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Abstract

Inaccessible and nondeterministic environ-
ments are very common in real-world problems.
One of the di�culties in these environments is
representing the knowledge about the unknown
aspects of the state. We present a solution to
this problem for the robotic soccer domain, an
inaccessible and nondeterministic environment.
We developed a predictive memory model that
builds a probabilistic representation of the state
based on past observations. By making the
right assumptions, an e�ective model can be
created that can store and update knowledge
for even the inaccessible parts of the environ-
ment. Experiments were conducted to compare
the e�ectiveness of our approach with a simpler
approach, which ignored the inaccessible parts
of the environment. The experiments consisted
of using the memory models in a situation of
a free ball, where two players are racing af-
ter the ball to be the �rst to pass it or kick
it to one of their teammates or the goal. The
results obtained demonstrate that this predic-
tive approach does generate an e�ective mem-
ory model, which outperforms a non-predictive
model.

1 Introduction

Real world systems have to contend with many complica-
tions which make it di�cult to apply standard arti�cial
intelligence techniques. These include an inaccessible en-
vironment, where the sensors are limited in what infor-
mation they provide about the current state. Another
complication is noise in the e�ectors of the agent. This
makes the environment nondeterministic since the agent
isn't sure of the e�ects of its actions.
Both of these complications are illustrated in the

robotic soccer domain. In this domain the agents are
players working cooperatively with their teammates to
defeat their opponents. The agents in this domain have
limited sensory information, which is given only for a
limited view angle. Also, due to the nature of the game,
there are unpredictable bounces and slips, which make
the domain nondeterministic.

One aspect of the agent that is needed to overcome
these complications in both the soccer domain and real
world systems is an accurate memory model. In this pa-
per we describe a model for the robotic soccer domain,
which uses past sensory input and a probabilistic ap-
proach to maintain the model for even the inaccessible
parts of the environment. Although players and the ball
can move unpredictably when they are not in view, our
memory model maintains reasonable estimates of their
locations relative to the agent. Stationary objects, such
as the goals, can be located much more precisely, even
when the agent is not looking at them. Our memory
model uses the locations of visible stationary objects to
help determine the positions of those not in view.
The model is demonstrated using a soccer simulation

program, which is explained in the following section.
This is followed by a description of the memory model
and the results of testing this model against a simpler
one. The purpose of this paper is to allow others cur-
rently using or planning to use the Soccer Server system
to duplicate our memory model for their own use.

2 Simulator

The memory model was created for use by client pro-
grams for Noda's soccer server [Noda, 1995]. The server
provides a virtual �eld and simulates the motion of two
teams of players and the ball. The players are controlled
by separate client programs which connect to the server
using UDP/IP sockets. The simulator also provides an
interface for a coach, which can move and monitor the
players to provide a facility for testing. This paper dis-
cusses the details of the client's interface to the server,
since this determines the inputs to the memory model
and the actions the client has available. The model de-
scribed in this paper is designed and tested using ver-
sion 1.x of the simulator. A newer version of the simu-
lator, 2.x, has been made available. The di�erences in
the sensory information provided by the two versions are
given in this section. Calculations necessary to extend
the memory model are provided in the appendix.

2.1 Sensory Information

The simulator sends sensory information to the client
about the portion of the state that is visible or audible.
This information comes in two forms: visual and audi-



tory. Auditory information is just a message that was
spoken and from what direction the message came from.
This provides little information about the current state
since there's no simple way to determine who spoke the
message.
Visual information is provided as a list of objects with

their relative distance and angle from the client. Infor-
mation is only provided for objects within a 60 degree
arc from the direction the client is facing. Objects within
this arc will be referred to as visible objects, because
their exact position is given by the simulator. Objects
that the simulator provides information about are the
ball, other players, the two goals, the four 
ags at the
corners of the �eld, and the 
ags on the sides at mid-
�eld. For players, the amount of information describing
which player varies on how far the player is away. If the
player is close then both the team and number is pro-
vided. If the player is further away then only the team
is provided, and if very far away then no information is
provided.
This is a very limited amount of information, making

this domain highly inaccessible. There are many situa-
tions when most of the current state is not available to
the client. If there were no memory model at all, then
just turning away from the an object would cause the
client to completely forget where the object was. For
example, if the client receives a pass and then turns to
look for the goal, it no longer knows where the ball is and
won't be able to shoot. A memory model is essential for
overcoming the inaccessibility of the environment.
Version 2.x of the simulator provides additional infor-

mation to the client. At each step, the distance to the
boundary directly ahead, along with the relative angle of
the client's facing to that boundary line, is provided to
the client. This information is in addition to the infor-
mation described above. The memory model outlined in
this paper equally applies to the newer simulator. The
appendix provides calculations which use this added in-
formation to improve the memory model.

2.2 Client's Actions

The simulator receives actions from the client which de-
scribe what the client is doing. The possible actions for
a client are turn, dash, kick and say. The say command
cause the simulator to send an auditory message to the
other players with the details of the message. The other
three commands provides the client with the basic ac-
tions of playing soccer.
The turn command takes a parameter, which is the

amount of the turn, in the range of �180 to 180. The
result of the action is to cause the player to rotate ap-
proximately that amount. If the client is moving at the
time the amount of rotation is reduced. The dash com-
mand takes a power parameter in the range of �30 to
100, and causes the player to accelerate by the speci-
�ed amount in the direction the client is facing. Since
a dash causes an increase in velocity, the e�ects of dash
might continue a number of time steps after it was sent.
The �nal command is kick, which takes a power param-
eter between 0 and 100, and an angle between �180 and
180. If the ball is close enough to the player it causes

the player to kick the ball with the speci�ed power in
the speci�ed angle relative to the current direction the
client is facing.
The design of the simulator provides many di�cul-

ties that a client will need to deal with. The �rst of
these is that commands sent to the client or from the
client may be lost. There is no guarantee that any com-
mands that were sent were ever executed. A client has
to verify whether his commands were executed from the
sensory information that it receives. Another di�culty
is introduced with noise. Turn angles and kick angles
aren't perfect, and moving objects don't always move in
a straight line. Again, the client can't know this noise
and would have to observe it through the sensory infor-
mation it receives.

3 Memory Model

3.1 Structure of the Model

The memory model concentrates on the objects. There
are two di�erent classes of objects in the soccer domain
that must be handled di�erently. There are station-
ary objects whose global position do not change, and
there are mobile objects whose global position do change.
Both of these classes of objects need to be handled dif-
ferently. Mobile objects can move unpredictably when
not in view, so it is not always possible to accurately de-
termine where they are if they are not in view. However,
with the proper memory model, stationary objects can
be located even when not in view.
With velocity estimations, a crude estimate of mobile

objects' positions can be maintained. Since they have
their own motion, changes in their relative position could
be caused by either the client's motion or the motion of
the object. These two causes will need to be separated in
order to keep an accurate estimate of a mobile object's
velocity.
For each object, an estimation of its position is stored

and updated. The position consists of its relative po-
lar coordinates, the same information that the simulator
sends to the client for visible objects. Since this stored
position is an estimate and we want it to apply to ob-
jects that aren't visible, we need to store something that
describes the accuracy of the estimation. We do this
by storing a probability, which is the con�dence in the
estimate. When the memory receives position informa-
tion from the simulator, we assign it a con�dence of one.
If the object is not currently visible then it will have a
con�dence of less than one.
Audio sensory information complicates this slightly.

Since audio information gives us information on an ob-
ject's direction but not its distance, it is possible to have
a di�erent con�dence in the object's direction than its
distance. So we must store separate probabilities for di-
rection and distance.

3.2 Updating the Model

We now assume that we have an accurate model of the
state, and we've received some sensory input from the
simulator for the next time step. We have to update our
model to account for this input. We divide this update



into two stages depending on what caused the changes
to the model. First, we update the model for internal
changes, those that are caused by the client (e.g. turn-
ing and dashing have a large impact on the model since
the positions that are stored are relative to the client.)
Second, we update the model for external changes, those
that are not directly caused by the client (e.g. the mo-
tion of the ball and other clients.)

Internal Changes

In trying to estimate the changes to the model caused
by the actions of the client, we want to avoid depending
on the actions the client sent to the simulator. There
is a number of reasons for this. First, we can't be sure
the simulator ever received the commands. They might
have gotten lost or delayed in the network. Second, the
simulator is nondeterministic. It adds some amount of
noise to the client's actions so that the client's commands
don't have exact e�ects. Finally, dashes continue to af-
fect the client a number of steps after the command was
given. In order to account for this we would have to
replicate the physics model that the simulator is using.
But this unnecessarily ties the client's performance to
a speci�c simulator model. Instead, we want the client
to observe the e�ects of its own actions, and update its
memory model based on the objects that are visible.
There are three possibilities of how the model is up-

dated, depending on how many stationary objects are
currently visible. If two or more objects are in view, then
there's enough information to triangulate the client's
current global position and angle and use that to deter-
mine the relative position of all stationary objects. Be-
cause this can be a costly calculation, this is only done if
the overall con�dence in the model is below some thresh-
old. The calculations used to perform the triangulation
is given in appendix A.1.
The other end of the spectrum is when there are no

visible stationary objects. This situation is rare in the
robotic soccer domain and only occurs when the client
is very close to the �eld bounds. In this case, we have
absolutely no information from the simulator as to the
e�ects of our actions. Instead, we resort to a crude es-
timation of the client's movement from the actions it
performed. We assume that turns were exact and ignore
dashes, since their e�ects are di�cult to estimate. This
doesn't result in a very accurate estimation, but this case
is rare, and it does give a good enough prediction for the
client to recover.
The above two cases are the extremes, and the major-

ity of the time only one stationary object will be visi-
ble. In this case, we don't have enough information to
get an exact measurement from triangulation, but we
do have enough information that we don't have to make
uninformed guesses. We know how one object's position
changed because of the client's actions. From this, we
need to estimate the movement of the client and then
apply this to the other objects that aren't visible.
Since we don't have enough information to determine

the change exactly, we'll have to make some assumptions,
which will allow us to make an accurate estimation. The
�rst assumption is that the client will always turn be-
fore dashing. This assumption is a good one, since we

can actually control this in the client's behavior. The
second assumption is that all motion is in the direction
the client is facing. It turns out that the simulator being
used obeys this assumption. The result of these two as-
sumptions is that the object's current facing is the same
direction as its last movement. This now allows us to
compute the rotation and translation of the client.
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Figure 1: Estimating motion from the change in position
of one object. (a) is an example position and facing
for the client at two time steps, and the position of a
marker to be used to calculate the client's rotation and
translation. (b) this same diagram is labelled with the
values used for the calculation.

From �gure 1, we know the values �0, �1, r0, and r1.
We want to calculate d� and dr, which corresponds to
the client's rotation and translation, respectively. By our
assumptions, we know that the line segment, e, is shared
by two triangles: one whose opposite vertex is the client
at t = 0 and the other at t = 1. These assumptions allow
the following calculation.

e = r1 sin �1

� = sin�1
�

e

r0

�


 = � � ((� � �1) + �) = �1 � �

d� = �� �0

dr = r1
sin 


sin�

The above calculation assumes that the object that
we are using to estimate our movement has been visible
for the previous two time steps. This assumption is not
necessary. The same calculation can be carried out us-
ing the estimation for the position of the object in the
previous time step. In this case there is a con�dence in
our estimation of the client's movement, which is just
our con�dence in the object's previous position.
Using this method of calculating the client's own ro-

tation and translation, we can then update all other ob-
jects, including mobile objects, for the motion of the
client. The calculations used to do this update is given
in appendix A.2.



External Changes

We've described how the memory is updated for changes
to the state caused by the client itself. There are also
changes to the state caused by other players and momen-
tum, which only a�ect the position of mobile objects
As mentioned above, the client can never be sure what

a mobile object is doing when it is out of view. But in
reality, when something moves out of our �eld of vision
we can, for a period of time, be con�dent that the object
is in the direction that it left our view. This is the kind
of behavior that the memory model should have. In or-
der to implement this, an estimation of the velocity of
mobile objects needs to be stored. This is simply done
by storing the di�erence in position between the current
and previous time step. We factor out the change in rel-
ative position caused by the motion of the client itself
using the calculation from the previous section. With
an estimation of velocity for each object, we just assume
that objects that aren't visible maintain the same veloc-
ity and update their position to account for it.

Overview

The procedure for updating the memory given some new
sensory input is summarized below.

1. Determine client's own e�ect on the state. Method
depends on the number of visible stationary objects.

� None. Make a coarse guess based on the client's
actions.

� Two. Triangulate its global position on the
�eld.

� One. Estimate its e�ect on the state.
(a) Use the change in the object's position to

calculate the actual amount of rotation and
translation.

(b) Use the estimation to update the unseen ob-
jects in the model.

2. Update unseen mobile objects based on their last
observed velocity.

4 Testing and Results

Two experiments were conducted to determine the e�ec-
tiveness of this new memorymodel. The �rst experiment
examined its advantages in the situation of a free ball,
where two opposing players would race to gain control
of a ball in the open �eld. The second experiment exam-
ined the accuracy of the model. In both experiments the
predictive model was compared against a simple model
that was being used previously. The tests were designed
to verify that the memory model accurately maintains
the positions of stationary objects relative to the client,
even when they are out of view.

4.1 Simple Model

The memory model that was developed was compared
with a very simple memory model, which ignores the the
inaccessible aspects of the state. This memory stores the
positions of all objects that are visible. In order for the
model to be useful at all, the client must at least be able
to turn away from an object (e.g. the ball) while look-
ing for another object (e.g. the goal). This was done

by adding the capability for the model to remember the
position of objects when the client turns, by simply up-
dating their position by the exact amount of the turn. If
the client dashes then the positions of all the objects are
forgotten and only the position of the newly visible ob-
jects are known. This is the simplest model for memory
that provides enough functionality to be usable by the
client.

4.2 Client Behavior

The behavior of the client for these tests was very simple.
In essence, the client would chase after the ball, and
upon reaching it would kick it at its goal. A low-level
description of what the client would do at each time step
is given below.

1. Query the memory for the position of the ball. If
its not known then look for it.

2. If the ball is close enough to be kicked then:

(a) Query the memory for the location of the goal.
If its not known then look for it.

(b) Kick the ball toward the goal.

3. If the ball is not close enough to be kicked then dash
toward it.

Player

Ball

Player

Figure 2: The soccer �eld used by the simulator. The
boxes mark out where the players and ball were placed
for the free ball experiment.

4.3 Free Ball

The �rst test was to simply have two clients, one using
the simplememorymodel and the other using the predic-
tive model, compete for a free ball. The ball and players
were independently placed in random positions on the
�eld. The range of positions for the players and ball is
shown graphically in �gure 2. The distance of players
to the ball ranged from about one �fth to a half of the
length of the �eld. After placing the players, there was
a few seconds delay to allow the players to face the ball.
The players were then released and it was then recorded
to which side of the �eld the ball was kicked. Since both
players were trying to kick to opposite goals, this would



measure which was more e�ective at gaining control of
the loose ball.
It was expected that the predictive model would out-

perform the simpler approach, since the predictive model
would not have to take the time to turn and face the
goal, before shooting the ball. The results of 2500 trials
is shown in table 4.4, and corresponds with our expec-
tations.

4.4 Accuracy

A second test was conducted to verify that the predictive
memory was keeping an accurate model of the �eld. This
was done by allowing the client to perform the same loose
ball trial, but without the opposing player. The client
would then dash for the ball unhindered, and kick it at
the goal. The accuracy of the shot was then measured as
the distance of the ball as it crossed the goal line from
the center of the goal. For this experiment, the noise
factor in the motion of the ball was removed, so that the
raw accuracy of the memory model could be measured.
It was expected that the simple memory would be more
accurate since it is facing the goal when it shoots, while
the predictive memory won't have seen the goal since it
started dashing towards the ball. The results, though,
were surprisingly close. They are shown in table 4.4.
The results are given as a fraction of the size of the goal
mouth.

4.5 Results

From the results of these tests we conclude that the
predictive memory model gives substantial gains in the
client's awareness of the state of the environment. There
is a tradeo� with accuracy, though, it is quite small.
Testing was restricted to client behaviors that would
work well for both memorymodels, in order to isolate the
e�ects of the memory from the behavior. This restric-
tion makes it di�cult to show the real advantage of the
predictive model, which is the possibilities for advanced
behaviors.

5 Conclusion

The tests demonstrate that an e�ective and accurate
memory model can be developed for inaccessible envi-
ronments. The model uses a probabilistic approach and
crucial assumptions to provide a predictive aspect to
model the unseen parts of the state. The model consider-
ably outperformed a simpler approach with only a small
loss in accuracy. As mentioned before, even though this
model was designed and tested using the older version
of the simulator, equations are provided in the appendix
that use the added information of the simulator. These
equations, coupled with the descriptions throughout this
paper, should allow other researchers to implement our
memory model for use in the Soccer Server system.
Further research in this area could look at apply-

ing learning techniques to the predictive aspects of the
model. The client could learn the e�ects of actions and
apply it to situations where there is no information for
prediction (i.e. situations when there are no markers vis-
ible.) Other research could focus on designing behaviors
for the clients, which take advantage of the model.
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A Auxiliary Calculations

A.1 Triangulation

(XA; YA); (XB; YB) = Global Cartesian coords. of two markers

(known)

(xA; yA); (xB; yB) = Relative Cartesian coords. of two markers

(known)

(rA; �A); (rB ; �B) = Relative polar coords. of two markers

(known)

(XC; YC) = Global Cartesian coords. of client

(unknown)

dx = xB � xA

dy = yB � yA

dX = XB �XA

dY = YB � YA

� = tan�1
�
dy

dx

�

� = tan�1
�
dY

dX

�
� = �+�

XC = XA + rA cos(�� �A)

YC = YA + rA sin(�� �A)

A.2 Update for Client's Actions

(r0; �0) = Old relative polar coordinates of object (known)

(x0; y0) = Old relative Cartesian coordinates of object (known)

(dr; d�) = Translation and rotation of client (known)

(r1; �1) = New relative polar coordinates of object (known)

�1 = �0 + d�

x1 = r0 sin �1

y1 = r0 cos �1 + dr

r1 =
p
x2
1
+ y2

1



Results Trials Simple Memory Predictive Memory
Free ball successes 2500 645 1855
Free ball percentage 2500 25.8% 74.2%
Accuracy (mean error) 1500 0.22 0.30

Table 1: The tabulated results. Accuracy is given as the fraction of the size of the goal mouth.

B Calculation for Version 2.x

Version 2.x of the Soccer Server provides some additional
sensory input to the client. The client can always ignore
the extra information and proceed as described above.
However, it can use the additional sensory information
to improve its memory model.
As sensory input, the client receives the relative angle

of a boundary line. From this angle and the knowledge of
which line, the global angle of the client can be computed
and known exactly at any moment. This additional piece
of information can be used to improve our model of the
�eld. Using the same assumptions, we can now perform
triangulation when only one marker is in view. Now
the only case requiring estimation is when there are no
markers in view.
When a marker is visible, the client's rotation and

distance travelled can be calculated as follows. From
the previous time step we know the relative position of
the markers along with the distance and direction of the
boundary line for the current and previous time step.
Since we always can calculate global angle, the client's
rotation is simple to compute, but distance travelled is
more di�cult. The diagram and associated calculation
for distance is given below.

1

d 0

θ

ϕ

t=0

t=1

α

r0

1d

0

(r0; �0) = Old relative polar coordinates of object on the boundary line (known)

�1 = New relative angle of boundary line (known)

d1 = New distance to boundary line (known)

� = Distance moved (unknown)

� = � � �1 � �0

d0 =
sin �

sin �1
r0

� = d0 � d1


