi on Ti. hi is a function from
~Fi to Oi.

Note that a layer describes more than a subtask; it also
describes an approach to solving that subtask and the resulting
solution.

As stated in the Decomposition principle of layered learn-
ing, the definitions of the layersLi are givena priori. The
Interaction principle is addressed via the following stipulation.
∀i < n, hi directly affectsLi+1 in at least one of three ways:

• hi is used to construct one or more featuresF k
i+1.

• hi is used to construct elements ofTi+1; and/or
• hi is used to prune the output setOi+1.
It is noted above in the definition of~Fi that ∀j, F j

1 ∈ S.
Since ~Fi+1 can consist of new features constructed usinghi,
the more general version of the above special case is that∀i, j,
F j

i ∈ S ∪i−1

k=1
Ok.

When training a particular component, layered learning
freezes the components trained in previous layers, thereby
adding additional constraints to the learning process. It also
adds guidance, by training each layer in a special environment
intended to prepare it well for the target domain.

The original implementation of the layered learning
paradigm was on the full robot soccer task in the RoboCup
soccer simulator [11]. First, a neural network was used to learn
an interception behavior. This behavior was used to train a
decision tree for pass evaluation, which was in turn used to
generate the input representation for a reinforcement learning
approach to pass selection.

A subsequent application of layered learning uses two
learned layers, each learned via genetic programming, for
a soccer keepaway task in a simplified abstraction of the
TeamBots environment [3]. In the full TeamBots environment,
four learned layers were used, also on a keepaway task [12].
To our knowledge, there has been no previous implementation
of layered learning on a physical robot.

B. Ball acquisition

Acquiring an object is a prerequisite for many types of
manipulations in the world [1], [4]. For example, in the caseof
a Sony Aibo robot playing soccer, one of our motivating test-
bed domains [9], [10], it is much easier to design effective
ways for the robot to kick the ball if we may assume that
the ball starts in a specific position relative to the robot.
Furthermore, if the robot cangrasp the ball securely enough,
it can move the ball by turning with it until the ball reaches a
field position from which the kick is likely to move it to the
desired destination (such as in the opponent’s goal). Thus,as
a representative task, we consider the goal of having a robot
walk up to a ball and gain control of it. For the purposes of
this paper, we definecontrol to mean that the robot holds the
ball under its chin in a way that allows it to turn with the ball
as shown in Figure 1.

As the robot platform for this research, we use the com-
mercially available Sony Aibo ERS-7, a quadruped robot [7].
The ERS-7 has four legs with three degrees of freedom in
each, a head with three degrees of freedom, and a CMOS
camera in the head. It has several pressure sensors and two
infrared range sensors, as well as position sensors in each of

Fig. 1. An Aibo with control of a ball. Achieving this position without
knocking the ball away in the process is a challenge; layeredlearning allows
the Aibo to learn to do this more reliably without sacrificing walking speed.

its joints. The robot is able to capture frames from the camera
at a rate of 30 Hz. From these images, our software recognizes
objects such as the orange ball based on color segmentation
and aggregation [8]. This variety of sensors allows us to rely
on local sensing alone. In addition, the 576 MHz 64 bit RISC
processor allows all necessary processing to be done onboard.
In this work, we use a system for vision processing, walking,
and kicking that was developed as part of our larger robot
soccer project [9], [10].

III. L AYERED LEARNING ON A PHYSICAL ROBOT

The process of approaching a ball and then gaining control
of it relies on the gait that allows the robot to move toward the
ball. Thus, we have a layered learning hierarchy consistingof
two layers, with previously learned gait as the bottom layer
(L1) and the novel acquisition behavior as the top layer (L2).

A. Learning a gait

By the method of Kohl and Stone [6], the gait is defined by
a set of 12 continuous parameters specifying, among other
things, the shape of the trajectory through which each leg
moves as well as the target heights of the front and rear of the
body. Thus, gait learning is framed as a parameter optimization
problem, with forward speed as the objective function. The
learning is accomplished via the policy gradient algorithm
described in detail in Section IV.

The fitness of a policy, or set of values for the 12 parameters,
is obtained by having one or more Aibos time themselves
as they walk a fixed, known distance indicated by a pair
of landmarks. To reduce the effect of noise, this evaluation
process is performed three times for each policy, and the
resulting times are averaged to get the fitness of the policy.
Figure 2 depicts the setup of the training process.

In the notation of layered learning, the gait layer (L1) can
thus be defined as follows:
~F1: ∅;

O1: values for the 12 parameters defining a gait, plus the
speed of the resulting gait;

A

B

C

A’

LandmarksLandmarks

C’

B’

Fig. 2. The training paradigm used in gait learning. Each Aibo times itself
as it moves between a pair of landmarks (A and A′, B and B′, or C and
C′). Reproduced with permission from Kohl and Stone [6].

T1: the set of training examples obtained by recording the
time it takes to walk back and forth across a fixed
distance;

M1: the policy gradient algorithm described in Section IV;
h1: the parameters of the fastest discovered gait, and its

speed.

The details of the learned walk, including detailed empirical
analyses, were reported previously [6], [5]. With three robots
continually walking across the field more than 1000 total times
for approximately 3 hours, they were able to almost double the
speed of their walk, achieving the fastest known walk on the
Aibo at the time: 291 mm/sec.2 Notably, the robots learned
without any human intervention other than battery changes
approximately once an hour.

The formulation of the walking task within the framework of
layered learning is novel to this paper. Section III-B introduces
a novel learned behavior in full detail within the layered
learning framework. The new behavior uses the learned walk
(h1) as a part of its training scenario.

B. Learning to acquire the ball

The task of learning to capture a ball under the robot’s chin
is motivated by our ongoing development of the UT Austin
Villa four-legged robot soccer team [9], [10]. The robot is only
able to kick in certain directions, so it is useful to be able to
capture the ball and turn with it before kicking. Our team
adopted the following strategy for getting the ball into this
position: when the Aibo is walking to a ball with the intent of
kicking it and gets close enough, it first slows down to allow
for more precise positioning, and then it lowers its head to
capture the ball under its chin (thecapturing motion).

Executing the capturing motion without knocking the ball
away is a challenge: if the head is lowered when the ball is
too far away, the head may knock the ball away; but if it is
not lowered in time, the body of the robot may bump the ball
away. Furthermore, certain aspects of the acquisition motion

2That speed was achieved on the ERS-210A model. It was subsequently
retrained on the ERS-7 model used in this paper and achieved aneven faster
walk of 335–370 mm/sec (depending on the surface on which it is evaluated).

interact, such as the perceived ball distance at which the head
should be lowered and the amount that the robot slows down
when close to the ball. Parameters like these must thereforebe
tuned simultaneously. This entire process is time-consuming
to perform by hand.

The parameters that control the transition from walking to
capturing the ball are as follows:

• slowdown dist : the ball distance (in millimeters) at
which slowing down begins;

• slowdown factor : the (multiplicative) factor, in the
range [0,1], by which the gait slows down at this point;

• capture angle : the maximum ball angle (in degrees)
at which the capturing motion may begin (see Figure 3);

• capture dist : the ball distance (in millimeters) at
which the capturing motion begins (if the ball is within
the specified angle);

• turn cutoff : the minimum ball angle (in degrees) at
which the robot will not move directly toward the ball at
all, but instead will turn in place to face the ball more
directly. This parameter controls how straight the final
part of the robot’s approach will be.

Fig. 3. Illustration ofcapture angle . If the Aibo believes that the center
of the ball is to the right of the thick white lines, then it will continue to turn
toward the ball rather than beginning the capturing motion, even if the ball
distance is believed to be less thancapture dist .

Given this parameterization, we are faced with a parameter
optimization problem in five dimensions. Because our policies
can be expressed in this way, and because our domain has the
same efficiency constraints as that of learning fast locomotion
for the Aibo, the policy gradient learning algorithm used to
learn the gait (see Section IV) is again a natural choice.

However, one new challenge in learning ball acquisition
is defining an appropriate reward signal. The policy gradient
algorithm relies on the magnitude of the fitness difference
between policies. This magnitude is readily available in the
learned walking scenario, because speed provides a natural
and continuous measure of fitness. But in the case of ball
acquisition, there is no straightforward way to rate a particular
policy with regard to “how well” it captures the ball: it either
does or it does not.

Therefore, we use a binary reinforcement signal: if the robot
captures the ball, it receives a reward of 1; if not, it receives a

reward of 0. The Aibo can determine autonomously whether
it has captured the ball by trying to put its chin all the way
down to its chest and then taking note of the value of the
position sensor in its head tilt joint; if the ball is indeed under
its chin, the head tilt motor will stop moving before gettingto
the requested position. During training, the score for a given
policy is determined by running a fixed number of trials (12)
with that policy and averaging the reinforcement signal over
those trials (thus producing a discrete reinforcement signal).

Each trial consists of the robot approaching the ball from
a random location on the standard field used in RoboCup,
which is surrounded by a short wall designed to keep the ball
from leaving the field (see Figure 2). The training procedure
is summarized in pseudocode in Figure 4.

1: totalscore ← 0
2: for j ∈ [1, n] do
3: locate ball
4: while ball farther thanslowdown dist do
5: walk to ball at maxspeed
6: end while
7: while ball farther thancapture dist and outside of

capture angle do
8: walk to ball at maxspeed*slowdown factor
9: end while

10: lower head over ball
11: if head tilt position sensor senses ballthen
12: totalscore ← totalscore + 1
13: if center of field to robot’s leftthen
14: kick to left
15: else
16: kick to right
17: end if
18: end if
19: turn 180◦

20: end for
21: policy score ← totalscore/n

Fig. 4. Method for evaluating policies while learning to approach the ball.
n is the number of trials per policy; in our experiments, we usedn = 12.

One goal of the training procedure is to generate as many
trials as possible in the open field, rather than with the
ball starting against the wall. The latter trials are somewhat
less informative because capturing the ball along the wall is
considerably harder; even a good policy will fail much more
frequently along the wall, which can lead to a smaller spread
of scores among policies. In order to keep the ball in the
open field, if the Aibo successfully captures it, it kicks it in
whichever direction it estimates is away from the wall (lines
12–15 in Figure 4). Before starting the next trial, the Aibo
turns around approximately180◦ in place in order to knock
the ball away from it if it is still close (line 17). Once it has
done this, it begins the next trial by searching for the ball and
then approaching it with the parameters of the current policy
(lines 2–8). Videos depicting the training process in action are

available online.3

In the formal notation of layered learning, we thus have the
following definition of the acquisition layer (L2):
~F2: {BallAngle, BallDistance} ∈ {[−180, 180], [0,∞)}. The

five thresholds that comprise an acquisition policy
(slowdown dist , etc.) relate to these two sensor read-
ings alone;

O2: whether or not to lower the head at the current time;
T2: evaluations of mappings from~Fi to Oi, obtained by re-

peatedly trying to grasp the ball by the process described
above and summarized in Figure 4. In particular, the
learned walk (h1) is used during training;

M2: the policy gradient algorithm described in Section IV;
h2: the final learned acquisition policy.

All learning is done on the Aibo itself, including all calcula-
tions necessary to execute the learning algorithm. Interruptions
caused by dead batteries are of little consequence, since the
learning algorithm we use has practically no state: if we
resume from its last base policy, we will never lose as much
as an entire iteration of the algorithm. With the algorithm
parameters used in our experiments, a battery typically lasts
for the amount of time necessary to complete two iterations,
so on average a run requires about 4 battery changes.

IV. T HE POLICY GRADIENT ALGORITHM

The learning algorithm common to both learned layers
estimates the gradient of the policy’s value function in the
neighborhood of the current policy via efficient experimen-
tation. It then takes a step in the direction of the estimated
gradient and repeats the process. This algorithm is fully
specified and compared against alternatives on the learned
walk comprising our layerL1 [5]. This section summarizes
the algorithm in task-independent terms and points out some
of its advantages for the purpose of ball acquisition.

Starting from a base policy{θ1, ..., θN}, t− 1 new policies
are chosen by selecting one of{θi − ǫi, θi, θi + ǫi} randomly
for each dimensioni, whereǫi is a fixed increment particular
to dimensioni. These t policies (the base policy and the
t − 1 randomly selected policies) are then evaluated for their
fitness. Their scores are used to estimate the partial derivative
of fitness with respect to each of theN dimensions, which
leads to a new base policy.

The estimation of partial derivatives works as follows. For
each dimensioni, the policies are divided into three sets
according to the value of parameteri: if its value is θi − ǫi,
the policy is in setS−ǫ,i; if it is θi, the policy is in setS0,i;
and if it is θi + ǫi, the policy is in setS+ǫ,i. Then the average
score over all the policies in each set is computed and used
to build an adjustment vectorA of sizeN . For eachi, if the
average score over the setS0,i is greater than the average score
over each of the other two sets, thenAi = 0; otherwise,Ai

becomes the difference between the average scores over set
S+ǫ,i and setS−ǫ,i. A is then normalized and multiplied by

3http://www.cs.utexas.edu/˜AustinVilla/legged/
learned-acquisition/

a scalar step sizeη, so that the policy is adjusted by a fixed
amount each time. The above process comprises one iteration
of the algorithm. This algorithm is specified in pseudocode
in [6]. For the parameters used in learning ball acquisition,

TABLE II

PARAMETERS FOR THE POLICY GRADIENT ALGORITHM IN THE BALL

ACQUISITION LEARNING TASK

Parameter Value
Policies per iteration (t) 8

Increment forslowdown dist (ǫ1) 10mm
Increment forslowdown factor (ǫ2) 0.1

Increment forcapture angle (ǫ3) 5
◦

Increment forcapture dist (ǫ4) 10mm
Increment forturn cutoff (ǫ5) 10

◦

Scalar step size (η) 2

V. RESULTS

The success of layerL1 at producing a significantly faster
forward gait has been demonstrated in previous work [6]. It
remains to demonstrate that, in the layered learning paradigm
we present here,L2 can build upon the gait improvement
conferred byL1. In particular, we hypothesize the ability to
learn a significantly improved ball-acquisition behavior to go
with the significantly improved gait.

To test this hypothesis, we learn ball acquisition using
three gaits learned by separate runs of layerL1. All three of
these learned gaits represent significant improvements in speed
over the initial hand-tuned gait. The initial (before learning)
ball acquisition policy was hand-tuned for the initial hand-
tuned gait from which gait learning began. The ball-acquisition
learning paradigm described by layerL2 was then applied
to each of these gaits, and significantly improved acquisition
policies were discovered for all three.

Figure 5 shows the learning curve for one of these gaits,
which we will refer to as gait A. For this gait, the initial
ball acquisition policy acquires the ball roughly 26% of the
time, whereas the best learned policy acquires the ball ap-
proximately 77% of the time. This improvement was reached
in 8 iterations, which requires 768 attempted acquisitions
(approximately 3 hours).

Gait A has a speed of approximately 315mm/sec, whereas
the initial hand-tuned gait from which it was learned has a
speed of approximately 245mm/sec. The gait training process
also requires roughly 3 hours [6], [5]. Therefore, with 6 hours
of training, our robot’s walking speed increased 29% and
its reliability at acquiring the ball more than doubled4 in
comparison with the original hand-coded solution.

Table III shows a summary of the ball acquisition policies
learned for all three gaits. It also shows the success rate of
each when tested on the gait with which it was learned. These
success rates were obtained by running 100-trial evaluations
of the policy (except for gait A, where the data is the result
of all 500 trials run to establish statistical significance on the

4The initial ball-acquisition behavior had a success rate of36% with the
initial gait, and was the result of extensive tuning involving the testing of
dozens of parameter settings over the course of several days.

TABLE III

POLICY VALUES LEARNED FOR EACH GAIT, AND THE APPROXIMATE SUCCESS RATE OF EACH

Policy slowdown dist slowdown factor capture angle capture dist turn cutoff Success rate

Initial 200 0.8 15 110 90 26%/14%/14%
Best: gait A 193 1 32 155 80 77%
Best: gait B 187 1 19 155 69 84%
Best: gait C 228 1 31 129 84 52%

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

iterations

su
cc

es
sf

ul
 c

ap
tu

re
s

ou
t o

f 1
00

 tr
ia

ls

Fig. 5. Progress of acquisition learning on gait A. This learning curve was
produced by running 100-trial evaluations on the base policy of each iteration.
Error bars (showing the 95% confidence interval) are depicted for the initial
and best learned policy; these error bars were obtained by running five 100-
trial evaluations on each of these policies.

data in Figure 5). The success rate of the initial hand-coded
policy is 26% for gait A, 14% for gait B, and 14% for gait C.

Note that in all cases, the method learned not to slow down
at all (slowdown factor =1). Whenslowdown factor
is 1, the parameterslowdown dist has no effect on the
robot’s behavior, which is presumably why learning resulted
in such a wide range of values for this parameter.

The fact that, in all cases, our method learns not to slow
down is a demonstration of the advantage that machine
learning can bestow because of its unbiased exploration of
the space. In hand-tuning, we believed that slowing down
would make the ball approach more reliable at the expense
of speed, since the estimates of ball distance should change
less rapidly if the robot is walking more slowly. However
our system, which optimized only for reliability, found that
slowing down is in fact a disadvantage: in all learning trials
it actively increased theslowdown factor parameter from
its initial value of 0.8 to 1.0.

We originally hypothesized that different gaits would re-
quire different acquisition policies. This hypothesis wassup-
ported by the fact that the initial ball acquisition policy
dropped in effectiveness from approximately 36% on the gait
for which it was hand-tuned to 14–26% on the learned gaits.
However, it turned out not to be the case with these learned
gaits and their trained acquisition policies. Rather, upontesting
the best acquisition policy learned with gait A on each of the

other two learned gaits, there was no significant differencein
performance — if anything, the acquisition policy learned on
gait A performs better in each case, as shown in Table IV.

Nonetheless, the layered learning paradigm enabled the
separation of the learning for the walk and ball acquisitioninto
two distinct phases. Given that they learn most efficiently in
different training environments, such a hierarchical approach
is an essential component of our successful behavior learning.

TABLE IV

SUCCESS RATES OF BEST NATIVELY LEARNED ACQUISITION POLICY AND

BEST ACQUISITION POLICY LEARNED ON GAITA

Gait Natively learned Best on gait A
B 84% 91%
C 52% 53%

VI. CONCLUSION

We have presented an efficient and effective means of
learning a high-level behavior on a physical robot. This paper
makes two main contributions: i) the first instantiation of
layered learning on a physical robot, and ii) a significantly
improved grasping behavior achieved via fully autonomous
machine learning with all training and computation executed
on-board the robot.

The layered learning approach to locomotion and ball acqui-
sition learning that we describe here is very useful in practice.
Compared to manually tuning these skills, this method saves
time and can generate better policies. Indeed, we used the
described automated training paradigms for both the gait and
the acquisition in our competitive team development for the
RoboCup 2004 robot soccer competitions, finishing in 3rd
place (out of 8) at the U.S. Open and reaching the quarterfinals
(out of 24) at the international event [10].

In our ongoing research, we aim to identify additional
behaviors that can be learned in a similarly autonomous and
efficient fashion. Several candidates for anL3 that builds
on the grasping behavior learned inL2 exist. Currently, for
example, all design and tuning of kicks for our RoboCup team
is done by hand. If this process could be automated, it would
likely save time and might also lead to improved solutions.
However, since most kicks begin by grasping the ball, au-
tonomous learning of kicks would be intractable without a
good grasping behavior. Another possible candidate for anL3

that builds on the learned grasping behavior is the tuning of
walks that manipulate the ball, such as the one used in the
turning-with-ball behavior which makes grasping so crucial

in the first place (see Section II-B). Ultimately, we hope to
characterize the full range of characteristics of tasks on a
mobile robot that may be improved by these methods.

ACKNOWLEDGMENTS

Thanks to the members of the UT Austin Villa team for their
efforts in developing the software used as a basis for the work
reported in this paper. Special thanks to Nate Kohl for sharing
his machine learning infrastructure used for Aibo locomotion.
This research was supported in part by NSF CAREER award
IIS-0237699 and ONR YIP award N00014-04-1-0545.

REFERENCES

[1] A. Bicchi and V. Kumar. Robotic grasping and contact: A review.
In Proceedings of the IEEE International Conference on Robotics and
Automation, April 2000.

[2] S. M. Gustafson. Layered learning for a cooperative robot soccer
problem. Master’s thesis, Kansas State University, 2000.

[3] W. H. Hsu and S. M. Gustafson. Genetic programming and multi-
agent layered learning by reinforcements. InGenetic and Evolutionary
Computation Conference, New York,NY, July 2002.

[4] I. Kamon, T. Flash, and S. Edelman. Learning to grasp using visual
information. Technical report, The Weizmann Institute of Science,
Revhovot, Israel, March 1994.

[5] N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion.
In The Nineteenth National Conference on Artificial Intelligence, pages
611–616, July 2004.

[6] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast
quadrupedal locomotion. InProceedings of the IEEE International
Conference on Robotics and Automation, May 2004.

[7] Sony. Aibo robot, 2004. http://www.sony.net/Products/
aibo .

[8] P. Stone, K. Dresner, S. T. Erdoğan, P. Fidelman, N. K. Jong, N. Kohl,
G. Kuhlmann, E. Lin, M. Sridharan, D. Stronger, and G. Hariharan. UT
Austin Villa 2003: A new RoboCup four-legged team. TechnicalReport
UT-AI-TR-03-304, The University of Texas at Austin, Department of
Computer Sciences, AI Laboratory, 2003.

[9] P. Stone, K. Dresner, S. T. Erdoğan, P. Fidelman, N. K. Jong, N. Kohl,
G. Kuhlmann, E. Lin, M. Sridharan, D. Stronger, and G. Hariharan. The
UT Austin Villa 2003 four-legged team. In D. Polani, B. Browning,
A. Bonarini, and K. Yoshida, editors,RoboCup-2003: Robot Soccer
World Cup VII. Springer Verlag, Berlin, 2004.

[10] P. Stone, K. Dresner, P. Fidelman, N. K. Jong, N. Kohl, G. Kuhlmann,
M. Sridharan, and D. Stronger. The UT Austin Villa 2004 RoboCup
four-legged team: Coming of age. Technical Report UT-AI-TR-04-313,
The University of Texas at Austin, Department of Computer Sciences,
AI Laboratory, October 2004.

[11] P. Stone and M. Veloso. Layered learning. In R. L. de Mántaras and
E. Plaza, editors,Machine Learning: ECML 2000 (Proceedings of the
Eleventh European Conference on Machine Learning), pages 369–381.
Springer Verlag, Barcelona,Catalonia,Spain, May/June 2000.

[12] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone. Evolving keep-
away soccer players through task decomposition.Machine Learning,
2005. To appear.

