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Abstract A longstanding goal of artificial intelligence is to create artificial
agents capable of learning to perform tasks that require sequential decision
making. Importantly, while it is the artificial agent that learns and acts, it is
still up to humans to specify the particular task to be performed. Classical
task-specification approaches typically involve humans providing stationary
reward functions or explicit demonstrations of the desired tasks. However,
there has recently been a great deal of research energy invested in exploring
alternative ways in which humans may guide learning agents that may, e.g.,
be more suitable for certain tasks or require less human effort. This survey
provides a high-level overview of five recent machine learning frameworks that
primarily rely on human guidance apart from pre-specified reward functions or
conventional, step-by-step action demonstrations. We review the motivation,
assumptions, and implementation of each framework, and we discuss possible
future research directions.

Keywords Learning from demonstration · Imitation learning · Reinforce-
ment learning · Human feedback · Hierarchical learning · Imitation from
observation · Attention

Ruohan Zhang1∗

E-mail: zharu@utexas.edu
Faraz Torabi1∗

E-mail: faraztrb@utexas.edu
Garrett Warnell2

E-mail: warnellg@cs.utexas.edu
Peter Stone1,3

E-mail: pstone@cs.utexas.edu
∗Contributed equally to this work
1Department of Computer Science, The University of Texas at Austin
2U.S. Army Research Laboratory
3Sony AI



2 Ruohan Zhang et al.

1 Introduction

Artificial agents require humans to specify the tasks they should perform. With
respect to artificial learning agents in particular, humans must provide some
specification of what the agent should learn to perform. One method by which
humans typically provide this specification is by designing a stationary reward
function. This function provides a reward to the agent when it correctly per-
forms the desired task and, perhaps, punishment when the agent does not.
Artificial learning agents may then approach the task-learning process using
reinforcement learning (RL) techniques (Sutton and Barto, 2018) that seek
to find a policy (i.e., an explicit function that the agent uses to make deci-
sions) that allows the agent to gather as much reward as possible. Another
popular way in which humans specify tasks for artificial agents to learn is by
demonstrating the task themselves. Typically, this is accomplished by having
the human perform the task while the learning agent observes the actions
that the human takes (e.g., the human physically moving a robot arm). In
these cases, artificial agents may use approaches from imitation learning (IL)
(Schaal, 1999; Argall et al., 2009; Osa et al., 2018) in order to find policies
that allow them to perform the demonstrated task. Both paradigms described
above (i.e., RL and IL) have been used with remarkable success (Mnih et al.,
2015; Silver et al., 2016; Levine et al., 2016; Silver et al., 2017, 2018; Jader-
berg et al., 2019; Vinyals et al., 2019), especially when combined with deep
learning (LeCun et al., 2015) to solve challenging sequential decision-making
tasks.

While reward functions and explicit action demonstrations currently repre-
sent the most common ways in which humans specify tasks for learning agents,
recent years have seen a great deal of research energy devoted to studying al-
ternative ways in which humans might perform task specifications. In general,
these alternatives are focused on more diverse and creative ways of providing
input than the two methods described above, and so we explicitly refer to the
resulting types of input as human guidance. Because human guidance is less
direct compared to specified reward functions or explicit action demonstra-
tions, attempts to leverage it have led to several new research challenges in
the machine learning community.

There are many reasons for the recent interest in utilizing human guidance.
One reason is the relative ease with which several forms of human guidance
can be collected. For some tasks, it may be exceedingly difficult for a human
trainer to specify a reward function or provide an action demonstration since
both require some level of training and skill that the human may not possess.
However, it may still be possible for the human to guide the learning agent.
As an analogy from human learning, consider the sports coach that provides
guidance in the form of feedback on professional athlete performance. Even
though the coach typically can not explicitly demonstrate the skill to be per-
formed at the same skill or performance level as the athlete, their feedback
is often useful to the athlete. In these cases, the availability of guidance may
even help the learner achieve greater final task performance than if an action
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demonstration alone was provided. Another reason for the research commu-
nity’s interest in studying machine learning from human guidance lies in the
utility of human guidance as a supplemental training signal that can increase
the speed of task learning. That is, even in cases for which a reward signal or an
action demonstration is available, if the learning agent can leverage available
human guidance, the overall amount of time it takes to arrive at an acceptable
behavior policy can be greatly reduced compared to if the guidance had not
been used at all.

This survey aims at providing a high-level overview of recent research ef-
forts that primarily rely on human guidance as opposed to conventional reward
functions or step-by-step action demonstrations. We will define and discuss
learning from five forms of human guidance (Zhang et al., 2019), including
(1) evaluative feedback, (2) preferences, (3) high-level goals (hierarchical im-
itation), (4) demonstration sequences without actions (imitation from obser-
vation), and (5) attention. Though the approaches to be discussed vary with
regards to the trade-off between the amount of information provided to the
agent and the amount of human effort required, all have shown promising
results in one or more challenging sequential decision-making tasks.

2 Background

In this section, we provide background relevant to the rest of the paper. More
specifically, we first discuss Markov decision processes (MDPs), reinforcement
learning, and the notation used in this paper. We then provide a short review
of imitation learning.

2.1 Markov Decision Processes (MDPs)

A standard reinforcement learning problem is formalized as a Markov decision
process (MDP), defined as a tuple 〈S,A,P,R, γ〉 (Sutton and Barto, 2018),
where

– S is a set of environment states which encodes relevant information for an
agent’s decision.

– A is a set of agent actions.
– P is the state transition function which describes p(s′|s, a), i.e., the prob-

ability of entering state s′ when an agent takes action a in state s.
– R is a reward function. r(s, a, s′) denotes the scalar reward agent received

on transition from s to s′ under action a.
– γ ∈ [0, 1] is a discount factor that indicates how much the agent values an

immediate reward compared to a future reward.

As a concrete example, Atari Montezuma’s Revenge (Bellemare et al., 2013)
(Fig. 1) is one of the most challenging video games for reinforcement learning
research. The game has rich visual features, complicated game dynamics, and
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Fig. 1: Atari Montezuma’s Revenge is a challenging sequential decision-making
task that is widely used in reinforcement learning research. The problem is
modeled as a Markov decision process. In a typical reinforcement learning
setting, the agent needs to learn to play the game without any human guidance
purely based on the score provided by the environment.

very sparse rewards. Modeled as an MDP, the state is the game image frame,
or a stack of frames to capture temporal information. The agent controls the
avatar by choosing an action from a discrete set of actions at every timestep.
The agent receives the reward from the game engine in the form of game scores.
We will use this game as a running example throughout the survey.

Additionally, π : S × A 7→ [0, 1] is a policy which specifies the probability
distribution of selecting actions in a given state. The goal for a learning agent
is to find an optimal policy π∗ that maximizes the expected cumulative reward.
One could optimize π directly, while alternatively many of the algorithms are
based on value function estimation, i.e., estimating the state value function
V π(s) or the action-value function Qπ(s, a).

The state value function for a given policy π is defined as (Sutton and
Barto, 2018)

V π(s) = Eπ

[∑
t=0

γtR(st, at) | s0 = s

]
(1)

A corresponding action value function, Qπ(s, a), also exists and is given by

Qπ(s, a) = Eπ [R(st, at) + V π(st+1) | st = s, at = a] (2)

and the advantage function Aπ(s, a), is defined as

Aπ(s, a) = Qπ(s, a)− V π(s). (3)

The state value function V π(s) measures the expected cumulative reward to
be in a particular state s and following policy π afterward. The action-value
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function Qπ(s, a) defines the same quantity but for taking a particular action a
when in state s and following policy π afterward. The advantage function tells
us the relative gain (“advantage”) that could be obtained by taking a certain
action compared to the average action taken at that state (Wang et al., 2016).

Several successful RL algorithms that seek to estimate these quantities di-
rectly have been developed, including Q Learning (Watkins and Dayan, 1992)
and advantage actor-critic (see, e.g., Sutton and Barto (2018)). For example,
Q-learning seeks to learn the state-action value function for the optimal pol-
icy, Qπ

∗
(s, a), and the policy is then given by π∗(s) = arg maxaQ

π∗(s, a).
Nowadays, deep neural networks are often used as function approximators to
estimate and optimize π, V , and Q.

An important challenge in RL is to balance exploration vs. exploitation
when an agent selects its action. Exploration allows the agent to improve its
current knowledge. Exploitation chooses the greedy action to maximize re-
ward by exploiting the agents current knowledge. A simple strategy (ε-greedy)
chooses a random action with probability ε and chooses the greedy action (the
action with the highest Q value) with probability 1 − ε (Sutton and Barto,
2018). A more sophisticated strategy uses a Boltzmann distribution for select-
ing actions based on the current estimate of Q function (Sutton and Barto,
2018):

P (a|s,Q, τ) =
eQ(s,a)/τ∑

a′∈A e
Q(s,a′)/τ

(4)

where τ is a temperature constant that controls the exploration rate.

2.2 Imitation Learning

The learning frameworks surveyed in this paper are inspired by, an extension
of, or combined with traditional imitation learning algorithms. The standard
imitation learning setting (Fig. 2 and Fig. 4a) can be formulated as MDP\R,
i.e. there is no reward function R available. Instead, a learning agent (the
imitator) records expert (the demonstrator, could be a human expert or an
artificial agent) demonstrations in the format of state-action pairs {(st, a∗t )}
at each timestep, and then attempts to learn the task using that data.

One approach is for the agent to learn to mimic the demonstrated policy
using supervised learning, which is known as behavioral cloning (Bain and
Sommut, 1999). A second approach to imitation learning is called inverse re-
inforcement learning (IRL) (Abbeel and Ng, 2004) which involves learning
a reward function based on the demonstration data and learning the imita-
tion policy using RL with the learned reward function. These two approaches
constitute the major learning frameworks used in imitation learning. Compre-
hensive reviews of these two approaches can be found in Argall et al. (2009);
Hussein et al. (2017); Osa et al. (2018); Arora and Doshi (2018); Fang et al.
(2019). More recently, generative adversarial imitation learning (GAIL) (Ho
and Ermon, 2016) has been proposed, which utilizes the notion of generative
adversarial networks (GAN ) (Goodfellow et al., 2014).
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Fig. 2: In standard imitation learning, a human trainer demonstrates a se-
quence of actions, and the agent learns to imitate the trainer’s actions using
behavioral cloning, inverse reinforcement learning, or adversarial imitation.

Importantly, all of these approaches assume that (st, a
∗
t ) pairs are the only

learning signal to the agent and that both st and a∗t are available to the agent.
Unfortunately, access to the optimal actions, a∗t , is not always plausible, as the
task might be too complex for human demonstrators to perform. Therefore,
there has recently been a great deal of interest in the research community
in learning frameworks that utilize learning signals other than optimal action
information, and it is these techniques that we review in this survey. Before
doing so, however, we briefly describe the three IL frameworks described above,
i.e., (1) behavioral cloning (BC ), (2) inverse reinforcement learning (IRL), and
(3) generative adversarial imitation learning (GAIL).

2.2.1 Behavioral Cloning (BC)

Behavioral cloning (Pomerleau, 1989; Bain and Sommut, 1999) is one of the
main methods to approach an imitation learning problem. The agent receives
as training data both the encountered states and actions of the demonstrator,
then uses supervised learning techniques such as classification or regression to
estimate the demonstrator’s policy. This method is powerful in the sense that
it is capable of imitating the demonstrator without having to interact with
the environment, and it has been successfully applied in many application do-
mains. For instance, it has been used to train a quadrotor to fly down a forest
trail (Giusti et al., 2016). There, the training data consists of images of the
forest trail gathered by cameras mounted on a human hiker and labeled with
the actions (walking directions) that the human used. The policy is modeled as
a convolutional neural network classifier, and trained using supervised learn-
ing. In the end, the quadrotor managed to fly down the trail successfully. BC
has also been used in autonomous driving (Bojarski et al., 2016). The train-
ing data is acquired using a human demonstrator, and a convolutional neural



Leveraging Human Guidance for Sequential Decision-Making Tasks 7

network is trained to map raw pixels from a single front-facing camera di-
rectly to platform steering commands. After training, the vehicle was capable
of driving in traffic on local roads. BC has also been successfully used to teach
robotic manipulators complex, multi-step, real-world tasks using kinesthetic
demonstrations (Niekum et al., 2015).

One of BC’s major drawbacks is potential performance degradation due to
the well-studied compounding error caused by covariate shift (Ross and Bag-
nell, 2010; Ross et al., 2011), i.e., that training and testing data distribution
mismatch results in deviation of the learned behavior from the demonstra-
tion (Torabi et al., 2018a). Ross et al. (2011) proposed an interactive training
method to correct the shift called DAgger (Dataset Aggregation) which at-
tempts to bring the distribution of demonstration data closer to that of the
learned behavior. It does so by collecting demonstration data on the states
observed by the imitator at each iteration. Retraining the policy on the ag-
gregated dataset ultimately prevents the imitator from deviating from the
demonstration behavior.

2.2.2 Inverse Reinforcement Learning (IRL)

Inverse reinforcement learning (Abbeel and Ng, 2004; Ziebart et al., 2008) is
a second category of imitation learning. IRL techniques seek to learn a re-
ward function that has the maximum value for the demonstrated actions. The
learned reward function is then used in combination with RL methods to find
an imitation policy. To be more specific, most IRL algorithms first initialize a
random policy. Next, the agent executes that policy in the environment to col-
lect state-action data, and then the algorithms estimate the expert’s reward
function based on the data generated by the policy and the demonstration
data. Finally, standard RL algorithms are used to learn an optimal policy for
that reward function. The process of reward learning and policy learning is re-
peated until the agent policy becomes sufficiently close to the demonstrator’s
policy. Like BC techniques, IRL methods usually assume that state-action
pairs are available (Finn et al., 2016), and also that the reward is a function of
both states and actions. The algorithms developed in this category have shown
impressive results in a variety of tasks such as autonomous helicopter aerobat-
ics (Abbeel et al., 2010), robot object manipulation (Finn et al., 2016), and
autonomous navigation in complex unstructured terrains (Silver et al., 2010),
etc.

One major drawback of most algorithms developed for IRL is that at each
iteration, they have to solve a complete RL problem to find an optimal policy
given the currently estimated reward function which is computationally very
expensive. However, the learned policies are often more robust than the poli-
cies learned by BC algorithms as they do not suffer from the covariate shift
problem. This shift does not happen in the case of IRL because the agent can
interact with the environment while training and the distribution mismatch
diminishes during the process.
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2.2.3 Adversarial Imitation Learning

Recently an imitation learning algorithm, generative adversarial imitation
learning (GAIL) (Ho and Ermon, 2016), has been developed that alleviates
the IRL’s drawback just set forth. This algorithm directly learns the policy
given demonstration bypassing the optimal reward recovery. GAIL formulates
the problem of finding an imitating policy as that of solving the following
optimization problem:

min
π∈

∏ max
D∈(0,1)S×A

− λHH(π) + Eπ[log(D(s, a)]+

EπE
[log(1−D(s, a))] ,

(5)

where
∏

is the set of all stationary stochastic policies, πE is the demonstrator’s
policy, λH is a weight factor, H is the entropy function, and the discrimina-
tor function D : S × A → (0, 1) can be thought of as a classifier trained to
differentiate between the state-action pairs provided by the demonstrator and
those experienced by the imitator. The objective in (5) is inspired by the one
used in generative adversarial networks (GAN s) (Goodfellow et al., 2014). A
GAN system is trained in a competitive process: the generator tries to fool
the classifier while the classifier tries to distinguish the generated data from
the real data. This competitive training process makes both models do better
by trying to beat the other. In GAIL the associated algorithm can be thought
of as trying to induce an imitator state-action occupancy measure that is sim-
ilar to that of the demonstrator. π and D are often parameterized in practice
and that GAILseeks to find the saddle point of Eq. 5 by sequentially making
gradient steps with respect to the parametrization of D and π. Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015) is often used to update
the policy. Maximizing the entropy term H(π) follows the maximum causal en-
tropy IRL (Ziebart et al., 2008, 2010; Bloem and Bambos, 2014). The entropy
serves as a policy regularizer to account for the noise and suboptimality in the
demonstrated behavior (Ziebart et al., 2008). Even more recently, there has
been research on methods that seek to improve on GAIL by, e.g., increasing
sample efficiency (Kostrikov et al., 2019; Sasaki et al., 2019) and improving
reward representation (Fu et al., 2018; Qureshi et al., 2019).

2.3 Common Task Domains

Next, we introduce several sequential decision-making tasks that are com-
monly used today to test the algorithms discussed above. Before deep learn-
ing, sequential decision-making models and learning algorithms were often
confined to task domains with low dimensional state space such as 2D grid-
world and mountain car (Sutton and Barto, 1998). The emergence of deep
neural networks (LeCun et al., 2015) has enabled these models and algorithms
to solve significantly more challenging tasks. These tasks include Atari 2600
video games (Bellemare et al., 2013; Machado et al., 2018) in which the state
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space could be high-dimensional raw game images. The platform has 60 unique
video games that span a variety of dynamics, visual features, reward mecha-
nisms, and difficulty levels for both humans and AIs. Montezuma’s Revenge
(Fig. 1) is one of the most difficult games due to very sparse rewards. Hence
it is one of the most challenging games in terms of exploration.

Another example is robotic locomotion tasks using MuJoCo (Todorov et al.,
2012), a simulator with a physics engine and multi-joint dynamics to study
complex dynamical systems in contact-rich behaviors. It is the first full-featured
simulator designed from the ground up for the purpose of model-based opti-
mization, and in particular optimization through contacts (Todorov et al.,
2012).

Recently, much effort has been spent on moving from simulation to real-
world applications, from the navigation robots (e.g., TurtleBot (MacGlashan
et al., 2017)), robotic manipulators (e.g., Sawyer robot arm (Xu et al., 2018a)),
to autonomous driving vehicles (Yu et al., 2018). These are typically tasks
with high-dimensional state space at which humans are particularly good.
Examples of the tasks can be seen in Fig. 3. In some of the tasks such as
board games, reinforcement learning agents have already surpassed human
expert performance (Silver et al., 2016), and could perform even better without
human knowledge (Silver et al., 2017, 2018). For example, Silver et al. (2017)
have shown that a pure RL agent that learns to play Go by itself from scratch
can outperform an IL/RL hybrid agent (Silver et al., 2016) which first learns to
imitate expert human Go players’ moves. However, RL agents and algorithms
still face significant challenges in solving many of the tasks we discuss in this
survey.

3 Overview

Given the models and notations defined above, we now provide formal def-
initions of the five learning frameworks surveyed that leverage human guid-
ance. Diagrams that visualize the interactions between the human trainers, the
learning agents, and the task environment for imitation learning together with
these five learning frameworks can be found in Fig. 4. In (a) standard imitation
learning, the human trainer observes state information st and demonstrates
action a∗t to the agent; the agent stores this data to be used in learning later.
In (b) learning from evaluative feedback, the human trainer does not perform
the task, instead, he or she watches the agent performing the task, and pro-
vides instant feedback Ht on agent decision at in state st. In (c) learning from
human preference. The human trainer watches two behaviors generated by the
learning agent simultaneously and decides which behavior is more preferable.
In (d) hierarchical imitation, The high-level agent chooses a high-level goal gt
for state st. The low-level agent then chooses an action at based on gt and
st. The primary guidance that the trainer provides in this framework is the
correct high-level goal g∗t . Imitation from observation (e) is similar to stan-
dard imitation learning except that the agent does not have access to human
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(a) Atari Bowling (b) Atari Montezuma’s Re-
venge

(c) MuJoCo Ant

(d) Using TurtleBot for naviga-
tion and human-robot interac-
tion tasks, adapted from Mac-
Glashan et al. (2017)

(e) Simulated and real robot manipulation (table
clean-up), adapted from Xu et al. (2018a)

(f) Autonomous driving, adapted from Yu et al. (2018)

Fig. 3: Example sequential decision tasks that are commonly used in recent
research that leverages human guidance. The state spaces in these tasks are
typically high-dimensional, such as raw images and robot joints with multiple
degrees of freedom.
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demonstrated action – it only observes the state sequence demonstrated by
the human. Learning attention from humans (f) requires the trainer to pro-
vide attention information wt that indicates important task features to the
learning agent. For each learning framework, a summary and comparison of
selected papers surveyed can be found in Table 1.
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(a) Standard imitation learning (b) Evaluative feedback

(c) Learning from human preference (d) Hierarchical imitation

(e) Imitation from observation (f) Learning attention from human

Fig. 4: Human-agent-environment interaction diagrams of five learning frame-
works surveyed. These diagrams illustrate how different types of human guid-
ance data are collected, including information required by the human trainer
and the guidance provided to the agent. Note that the learning process of the
agent is not included in these diagrams. Arrow: information flow direction;
Dashed arrow: optional information flow. A: learning agent; E: environment;
st: the state at time t; at: agent action. (a) a∗t : human demonstrated action.
(b) Ht: human evaluative feedback on agent decision at in state st. (c) τ1 � τ2:
human trainer prefers agent behavior trajectory τ1 over τ2. (d) HA: a high-
level agent that chooses a high-level goal gt for state st; LA: a low-level agent
that chooses an action at based on gt and st; g

∗
t : high-level goal provided by

human. (e) Note that the human demonstrated action a∗t is not available to
the agent. (f) wt: human attention information.
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Paper Human guidance Task domain(s) On-line? Dataset? Section
Cederborg et al. (2015) evaluative feedback Pac-Man Yes No 4
Warnell et al. (2018) evaluative feedback Atari Bowling Yes No 4

Arumugam et al. (2019) evaluative feedback Minecraft Yes No 4
Saunders et al. (2018) evaluative feedback, actions 3 Atari games Yes No 4
Akinola et al. (2020) evaluative feedback simulated robot navigation Yes No 4

Christiano et al. (2017) preference 8 MuJoCo tasks, 7 Atari games Yes No 5
Sadigh et al. (2017) preference simulated driving Yes No 5
Ibarz et al. (2018) preference, actions 9 Atari games Yes No 5
Bestick et al. (2018) preference simulated and physical robot handover Yes No 5

Cui and Niekum (2018) preference simulated robot manipulation Yes No 5
Palan et al. (2019) preference, action simulated driving, Lunar Lander, Yes No 5

simulated and physical robot manipulation
Le et al. (2018) high-level and low-level actions Atari Montezuma’s Revenge, maze navigation Yes No 6

Andreas et al. (2017) high-level actions crafting, maze navigation, MuJoCo No No 6
Gupta et al. (2020) low-level actions simulated robot manipulation No No 6

Krishnan et al. (2017) low-level actions robot manipulation No No 6
Codevilla et al. (2018) high-level and low-level actions driving No Link 6

Xu et al. (2018a) high-level and low-level actions robot manipulation No No 6
Fox et al. (2019) high-level and low-level actions robot manipulation No Link 6

Torabi et al. (2018a) state MuJoCo No No 7
Liu et al. (2018) state MuJoCo, physical robot manipulation No No 7

Sermanet et al. (2018) state physical robot manipulation No Link 7
Torabi et al. (2018b) state MuJoCo No No 7
Yang et al. (2019) state MuJoCo No No 7
Palazzi et al. (2018) gaze driving No Link 8
Deng et al. (2019) gaze driving No Link 8
Liu et al. (2019) gaze, action driving No No 8
Xia et al. (2020) gaze, action driving No Link 8
Zuo et al. (2018) gaze, action non-verbal interaction No No 8
Li et al. (2018) gaze, action meal preparation No Link 8

Zhang et al. (2020b) gaze, action 20 Atari games No Link 8

Table 1: A comparison of selected papers surveyed. This table only includes
recent works that aimed to solve task domains with high-dimensional state
space. The “On-line” column specifies whether the learning is done on-line or
off-line, where on-line means that a human trainer must be available during
the agent’s learning process. “Dataset” indicates whether associated human
guidance data is published. If so the link to the dataset is provided.

4 Learning from Evaluative Feedback

We begin with one of the most natural forms of human guidance that have been
studied: evaluative feedback. Proposed paradigms for learning from evaluative
feedback typically involve human trainers watching artificial agents attempt to
execute tasks and those humans providing a scalar signal that communicates
the desirability of the observed agent behavior, as shown in Fig. 4b and 5.
Using this type of human guidance, the learning problem for the agent is that
of determining how to adjust its policy such that its future behavior becomes
more desirable to the human.

Evaluative feedback is an attractive form of human guidance due to the
relative ease with which humans can provide it. For example, for cases in which
the human trainer cannot provide a demonstration of the task (because, e.g.,
the task is too difficult), the human typically still knows what constitutes
good behavior and can therefore provide evaluative feedback. Moreover, even

https://github.com/carla-simulator/imitation-learning
https://github.com/BerkeleyAutomation/HIL-MT
https://sermanet.github.io/imitate/
https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=8
https://github.com/taodeng/CDNN-traffic-saliency
https://github.com/pascalxia/driver_attention_prediction
http://cbs.ic.gatech.edu/fpv/
https://zenodo.org/record/3451402
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Fig. 5: In learning from evaluative feedback, a human trainer watches the
agent’s learning process, and provides positive feedback for a desirable ac-
tion (jumping over the skull), and negative feedback for an undesirable action
(running into the skull).

when the human can provide a demonstration, providing additional evaluative
feedback during the learning process may allow the artificial agent to achieve
a task performance that exceeds that of the human demonstrator.

One of the main challenges faced by machines that seek to learn from
human-provided evaluative feedback is that of correctly interpreting the feed-
back signal. Indeed, several interpretations have been proposed by members of
the research community, each leading to a different type of machine learning
method. Typically, the particular feedback interpretation manifests as equat-
ing the feedback with a particular quantity derived from the RL setting. Here,
we group the proposed methods into two categories: those that assume the
feedback given communicates reward-like information, and those that inter-
pret the feedback as a value-like quantity.

4.1 Human Feedback as Reward

In the RL setting (a fixed MDP), a stationary reward function R : S ×A → R
is defined as a means by which to specify a fixed task. Due to this stationarity,
RL algorithms are able to seek policies that exhibit a notion of optimality with
respect to a statistic dependent upon this distribution. That is, RL algorithms
seek π∗ = arg maxπJ(π), where J(π) = Eπ [

∑
t γ

tR(st, at)] is well-defined.
The RL community has proposed several algorithms to accomplish this task,
including policy gradient techniques (Sutton et al., 2000) and actor-critic tech-
niques (Grondman et al., 2012).

Due to the success of RL, some researchers have proposed techniques for
learning from human feedback that interpret the feedback as the reward func-
tion itself (Isbell et al., 2001; Tenorio-Gonzalez et al., 2010). Intuitively, this
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interpretation amounts to assuming that the human feedback provides an in-
stantaneous rating of the agent’s current decision. For example, Pilarski et al.
(2011) propose a technique for learning from human feedback that uses the
feedback as the reward function in an actor-critic algorithm. During training,
the human trainer provides a positive (r = +0.5) or negative (r = −0.5) re-
ward to the learning agent. In the absence of a human-delivered reward, they
simply assume the feedback is neural (r = 0). For their experimental setting,
they find that the proposed algorithm can learn useful policies when the hu-
man feedback is consistent, but that policy quality degrades when the feedback
becomes inconsistent (i.e., becomes less stationary). Another such technique
is Advise (Griffith et al., 2013; Cederborg et al., 2015), in which the human
feedback is used as the reward signal in a policy-gradient-like algorithm. More
specifically, the probability of an action being a good action is:

Pc(a) =
C∆s,a

C∆s,a + (1− C)∆s,a
(6)

where ∆s, a is the difference between the number of “right” and “wrong” labels
that the human provided for action a in state s. Notably, this approach coarsely
takes human error into consideration using the C parameter. Let C denote the
probability that an evaluation of an action choice is correctly provided by the
human teacher (C = 0.5 is a random non-informative teacher, and C = 1 is a
flawless teacher) (Cederborg et al., 2015). Suppose Pq(a) is the probability of
selecting action a by an RL agent (e.g., according to Boltzmann distribution,
Eq. 4), the final policy during learning is determined using both Pc and Pq:

π(s, a) =
Pq(a)Pc(a)∑

a′∈A Pq(a
′)Pc(a′)

(7)

In this way the algorithm combines knowledge it learned from interacting with
the environment and knowledge it gained from human evaluative feedback.

4.2 Human Feedback as Value

Alternatively, several methods interpret the feedback signal as a value-like
quantity (Knox and Stone, 2009; MacGlashan et al., 2017). Intuitively, this
interpretation amounts to assuming that the human feedback provides a rating
of the agent’s current decision with respect to some forecast of future behavior.

One such technique is the TAMER algorithm (training an agent manually
via evaluative reinforcement) (Knox and Stone, 2009), in which it is assumed
that the human has in mind a desired policy πH , and the feedback given at a
time instant t, H(st, at) roughly corresponds to QπH (st, at) (defined in Eq. 2).
TAMER agents use supervised learning with all the feedback collected up to
time t to calculate the current estimate of H, Ĥ, e.g., through minimizing a
standard squared loss (Warnell et al., 2018):

Ĥ∗ = arg min
Ĥ

∑
t

[
Ĥ(st, at)−H(st, at)

]2
(8)
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Then the agent acts, in the next state, according to the policy

at+1 = arg max
a

Ĥ∗(st+1, a) (9)

in a fashion similar to Q Learning since we interpret Ĥ∗ as an approximation
for QπH . Because the TAMER algorithm interprets the human feedback to be
the value corresponding to a fixed (ideal) policy πH , the implicit assumption
made is that the feedback given is independent of the agent’s current policy
and depends only on the quality of an agents action selection. This type of
human feedback model is called policy-independent models.

Alternatively, we could have policy-dependent models in which the feedback
depends on the agents current policy. An action selection may be rewarded or
punished more depending on how often the agent would typically be inclined to
select it. For example, the human may greatly reward the agent for deviating
from its current policy to take a slightly better action (though this action may
still be sub-optimal), and stop rewarding this action as the agent consistently
adopts this action (MacGlashan et al., 2017). This phenomenon is known as
diminishing returns and is policy-dependent (MacGlashan et al., 2017). The
COACH (convergent actor-critic by humans) framework has leveraged the idea
of policy-dependent feedback and assumes instead that the human feedback
corresponds to the advantage (Eq. 3) for the current policy (MacGlashan et al.,
2017). Intuitively, the advantage function communicates how much better or
worse the agent’s behavior is when deviating from its current policy. Algo-
rithmically, COACH uses the feedback to replace the advantage function in
calculating the policy gradient in an advantage actor-critic algorithm. Note
that the human trainers do not need to provide feedback at every timestep
like other evaluative feedback approaches.

With the advent of deep learning, several researchers in the community
have recently begun attempting to use these techniques in the context of more
challenging, high-dimensional state spaces. For example, Warnell et al. (2018)
propose a technique that enables the use of TAMER for pixel-level state spaces
in Atari games. To overcome the difficulty faced by trying to learn functions
over such state spaces from sparse feedback, the authors propose to use a
combination of a pre-trained deep autoencoder for state representation and a
feedback replay buffer to allow for off-policy updates. Arumugam et al. (2019)
report that a similar approach is successful when applying COACH to pixel-
level state spaces. Aside from demonstrating the utility of learning from human
feedback algorithms in high-dimensional state spaces, Warnell et al. (2018)
also reported that agents trained using human-provided feedback ultimately
learned policies that outperformed that of the human trainers themselves. This
result would seem to support the hypothesis that the performance of agents
that can learn from human feedback is not capped by the trainer’s expertise to
perform the task. However, such performance could be affected by the trainer’s
expertise in providing evaluative feedback.
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4.3 Extensions and Outlook

Several extensions to the above algorithms have been proposed in the litera-
ture. Notably, several have studied combining human-provided evaluative feed-
back with existing reward functions (Cederborg et al., 2015; Knox and Stone,
2010, 2012; Arakawa et al., 2018) with the goal of augmenting reinforcement
learning. Saunders et al. (2018) look explicitly at situations in which humans
block catastrophic actions, and interpret these blocking actions as evaluative
feedback when learning in combination with an existing reward function. This
method is particularly useful for RL tasks that require safe exploration.

Evaluative feedback is usually communicated through button presses by
humans, some other works have sought to infer feedback signals from multi-
modal evaluative signals humans naturally emit during social interactions,
including gestures (Najar et al., 2020), facial expressions (Broekens, 2007;
Arakawa et al., 2018; Cui et al., 2020), electroencephalogram (EEG) based
brain waves signals (Xu et al., 2020; Akinola et al., 2020), and implied feed-
back when humans refrain from giving explicit feedback (Loftin et al., 2014;
Joachims et al., 2017). Other body-language and vocalization modalities not
aimed at explicit communication, such as tone of voice, subtle head gestures,
and hand gestures, could also be modeled and leveraged during training in
the future (Cui et al., 2020). Other works have looked at methods by which
to elicit more feedback from human trainers (Li et al., 2016b) or to explicitly
account for situations in which the human trainer may not be paying attention
(Kessler Faulkner et al., 2019).

Each of the algorithms presented above interprets human feedback in slightly
different ways, resulting in different policy update rules. Using synthetic feed-
back, MacGlashan et al. (2017) showed that the convergence of these algo-
rithms depends critically on whether the actual feedback matches the assumed
one. Critically, the nature of the feedback could potentially vary across tasks
and trainers. Loftin et al. (2016) has shown that instead of providing balanced
feedback, human trainers could be more reward-focused (provides explicit re-
wards for correct actions and ignore incorrect ones), punishment-focused, or
even inactive. Factors such as previous experience in training pets and feedback
from the agent can affect the trainer’s strategies (Loftin et al., 2016). Addi-
tionally, the nature of the feedback can be altered by the instruction given to
the trainers. For example, Cederborg et al. (2015) has shown that they can
manipulate the meaning of human trainer’s silence by differing the instructions
given: The trainers were told that their silence meant positive/negative to the
agent. Not surprisingly, the agent needs to adjust their interpretations of si-
lence accordingly to perform well (Cederborg et al., 2015). Therefore, these
factors need to be carefully controlled in practice. One potential future re-
search direction is to study methods that explicitly attempt to be robust to
many types of feedback or methods that attempt to infer the human feedback
type and adapt to that type in real time (Grizou et al., 2014; Loftin et al.,
2016; Najar et al., 2020).
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Fig. 6: In learning from human preference, the learning agent presents two
learned behavior trajectories to the human trainer, and the human tells the
agent which trajectory is preferable. Here the human trainer prefers trajectory
1.

5 Learning from Human Preference

The second type of human guidance we discuss is that communicated in the
form of a preference. As with evaluative feedback, for many tasks that we may
wish artificial agents to learn, it may be difficult or impossible for humans
to provide demonstrations due to challenges such as embodiment mismatch.
For example, consider control tasks with many degrees of freedom in which
the artificial agent exhibits non-human morphology, as are commonly present
in the MuJoCo environment (Todorov et al., 2012). Further, because of the
complexity of the state space, it may also prove difficult for humans to provide
fine-grained evaluative feedback on any particular portion of the behavior.

For such cases, some in the research community have posited that it is
more natural for the agent to query human trainers for their preferences, or
rankings, over a set of exhibited behaviors. This feedback can be provided
for a set of state or action sequences; however, it is much less demanding if
it is over trajectories as the trainer can directly evaluate outcomes. Here, as
shown in Fig. 4c and 6, we consider preferences over trajectory segments,
or sequences of state-action pairs: τ = ((s0, a0), (s1, a1), . . . ). Using this type
of human guidance, the learning problem is to learn a policy or an external
reward function from human preference.

Preference learning has long been a topic of interest in the research com-
munity. Previous works have used preferences to directly learn policies (Wilson
et al., 2012; Busa-Fekete et al., 2013), learn a preference model (Fürnkranz
et al., 2012), or learn a reward function (Wirth et al., 2016; Akrour et al.,
2014). A survey on these topics is provided by Wirth et al. (2017).

More recent works have extended previous preference-based learning meth-
ods to be compatible with deep RL. The goal is to learn a hypothesized latent
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human reward function, r(s, a) (as in IRL) from the communicated prefer-
ences (Christiano et al., 2017; Sadigh et al., 2017; Bestick et al., 2018; Cui
and Niekum, 2018). In Christiano et al. (2017), a pair of agent trajectories
approximately 1-2 seconds in duration is simultaneously presented to human
trainers to query for their preference. Under the model developed by Chris-
tiano et al. (2017), the probability of a human preferring a segment depends
exponentially on the total reward summed over the trajectory:

P [τ1 � τ2] =
exp

∑
r(s1t , a

1
t )

exp
∑
r(s1t , a

1
t ) + exp

∑
r(s2t , a

2
t )

(10)

This model provides a training objective that can be used to find the reward
function by minimizing the cross-entropy loss between the model’s prediction
and the human’s preferences. Since the targets to be evaluated are trajectories
instead of state-action pairs, the feedback is typically very sparse compared
to the amount of state-action data, resulting in a drastic reduction in human
effort. The amount of human feedback required can be as little as 1% of the
total number of agent actions (Christiano et al., 2017).

Preference learning problems are generally formulated as IRL problems.
Hence it is natural to integrate preference and action demonstration via a
joint IRL framework (Palan et al., 2019; Bıyık et al., 2020), with a nice in-
sight that these two sources of information are complementary under the IRL
framework: “demonstrations provide a high-level initialization of the human’s
overall reward functions, while preferences explore specific, fine-grained as-
pects of it” (Bıyık et al., 2020). Therefore they use demonstrations to ini-
tialize a reward distribution, and refine the reward function with preference
queries (Palan et al., 2019; Bıyık et al., 2020). Ibarz et al. (2018) takes a differ-
ent approach to combine demonstration and preference information, by using
human demonstrations to pre-train the agent. Further, they include demon-
stration trajectories when learning preferences, assuming human trajectories
are always more preferable than agent trajectories.

A key aspect of learning methods designed to leverage preferences is that of
query selection, i.e., the decision the agent makes regarding which trajectories
to query for the human’s preference. Christiano et al. (2017) select trajecto-
ries such that an ensemble of their learning models have the largest variance,
i.e., uncertainty, in predicting the human’s preference. Ideally, however, the
query should maximize the expected information gain from an active learning
perspective (Cui and Niekum, 2018), an important research challenge that is
closely related to preference elicitation (Zintgraf et al., 2018). Sadigh et al.
(2017) have shown that query selection can be done by actively synthesizing
preference queries. The reward learning procedure can be facilitated if selected
queries can remove the maximal amount of hypotheses in the space of possible
reward functions (Sadigh et al., 2017). Follow-up works have extended this
approach to batch-active methods (Biyik and Sadigh, 2018), using rankings
instead of pairwise comparisons (Bıyık et al., 2019), and modeling the reward
using more expressive models such as Gaussian processes (Biyik et al., 2020).
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Query selection in preference learning falls into the general active learning
paradigm and worth further investigation.

5.1 Extensions and Outlook

In learning from human preferences, the targets to be evaluated are trajectories
instead of state-action pairs as in learning from human evaluative feedback.
The advantage of evaluating trajectories is that the feedback is typically very
sparse, resulting in a drastic reduction in human effort. However, there are
two potential concerns in leveraging human preference. First, although the
amount of feedback is less, the time or cognitive efforts in watching the two
trajectories to make a preference choice could be more. Second, selecting the
optimal trajectory length is challenging. Shorter trajectories allow humans
to provide feedback of high granularity at the cost of more frequent human
interactions. From the human trainer’s perspective, the ideal trajectory length
should be subjective, meaning that human trainers could select and adjust
their preferred trajectory length during the training process. From the learning
agent’s perspective, the ideal length could also be adaptive, meaning that the
agent could adaptively adjust the trajectory length to query humans to receive
feedback of desired granularity.

Recent work by Bhatia et al. (2020) raised an important issue in preference
learning: the human preference could be multi-criteria in nature, i.e., different
behaviors are preferred under different criteria. For example, a driving policy
τ1 is preferred in terms of comfort, while τ2 is preferred when speed is the only
concern. Interestingly, a third policy τ3 which is a linear combination of τ1 and
τ2 may be preferred among all three when considering both criteria (Bhatia
et al., 2020). The authors propose a novel framework to solve this problem
by decomposing the single overall comparison and ask humans to provide
preferences along simpler criteria (Bhatia et al., 2020). The authors lay the
groundwork from a game-theoretic perspective but many questions are yet to
be answered.

6 Hierarchical Imitation

Many sequential decision-making tasks are hierarchically structured, meaning
that they can be decomposed into subtasks and solved using a divide-and-
conquer approach. As an example from behavioral psychology, case studies
with non-human primates have shown that fine-grained, low-level actions are
mostly learned without imitation. In contrast, coarse, high-level “programs”
learning is pervasive in imitation learning (Byrne and Russon, 1998). Program-
level imitation is defined as imitating the high-level structural organization
of a complex process, by observation of the behavior of another individual,
while furnishing the exact details of actions by individual learning (Byrne and
Russon, 1998), perhaps through reinforcement learning.
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Fig. 7: In hierarchical imitation, the basic idea is to have the human trainer
specify high-level goals. For example, red goal one is to reach the bottom of the
ladder. An agent will learn to accomplish each high-level goal by performing
a sequence of low-level actions potentially through reinforcement learning by
itself.

Therefore, an interesting form of guidance can be provided by asking hu-
man trainers to provide only high-level feedback on these tasks. Similar to
preference, this type of feedback also targets trajectory segments but is pro-
vided as choices of high-level goal in a given state, such as options1. Due to
the hierarchical structure of the task, the behavior trajectory can be natu-
rally segmented into options, instead of arbitrary segments in the preference
framework. As shown in Fig. 4d and 7, using this type of human guidance,
the learning problem for the agent is to learn a policy for choosing high-level
goals in addition to learning a policy for low-level action selection.

6.1 Simulated Agents

Le et al. (2018) has proposed a hierarchical guidance framework that assumes
a two-level hierarchy, in which a high-level agent learns to choose a goal g
given a state, while low-level agents learn to execute a sub-policy (option) to
accomplish the chosen goal (Fig. 4d). Note that an action to terminate the
current option needs to be added to the low-level agent’s action space, and
this termination action can be demonstrated by a human and learned by the
agent. Human trainers were asked to provide three types of feedback: 1) a

1 An option is a temporally extended action, or macro-action, which is composed of a
policy, a termination condition, and an initiation set (Sutton et al., 1999).
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positive signal if the high-level goal gt and low-level sub-policy at are both
correct; 2) the correct high-level goal if the chosen one is incorrect; 3) the
correct low-level action a∗t if the high-level goal was chosen correctly but the
low-level sub-policy is incorrect. At each level, the learning task becomes a
typical imitation learning problem, therefore conventional IL algorithms such
as behavioral cloning and DAgger (Ross et al., 2011) can be applied.

Perhaps the most exciting result comes from a hybrid of hierarchical imita-
tion learning and RL. One approach is to train the agent to choose high-level
goals via imitation learning, and let the agent learn low-level policies via RL
by itself. This approach was shown to be substantially more sample efficient
than conventional imitation learning. For example, Andreas et al. (2017) only
required humans to provide policy sketches which are high-level symbolic sub-
task labels. The policy of each subtask is learned by the RL agent on its own
and no longer requires human demonstration. A similar approach has been
shown to be successful on Atari Montezuma’s Revenge (Le et al., 2018). An-
other approach is to train both high-level and low-level policies via imitation
learning, then fine-tune them using RL later (Gupta et al., 2020).

6.2 Physical Robots

Compared to simulated learning agents, in physical robot learning safety and
sample efficiency are critical issues for IL and RL algorithms. Therefore, in-
corporating human prior knowledge through hierarchical task structuring to
make robot learning tractable has been long studied and implemented. The
classic approach is to define and represent the learning task at a more abstract
level using human knowledge. As an example, actions can be defined as high-
level goals such as “turn 90 degrees clockwise”, meanwhile fine-grained motor
commands that accomplish these goals can be handled by low-level controllers.
An early survey of previous robotic research on this topic is provided by Kober
et al. (2013).

In contrast to providing only high-level goals for simulated agents (Andreas
et al., 2017), in robotic tasks humans often need to provide low-level demon-
strations due to safety and sample efficiency concerns. The works that leverage
this type of demonstration can be roughly classified into segmentation-based or
non-segmentation-based approaches depending on whether the task hierarchy
is provided by humans.

In segmentation-based approaches, the task hierarchy is not provided,
hence the aim is to extract meaningful segments from the low-level demonstra-
tion trajectories. For example, in contrast to Andreas et al. (2017), Krishnan
et al. (2017) and Henderson et al. (2018a) set up the learning task in the oppo-
site way which attempts to discover high-level options from low-level demon-
stration data. In this setting, only low-level demonstrations are collected, the
options are latent variables of the trainer that can be inferred in a fashion
similar to Expectation Maximization (Krishnan et al., 2017). Similarly, other
methods aim to learn low-level primitives (Kipf et al., 2019; Sharma et al.,
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2018), latent conditioned policies (Hausman et al., 2017), goal-conditioned
policies (Gupta et al., 2020), or skills (Konidaris et al., 2012; Kroemer et al.,
2015) which meaningfully segment the low-level demonstrations. If informa-
tion about high-level goals is also provided, they can be used to help infer
meaningful segmentation boundaries. For example, Codevilla et al. (2018) has
successfully combined high-level navigation commands with low-level control
signals in a framework named conditional imitation learning for autonomous
driving tasks.

In contrast, the task hierarchy can be provided explicitly or implicitly to
eliminate the need for task segmentation. Humans can explicitly define the
task hierarchy and feed such information to the robots (Mohseni-Kabir et al.,
2015). Alternatively, humans can provide demonstrations subtask by subtask,
therefore options, subtasks, subprograms, subroutines, or individual skills are
learned first in isolation and then combined (Friesen and Rao, 2010).

A fixed, rigid task hierarchy has a poor ability to generalize. Recently, a
framework named neural programming (NTP) has been developed that can
decompose a demonstrated task into modular and reusable neural programs
in a hierarchical manner (Reed and De Freitas, 2015; Li et al., 2016a; Xu
et al., 2018a; Fox et al., 2018). The task hierarchy is only provided by humans
during the training phase until the agent has learned to do task segmentation
on its own. Neural programs are structured policies that perform algorithmic
tasks by controlling the behavior of a computation mechanism (Fox et al.,
2018). They are represented by neural networks that can learn to represent
and execute compositional programs from demonstrations (Reed and De Fre-
itas, 2015). The demonstration is still provided as low-level actions, the learn-
ing algorithm attempts to learn and reuse primitive network modules from
the demonstration. A task manager, which is often a trainable task-agnostic
network, decides which subprogram to run next and feeds task specification
to the next program. Training this high-level manager requires ground-truth
high-level task labels provided by human (Xu et al., 2018a). The low-level
policy is represented as a neural program that takes a task specification as its
input argument.

The benefit of this kind of hierarchical modular approach comes from the
observation that in many robotic tasks there are shared components, and a
learned task component (e.g., a particular skill) can often generalize across
tasks. In a multitask setting, learned task components can be transferred be-
tween tasks so the required human demonstration effort could be drastically
reduced (Fox et al., 2019; Xu et al., 2018b).

6.3 Extensions and Outlook

In some of the above robot learning works, asking humans to provide high-level
actions requires additional human effort. However, in physical robot experi-
ments, human annotation is often less costly and risky than demonstrations
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or teleoperations. If providing extra annotation can reduce the cost of using
physical robots, such extra effort is justified and desirable (Fox et al., 2019).

We have seen that humans can either provide low-level action demonstra-
tions, or high-level goals, or both types of guidance together. The choice that is
suitable for a particular task domain depends on at least two factors. The first
concern is the relative effort in specifying goals vs. providing demonstrations.
High-level goals are often clear and easy to be specified in tasks such as nav-
igation (Andreas et al., 2017). On the contrary in tasks like Tetris providing
low-level demonstration is easier since high-level goals are not easy to repre-
sent and be communicated. The second concern is safety and sample efficiency.
Only providing high-level goals requires the agents to learn low-level policies by
themselves through trial-and-error, perhaps with many more samples, which is
suitable for simulated agents but not for physical robots. Therefore in robotic
tasks, low-level action demonstrations are often required.

One way to further reduce human effort in hierarchical imitation learn-
ing is to leverage evaluative feedback. Evaluative feedback can be naturally
incorporated in the hierarchical imitation learning framework, in which hu-
man trainers provide evaluative feedback (yes or no) on either high-level or
low-level actions of the learning agent, an approach that has been partially
explored by Mohseni-Kabir et al. (2015) and (Le et al., 2018). Moreover, as
mentioned earlier, it is natural to extend hierarchical imitation to incorporate
human preferences over the outcome of options, instead of asking humans to
provide the correct option labels, as done in Pinsler et al. (2018).

Hierarchical imitation learning is naturally related to hierarchical reinforce-
ment learning (Sutton et al., 1999; Dietterich, 2000; Barto and Mahadevan,
2003), which is an active research field with its own exciting progress (Kulka-
rni et al., 2016; Bacon et al., 2017; Vezhnevets et al., 2017; Nachum et al.,
2018). Another closely related research field here is multi-agent reinforcement
learning (Ghavamzadeh et al., 2006) since the multi-agent setting implicitly
contains a two-level hierarchy: One at the individual agent’s level and the other
at the group level. For a recent survey on this topic, please see Hernandez-Leal
et al. (2019). A potential research direction is to leverage human guidance, in
the forms of demonstration or feedback, in the settings of hierarchical RL or
multi-agent learning systems. As we have seen in Le et al. (2018), a reasonable
starting point is to ask humans to demonstrate or evaluate high-level decisions.

7 Imitation from Observation

Imitation from observation (IfO) (Torabi et al., 2019d) is the problem of learn-
ing directly by observing a trainer performing the task. The learning agent
only has access to state demonstrations (e.g. in the form of visual observa-
tions) of the trainer (Fig. 4e and 8). Using this type of human guidance, the
learning problem for the agent is to learn a policy from the state sequences
demonstrated by the human.
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Fig. 8: In imitation from observation, the setting is very much like standard
imitation learning (Fig. 2), except the agent does not have access to the actions
demonstrated by the human trainer.

This framework is different from conventional imitation learning in the
sense that it eschews the requirement for action labels in demonstrations.
Removing this constraint enables imitating agents to use a large amount of
previously ignored available demonstration data such as videos on YouTube.
The ultimate goal in this framework is to enable agents to utilize the existing,
rich amount of demonstration data that do not have action labels, such as the
human guidance provided through online videos of humans performing various
tasks.

Broadly speaking, there are two major components of the IfO problem: (1)
perception, and (2) control.

7.1 Perception

Because IfO depends on observations of an expert agent, processing these
observations perceptually is extremely important. Previous works have used
multiple approaches for this part of the problem. One such approach is to
record the expert’s movements using sensors placed directly on the expert
agent (Ijspeert et al., 2011). Using these recordings, techniques have been
proposed that can allow humanoid or anthropomorphic robots to mimic human
motions, e.g., arm-reaching movements (Ijspeert et al., 2002; Bentivegna et al.,
2002), biped locomotion (Nakanishi et al., 2004), and human gestures (Calinon
and Billard, 2007). Another approach to the perception problem is that of
motion capture (Field et al., 2009), which typically uses visual markers on
the demonstrator to infer movement. IfO techniques built upon this approach
have been used for a variety of tasks, including locomotion, acrobatics, and
martial arts (Peng et al., 2018a; Merel et al., 2017; Setapen et al., 2010).
The methods discussed above often require costly instrumentation and pre-
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processing (Holden et al., 2016), and therefore cannot be used in conjunction
with more passive resources such as YouTube videos.

Recently, however, convolutional neural networks and advances in visual
recognition have provided promising tools to work towards visual imitation
where the expert demonstration consists of raw video information (e.g., pixel
color values) alone. Even with such tools, the imitating agent is still faced
with several challenges: (1) embodiment mismatch, and (2) viewpoint dif-
ference. Embodiment mismatch arises when the demonstrating agent has a
different embodiment from that of the imitator. For example, the video could
be of a human performing a task, but the goal may be to train a robot to do
the same. Since humans and robots do not look exactly alike (and may look
quite different), the challenge is in how to interpret the visual information such
that IfO can be successful. One IfO method developed to address this problem
learns a correspondence between the embodiments using autoencoders in a
supervised fashion (Gupta et al., 2018). The autoencoder is trained in such a
way that the encoded representations are invariant with respect to the embod-
iment features. Another method learns the correspondence in an unsupervised
fashion with a small amount of human supervision (Sermanet et al., 2018).
The second IfO perceptual challenge is the viewpoint difference that arises
when demonstrations are not recorded in a controlled environment. For in-
stance, the video background may be cluttered, or there may be a mismatch
in the point of view present in the demonstration video and that with which
the agent sees itself. One IfO approach that attempts to address this issue
learns a context translation model to translate an observation by predicting it
in the target context (Liu et al., 2018). The translation is learned using data
that consists of images of the target context and the source context, and the
task is to translate the frame from the source context to that of the target.
Another approach uses a classifier to distinguish between the data that comes
from different viewpoints and attempts to maximize the domain confusion in
an adversarial setting during the training (Stadie et al., 2017). Consequently,
the extracted features can be invariant with respect to the viewpoint.

IfO Control Algorithms

Model-based Model-free

Inverse Model Forward Model Adversarial Methods Reward-Engineering

Fig. 9: A diagrammatic representation of categorization of the IfO control
algorithm. The algorithms can be categorized into two groups: (1) model-based
algorithms in which the algorithms may use either a forward dynamics model
(Edwards et al., 2018) or an inverse dynamics model (Torabi et al., 2018a;
Nair et al., 2017). (2) Model-free algorithms, which itself can be categorized
into adversarial methods (Torabi et al., 2018b; Merel et al., 2017; Stadie et al.,
2017) and reward engineering (Sermanet et al., 2018; Gupta et al., 2018; Liu
et al., 2018).
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7.2 Control

Another main component of IfO is control, i.e., the approach used to learn the
imitation policy, typically under the assumption that the agent has access to
clean state demonstration data {st}. Since the action labels are not available,
this is a very challenging problem, and many approaches have been discussed
in the literature. Previously, this problem was referred to as trajectory tracking
where the goal was to follow a time parameterized reference (Yang and Kim,
1999; Aguiar and Hespanha, 2007). Most of the algorithms developed for tra-
jectory tracking do not involve machine learning at all and require the state
features and reference points to be well-defined such as joint angles, velocities,
etc. (Yang and Kim, 1999; Caracciolo et al., 1999). Therefore, it is not clear
how to directly scale these algorithms to visual imitation (imitating directly
from raw pixel data).

With the rise of deep learning, however, many new learning-based algo-
rithms have recently been proposed to tackle the IfO control problem. We
organize them here into two general groups: (1) model-based algorithms, and
(2) model-free algorithms. Model-based approaches to IfO are characterized
by the fact that they learn some type of dynamics model during the imitation
process. Most of these algorithms learn an inverse dynamics model which is a
mapping from state-transitions {(st, st+1)} to actions {at} (Hanna and Stone,
2017). The goal of these algorithms is to retrieve the missing demonstration
action labels. To do so, they interact with the environment, collect state ac-
tion data, and then learn an inverse dynamics model. Applying this learned
model on two consecutive demonstrated states would output the missing taken
action that had resulted in that state transition. After retrieving the actions,
the learning problem can be treated as a conventional imitation learning prob-
lem. Recently, many algorithms are developed with this high-level idea (Nair
et al., 2017; Torabi et al., 2018a; Pavse et al., 2020; Pathak et al., 2018; Guo
et al., 2019; Robertson and Walter, 2020; Jiang et al., 2020; Radosavovic et al.,
2020). Some other algorithms use forward dynamics model instead which is
a mapping from state-action pairs, {(st, at)}, to the next states, {st+1}. One
algorithm of this type is developed by Wu et al. [2020] in which a forward dy-
namics model is learned which is used to predict the future state of the agent
and then future state similarity is used to learn an imitation policy. There is
another algorithm (Edwards et al., 2018) that learns forward dynamics model.
This algorithm hypothesizes that the state transitions are caused by the ac-
tions taken by the agent. The actions are unknown and therefore the algorithm
considers a latent (unreal) action space and learns a policy in that latent space
that best describes the state transitions. Since the actions generated by this
learned policy are not real, next the agent takes a few interactions with the
environment to make corrections to the action labels. To be more specific, this
algorithm creates an initial hypothesis for the imitation policy by learning a
latent policy π(z|st) that estimates the probability of latent (unreal) action z
given the current state st. Since actual actions are not needed, this process
can be done offline without any interaction with the environment. To learn
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the latent policy, they use a latent forward dynamics model which predicts
st+1 and a prior over z given st. Then they use a limited number of environ-
ment interactions to learn an action-remapping network that associates the
latent actions with their corresponding correct actions. Since most of the pro-
cess happens offline, the algorithm is efficient with regard to the number of
interactions needed.

The other broad category of IfO control approaches is that of model-free al-
gorithms. Model-free techniques attempt to learn the imitation policy without
any sort of model-learning step. Within this category, there are two funda-
mentally different types of algorithms. One is adversarial methods which are
inspired by the generative adversarial imitation learning (GAIL) algorithm
described in Section 2.2. In GAIL, the goal is to bring the state-action dis-
tribution of the imitator close to that of the demonstrator. However, since in
IfO the imitator does not have access to the actions, the proposed algorithms
attempt to bring the state distribution (Merel et al., 2017; Henderson et al.,
2018a), or state transition distribution (Stadie et al., 2017; Torabi et al., 2018b,
2019b,c,a; Zolna et al., 2018; Sun et al., 2019; Yang et al., 2019; Chaudhury
et al., 2019) of the imitator close to that of the demonstrator. The overall
scheme of these algorithms is as follows. They use a GAN -like architecture in
which the imitation policy is interpreted as the generator. The imitation policy
is executed in the environment to collect data, {(sit, ait)}, and either the states
or the state transitions are fed into the discriminator, which is trained to dif-
ferentiate between the data that comes from the imitator and data that comes
from the demonstrator. The output value of the discriminator is then used as
a reward to update the imitation policy using RL. Another class of model-
free approaches developed for IfO control is that utilizes reward engineering.
Here, reward engineering means that, based on the expert demonstrations, a
manually designed reward function is used to find imitation policies via RL.
Importantly, the designed reward functions are not necessarily the ones that
the demonstrator used to produce the demonstrations—rather, they are sim-
ply estimates inferred from the demonstration data. Most of the algorithms of
this type use the negative of the Euclidean distance of the states of the imi-
tator and the demonstrator (or an embedded version of them) as the reward
at each time step (Kimura et al., 2018; Sermanet et al., 2018; Dwibedi et al.,
2018; Gupta et al., 2018; Liu et al., 2018, 2020). Another approach of this type
is developed by Goo and Niekum (2019) in which the algorithm uses a formu-
lation similar to shuffle-and-learn Misra et al. (2016) to train a neural network
that learns the order of frames in the demonstration. The network in a super-
vised fashion gets two observations and outputs a value between zero and one.
The closer the value to one, the higher the chance of observations being in the
right order. This neural network is then used as a surrogate reward function
to train a policy. Aytar et al. (2018) also take a similar approach, learning an
embedding function for the video frames based on the demonstration. They
use the closeness between the imitator’s embedded states and some checkpoint
embedded features as the reward function.
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7.3 Extensions and Outlook

Regarding the perception component of the IfO problem, adversarial training
techniques have led to several recent and exciting advances in the computer
vision community. One such advance is in the area of pose estimation (Cao
et al., 2017; Wang et al., 2019), which enables detection of the position and
orientation of the objects in a cluttered video through keypoint detection—
such keypoint information may also prove useful in IfO. While there has been
a small amount of effort to incorporate these advances in IfO (Peng et al.,
2018b), there is still much to investigate.

Another recent advancement in computer vision is in the area of visual
domain adaptation (Wang and Deng, 2018), which is concerned with trans-
ferring learned knowledge to different visual contexts. For instance, the recent
success of CycleGAN (Zhu et al., 2017) suggests that modified adversarial
techniques may be applicable to IfO problems that require solutions to em-
bodiment mismatch, though it remains to be seen if such approaches will truly
lead to advances in IfO.

Regarding the control component of the IfO problem, very few of the
mentioned IfO algorithms discussed have been successfully tested on physical
robots, such as Sermanet et al. (2018); Liu et al. (2018). That is, most dis-
cuss results only in simulated domains. For instance, while adversarial control
methods currently provide state-of-the-art performance for several baseline ex-
perimental IfO problems, these methods exhibit high sample complexity and
have therefore only been applied to relatively simple simulation tasks. Thus,
an open problem in IfO is that of finding ways to adapt these techniques
such that they can be used in scenarios for which high sample complexity is
prohibitive, i.e., tasks in robotics. Furthermore, there have been few works
investigating the combination of IfO with other learning frameworks (Brown
et al., 2019; Pavse et al., 2020; Schmeckpeper et al., 2020). There is room to
investigate how different types of learning paradigms could be incorporated in
IfO to improve the overall task learning performance.

8 Learning Attention from Humans

During the human demonstration or evaluation process, there are other useful
learning signals. One useful signal is human visual attention, which can be
treated as a form of guidance that reveals important task features to the
learning agent. For decision tasks with high-dimensional visual information
as input, humans visual attention is revealed by eye movements, i.e., gaze
behaviors. Gaze is an informative source of (1) important state features in
high-dimensional state space at a given time (2) the explanatory information
that reveals the target or goal of an observed action. For the former, since
human eyes have limited resolution except for the center fovea, humans learn
to move their eyes to the correct place at the right time to process urgent state
information. For the latter, knowing which visual object the human trainer
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Fig. 10: In learning attention from humans, the agent has access to human
attention information in addition to the action demonstrations. The eye move-
ment data indicated by the red circles here can be recorded by an eye tracker.
This data reveals the current behavioral goal (such as the object of interest,
e.g., the skull and the ladder) when taking an action.

looked at while making a decision can help to explain why a particular decision
was made. For these reasons, learning attention from humans could help a
learning agent extract useful features from a high-dimensional state space and
understand the underlying causes of a human trainer’s demonstrated action.
This approach has recently become very popular as learning agents migrate
from simple tasks to challenging sequential decision-making tasks with high-
dimensional inputs (Fig. 3).

The gaze data can be collected with an eye tracker while the human trainer
is demonstrating the task (Fig. 4f and 10). Recently, researchers have collected
human gaze and policy data for meal preparation (Li et al., 2018), Atari game
playing (Zhang et al., 2020b), human-to-human (non-verbal) interactions (Zuo
et al., 2018), and outdoor driving (Palazzi et al., 2018). Using this type of
human guidance, the learning problem for the agent is to learn the attention
mechanism from humans in addition to learning a decision policy.

8.1 Attention Learning

The first learning objective using these datasets could be training an agent
to imitate human gaze behaviors, i.e., learning to attend to certain features
of a given image. The problem was formalized as a visual saliency prediction
problem in computer vision research (Itti et al., 1998). Recently this area has
made tremendous progress due to deep learning as large-scale eye-tracking
datasets became available for images (Papadopoulos et al., 2014; Li et al., 2014;
Xu et al., 2014; Bylinskii et al., 2015b,a; Krafka et al., 2016), videos (Mathe
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and Sminchisescu, 2014; Wang et al., 2018), and 360-degree videos (Zhang
et al., 2018b; Xu et al., 2018c). Visual saliency is a well-developed field in
computer vision. We direct interested readers to recent review papers on the
topics of saliency evaluation metrics (Bylinskii et al., 2019), saliency model
performance analyses (Bylinskii et al., 2016; He et al., 2019) and a closely
related field called salient object detection (Borji et al., 2015).

In our context of sequential decision-making tasks, the saliency prediction
problem can be formalized as follows:

Given a state st, learn to predict human gaze positions wt, i.e., learn
P (w|s).

Note that wt could be a set of positions since the human can look at multiple
regions of the image. In practice, discrete human gaze positions are converted
into a continuous distribution (Bylinskii et al., 2019). So the agent should
learn to predict this probability distribution over the given image. This can
be done using supervised learning where Kullback-Leibler divergence can be
used as the loss function to calculate the difference between the ground truth
distribution P and predicted distribution Q (Bylinskii et al., 2019):

KL(P,Q) =
∑
i

∑
j

Q(i, j) log
(
ε+

Q(i, j)

ε+ P (i, j)

)
(11)

where i, j are pixels indices and ε is a small regularization constant and de-
termines how much zero-valued predictions are penalized. Recent works have
trained convolutional neural networks to accomplish this learning task (Li
et al., 2018; Zhang et al., 2020b; Palazzi et al., 2018; Deng et al., 2019; Chen
et al., 2020). Example gaze prediction results in the format of saliency maps
can be seen in Fig. 11. A notable challenge here is egocentric gaze prediction
in which the spatial distribution of the gaze is highly biased towards the image
center, a problem further addressed by Palazzi et al. (2018); Tavakoli et al.
(2019).

8.2 Decision Learning

In computer vision, traditional saliency prediction does not involve active tasks
nor human decisions. The humans look at static images or videos in a free-
viewing manner without performing any particular task and only the eye move-
ments are recorded and modeled. Meanwhile, the aforementioned datasets all
require humans to perform a task while collecting their gaze and action data.
From a decision-learning perspective, human attention may provide additional
information about their decisions, therefore it is intuitive to leverage learned
attention models to guide the learning process of human decisions. The learn-
ing problem can be formalized as follows:

Given a state st and human gaze positions wt, learn to predict human
action at, i.e., learn P (a|s, w).
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(a) Atari Ms.Pacman (b) Atari Seaquest

(c) Meal preparation

(d) Driving (e) Driving

Fig. 11: Learning attention from human in game playing (Zhang et al., 2018a),
meal preparation (Li et al., 2018), and driving (Palazzi et al., 2018). The
heatmaps show the agent’s prediction of human attention, represented as
saliency maps (probability distribution of attention) overlayed on the images.
Red indicates regions that have high predicted probability to be attended by
humans.

Intuitively, knowing where humans would look provides useful information
on what action they will take. To incorporate human attention into action
learning, there are at least three common methods: as an additional channel of
information, as a mask on the input to filter out unimportant information, or as
a secondary optimization objective. For example, in training a neural network,
the above methods correspond to concatenating a gaze map with the input
image, masking the input image with the gaze map, and adding gaze prediction
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as an auxiliary loss term in the objective function, respectively (Zhang et al.,
2020a). The most popular way is to treat the predicted gaze distribution of an
image as a filter or a mask. This mask can be applied to the image to generate
a representation of the image that highlights the attended visual features.

Experimental results have shown that including gaze information leads to
higher accuracy in recognizing or predicting human actions, in reaching (Ravichan-
dar et al., 2018), human-to-human interaction (Zuo et al., 2018), driving (Xia
et al., 2018; Liu et al., 2019; Chen et al., 2019; Xia et al., 2020), meal prepara-
tion (Li et al., 2018; Shen et al., 2018; Sudhakaran et al., 2019; Huang et al.,
2020), and video game playing (Zhang et al., 2018a, 2020b).

Once the agent has learned both the attention and decision models from
human data, it can perform the task on its own. It has been shown that in-
corporating a learned gaze model into imitation learning agents leads to a
large performance increase, comparing to agents without attention informa-
tion (Zhang et al., 2020b; Saran et al., 2020; Chen et al., 2020). For real-world
tasks like autonomous driving, it is reasonable to expect a similar improvement
when incorporating human attention models. Due to physical constraints and
safety reasons, this is yet to be explored but preliminary tests in simulated
environments are possible.

8.3 Extensions and Outlook

In general, human gaze is a good indicator of the underlying decision-making
mechanism, it bridges perception and decision-making by indicating the cur-
rent behavioral target. The gaze data can be collected in parallel with actions.
One concern with this approach is the hardware and software required to col-
lect human gaze data. Recent progress in computer vision has improved eye
tracker accuracy and portability by a significant margin. Appearance-based al-
gorithms using convolutional neural networks have been shown to have better
tracking accuracy and are more robust to visual appearance variations (Zhang
et al., 2015; Wood et al., 2015; Krafka et al., 2016; Shrivastava et al., 2017;
Zhang et al., 2017; Park et al., 2018), compared to more traditional approaches
like hand-crafted feature-based or model-based algorithms. Advanced tracking
software can estimate gaze in real-time from head poses and appearance with-
out specialized hardware on low-cost devices such as webcams (Papoutsaki
et al., 2016) and mobile tablets and phones (Huang et al., 2017; Krafka et al.,
2016).

Gaze data can be collected in parallel when providing other types of feed-
back, and potentially be combined with previously introduced learning meth-
ods. Saran et al. (2020) has shown that incorporating gaze information into
imitation from observation (IfO) and inverse reinforcement learning can lead
to a large performance increase in Atari games. Since attention is an interme-
diate mechanism between perception and action, it becomes very useful when
action information is missing in the case of IfO. In learning evaluative feedback
and preference, gaze data might reveal more information to the learning agent
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to explain why the human gives a particular evaluation. Attention learning is
closely related to hierarchical imitation, since gaze is a good indicator of the
current high-level behavioral goal which might help an imitator to infer this
goal. However, the problem of inferring behavioral goals from human attention
needs to be solved first.

9 Conclusion and Future Directions

In this survey, we have provided a literature review of progress in leveraging
five different types of human guidance (i.e., human inputs that do not involve
explicitly defining a reward function or providing an action demonstration) to
solve sequential decision-making tasks. In particular, we discussed techniques
that have been proposed in the literature that learn from human-provided
evaluative feedback, preference, goals, action-free demonstrations, and atten-
tion. In each section above, we have discussed future research directions for
each approach. Here we briefly discuss several issues and associated potential
research questions that are common to all the approaches that leverage human
guidance as learning signals.

9.1 Shared Datasets and Reproducibility

In general, researchers collect their own human guidance data. However, this
type of data is often expensive to collect. An effort that could greatly facili-
tate research in this field is to create publicly available benchmark datasets.
Collecting and reusing such datasets may be difficult for some interactive learn-
ing methods, in which the guidance (such as evaluative feedback) depends on
the changing policy as it is being learned. But, for other approaches, data
can be collected in advance and shared. In Table 1 we provide links to exist-
ing datasets that are publicly available. Another concern is reproducibility in
RL (Henderson et al., 2018b). When collecting human guidance data, factors
such as individual expertise, experimental setup, data collection tools, dataset
size, and experimenter bias could introduce large variances in the final perfor-
mance. Therefore, evaluating algorithms using a standard dataset could save
effort and assure a fair comparison between algorithms.

9.2 Understanding Human Trainers

Leveraging human guidance to train an agent naturally follows a teacher-
student paradigm. Much effort has been spent on making the student more
intelligent. However, understanding the behavior of human teachers is equally
important. Thomaz and Breazeal (2008) pioneered the effort in understanding
human behavior in teaching learning agents. As RL agents become more pow-
erful and attempt to solve more complex tasks, the human teachers’ guiding
behaviors could become more complicated and require further study.
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Studying this aspect of human behavior, especially the limitations of hu-
man teachers, allows one to design a teaching environment that is more ef-
fective and produces more useful guidance data. Amir et al. (2016) studied
human attention limits while monitoring the learning process of an agent and
proposed an algorithm for the human and the agent to jointly identify states
where feedback is most needed to reduce human monitoring cost. Ho et al.
(2016) showed the differences in behavior when a human trainer is intention-
ally teaching (showing) versus merely doing the task. They found that humans
modify their policies to reveal the goal to the agent when in the showing mode
but not in doing mode. They further showed that imitation learning algo-
rithms can benefit substantially more from the data collected in the showing
mode (Ho et al., 2016). An important factor to consider is the human trainer’s
knowledge of the task. Laskey et al. (2016) have shown that using a hierarchy
of human supervisors with different expertise levels can substantially reduce
the burden on the experts.

Understanding the variations in human guidance signals allows algorithms
to learn more effectively. We have already seen the debate on how to interpret
human evaluative feedback in complex tasks. A helpful way to resolve this
debate is to conduct human studies with diverse subject pools to investigate
whether real-life human feedback satisfies their algorithmic assumptions and
what factors affect the human feedback strategy (Cederborg et al., 2015; Loftin
et al., 2016; MacGlashan et al., 2017).

9.3 An Interactive Paradigm

The best learning results often come from an interactive teaching and learning
process in a teacher-student paradigm which involves active instruction by the
human and active learning by the agent. Two factors justify an interactive
learning paradigm in our context: (1) We only have a partial understanding of
human guidance behaviors; and (2) the nature of human guidance may vary
during training according to the behaviors of the learning agents. As shown
by Cooperative IRL (Hadfield-Menell et al., 2016), an iterative and interactive
learning process can greatly enhance learning. Therefore the same idea may
benefit the process of learning from human guidance as well.

For evaluative feedback, we have seen a debate on how we interpret human
feedback. We have also seen methods that are robust to many types of feedback
or that can infer and adapt to different human feedback types (Grizou et al.,
2014; Loftin et al., 2016; Najar et al., 2020). However, perhaps an alternative
is to allow the agent to actively query humans for a certain type of feedback
that best informs the agent. Learning from human preference is naturally an
interactive process when the learning agents actively query for human pref-
erences as we have discussed. Additionally, the aforementioned challenge of
selecting optimal trajectory length for query likely requires two-way commu-
nication between the human and the agent. In hierarchical imitation, imitation
from observation, and attention learning we rarely see examples of interactive
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learning (Mohseni-Kabir et al., 2015), since the human data is often collected
off-line (see Table 1) before training as in standard imitation learning. From
DAgger (Ross et al., 2011) it is clear that interactive training can also ben-
efit imitation learning, however, making the three learning paradigms above
interactive remains to be explored.

9.4 A Unified Learning Framework

The learning frameworks discussed in this paper are often inspired by real-life
biological learning scenarios that correspond to different learning stages and
strategies in lifelong learning. Imitation and reinforcement learning correspond
to learning completely by imitating others and learning completely through
self-generated experience, where the former may be used more often in the
early stages of learning and the latter could be more useful in the late stages.
The other learning strategies discussed are often mixed with these two to allow
an agent to utilize signals from all possible sources. For example, it is widely
known that children learn largely by imitation and observation (Bandura et al.,
1961) at their early stage of learning. Then the children gradually learn to de-
velop joint attention with adults through gaze following (Goswami, 2008).
Later children begin to adjust their behaviors based on the evaluative feed-
back and preference received when interacting with other people. Once they
developed the ability to reason abstractly about task structure, hierarchical
imitation becomes feasible. At the same time, learning through trial and error
from reinforcement is always one of the most common types of learning (Skin-
ner, 1938). The human’s ability to learn from all types of resources continue to
develop through a lifetime. We have compared these learning strategies within
an imitation and reinforcement learning framework. Under this framework, it
is possible to develop a unified learning paradigm that accepts multiple types
of human guidance. We start to notice efforts towards this goal (Abel et al.,
2017; Waytowich et al., 2018; Goecks et al., 2019; Woodward et al., 2020;
Najar et al., 2020; Bıyık et al., 2020).

In conclusion, the goal of this survey is to serve as a high-level overview
of five recent learning frameworks that leverage human guidance to solve se-
quential decision-making tasks, especially in the context of deep reinforcement
learning. We compare and contrast these frameworks by reviewing the moti-
vation, assumption, and implementation of each framework. We hope this will
allow researchers in the related areas to see the connections between the works
being surveyed, and inspire more research to be done in this field.
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