
g () / /

ATTac-2000: An Adaptive Autonomous Bidding Agent

Peter Stone pstone@research.att.com

Michael L. Littman mlittman@research.att.com

AT&T Labs Research, 180 Park Avenue

Florham Park, NJ 07932 USA

Satinder Singh satinder.baveja@syntekcapital.com

Michael Kearns michael.kearns@syntekcapital.com

Syntek Capital, 423 West 55th Street

New York, NY 10019 USA

Abstract

The First Trading Agent Competition (TAC) was held from June 22nd to July 8th,
2000. TAC was designed to create a benchmark problem in the complex domain of e-
marketplaces and to motivate researchers to apply unique approaches to a common task.
This article describes ATTac-2000, the �rst-place �nisher in TAC. ATTac-2000 uses a princi-
pled bidding strategy that includes several elements of adaptivity . In addition to the success
at the competition, isolated empirical results are presented indicating the robustness and
e�ectiveness of ATTac-2000's adaptive strategy.

1. Introduction

The �rst Trading Agent Competition (TAC) was held from June 22nd to July 8th, 2000, or-

ganized by a group of researchers and developers led by Michael Wellman of the University

of Michigan and Peter Wurman of North Carolina State University (Wellman, Wurman,

O'Malley, Bangera, Lin, Reeves, & Walsh, 2001). Their goals included providing a bench-
mark problem in the complex and rapidly advancing domain of e-marketplaces (Eisenberg,

2000) and motivating researchers to apply unique approaches to a common task. A key

feature of TAC is that it required autonomous bidding agents to buy and sell multiple

interacting goods in auctions of di�erent types.

Another key feature of TAC was that participating agents competed against each other

in a preliminary round and many practice games leading up to the �nals. Thus, developers

changed strategies in response to each others' agents in a sort of escalating arms race.

Leading into the competition day, a wide variety of scenarios were possible. A successful

agent needed to be able to perform well in any of these possible circumstances.

This article describes ATTac-2000, the �rst-place �nisher in TAC. ATTac-2000 uses a

principled bidding strategy, which includes several elements of adaptivity . In addition to the

success at the competition, isolated empirical results are presented indicating the robustness

and e�ectiveness of ATTac-2000's adaptive strategy.

The remainder of the article is organized as follows. Section 2 presents the details

of the TAC domain. Section 3 introduces ATTac-2000, including the mechanisms behind

its adaptivity. Section 4 describes the competition results and the results of controlled

experiments testing ATTac-2000's adaptive components. Section 5 compares ATTac-2000

c2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

, , ,

with some of the other TAC participants. Section 6 presents possible directions for future
research and concludes.

2. TAC

A TAC game instance pits 8 autonomous bidding agents against one another. Each TAC

agent is a simulated travel agent with 8 clients, each of whom would like to travel from TAC-

town to Boston and back again during a common 5-day period. Each client is characterized

by a random set of preferences for the possible arrival and departure dates; hotel rooms

(The Grand Hotel and Le Fleabag Inn); and entertainment tickets (symphony, theater, and

baseball). To obtain utility for a client, an agent must construct a travel package for that

client by purchasing airline tickets to and from TACtown and securing hotel reservations;

it is possible to obtain additional utility by providing entertainment tickets as well. A TAC
agent's score in a game instance is the di�erence between the sum of its clients' utilities for

the packages they receive and the agent's total expenditure.

TAC agents buy ights, hotel rooms and entertainment tickets in di�erent types of

auctions. The TAC server, running at the University of Michigan, maintains the markets

and sends price quotes to the agents. The agents connect over the Internet and send bids

to the server that update the markets accordingly and execute transactions.

Each game instance lasts 15 minutes and includes a total of 28 auctions of 3 di�erent
types.

Flights (8 auctions): There is a separate auction for each type of airline ticket: ights to

Boston (inights) on days 1{4 and ights from Boston (outights) on days 2{5. There

is an unlimited supply of airline tickets, and their ask price periodically increases or

decreases randomly by from $0 to $10. In all cases, tickets are priced between $150

and $600. When the server receives a bid at or above the ask price, the transaction

is cleared immediately at the ask price. No resale of airline tickets is allowed.

Hotel Rooms (8): There are two di�erent types of hotel rooms|the Boston Grand Hotel

(BGH) and Le Fleabag Inn (LFI)|each of which has 16 rooms available on days 1{4.
The rooms are sold in a 16th-price ascending (English) auction, meaning that for each

of the 8 types of hotel rooms, the 16 highest bidders get the rooms at the 16th highest

price. For example, if there are 15 bids for BGH on day 2 at $300, 2 bids at $150, and

any number of lower bids, the rooms are sold for $150 to the 15 high bidders plus one

of the $150 bidders (earliest received bid). The ask price is the current 16th-highest

bid. Thus, agents have no knowledge of, for example, the current highest bid. New

bids must be higher than the current ask price. No bid withdrawal and no resale is

allowed. Transactions only clear when the auction closes. To prevent agents from all

waiting until the end of the game to bid on hotel rooms, hotel auctions can close after

an unspeci�ed period (roughly one minute) of inactivity (no new bids received).

Entertainment Tickets (12): Baseball, symphony, and theater tickets are each sold for

days 1{4 in continuous double auctions. Here, agents can buy and sell tickets, with

transactions clearing immediately when one agent places a buy bid at a price at least

as high as another agent's sell price. Unlike the other auction types in which the

190

goods are sold from a centralized stock, each agent starts with a random endowment
of entertainment tickets. The prices sent to agents are the bid-ask spreads, i.e., the

highest current bid price and the lowest current ask price (due to immediate clears, ask

price is always greater than bid price). When a bid that beats the current bid (ask)

price arrives, the sale price is the standing bid (ask) price, as opposed to the arriving

ask (bid) price. In this case, bid withdrawal and ticket resale are both permitted.

In addition to unpredictable market prices, other sources of variability from game in-

stance to game instance are the client pro�les assigned to the agents and the random initial

allotment of entertainment tickets. Each TAC agent has 8 clients with randomly assigned

travel preferences. Clients have parameters for ideal arrival day, IAD (1{4); ideal depar-

ture day, IDD (2{5); grand hotel value, GHV ($50{$150); and entertainment values, EV

($0{$200) for each type of entertainment ticket.

The utility obtained by a client is determined by the travel package that it is given in

combination with its preferences. To obtain a non-zero utility, the client must be assigned

a feasible travel package consisting of an arrival day AD with the corresponding inight,

departure day DD with the corresponding outight, and hotel rooms of the same type (BGH
or LFI) for each day d such that AD � d < DD. At most one entertainment ticket can

be assigned for each day AD � d < DD, and no client can be given more than one of the

same entertainment ticket type. Given a feasible package, the client's utility is de�ned as

1000 � travelPenalty + hotelBonus + funBonus

where

� travelPenalty = 100(jAD � IAD j+ jDD � IDDj)

� hotelBonus = GHV if the client is in the GBH, 0 otherwise.

� funBonus = sum of relevant EV's for each entertainment ticket type assigned to the

client.

A TAC agent's �nal score is simply the sum of its clients' utilities minus the agent's

expenditures. Throughout the game instance, it must decide what bids to place in each of

the 28 auctions. At the end of the game, it must submit a �nal allocation of purchased

goods to its clients.

The client preferences, allocations, and resulting utilities from one particular game from

the TAC �nals (Game 3070 on the TAC server) are shown in Tables 1 and 2.
For full details on the design and mechanisms of the TAC server, see Wellman et al. (2001).

3. ATTac-2000

ATTac-2000 �nished �rst in the Trading Agent Competition using a principled bidding

strategy, which included several elements of adaptivity . This adaptivity gave ATTac-2000

the exibility to cope with a wide variety of possible scenarios at the competition. In this

section, we describe ATTac-2000's bidding strategy, its method for determining the best

allocation of goods to clients, and its three forms of adaptivity. ATTac-2000's high-level

strategy is summarized in Table 3.

191

, , ,

Client IAD IDD GHV BEV SEV TEV

1 Day 2 Day 5 73 175 34 24

2 Day 1 Day 3 125 113 124 57

3 Day 4 Day 5 73 157 12 177

4 Day 1 Day 2 102 50 67 49

5 Day 1 Day 3 75 12 135 110

6 Day 2 Day 4 86 197 8 59

7 Day 1 Day 5 90 56 197 162

8 Day 1 Day 3 50 79 92 136

Table 1: ATTac-2000's client preferences from game 3070. BEV, SEV, and TEV are EVs

for baseball, symphony, and theater respectively.

Client AD DD Hotel Ent'ment Utility

1 Day 2 Day 5 LFI B4 1175

2 Day 1 Day 2 BGH B1 1138

3 Day 3 Day 5 LFI T3, B4 1234

4 Day 1 Day 2 BGH None 1102

5 Day 1 Day 2 BGH S1 1110

6 Day 2 Day 3 BGH B2 1183

7 Day 1 Day 5 LFI S2, B3, T4 1415

8 Day 1 Day 2 BGH T1 1086

Table 2: ATTac-2000's client allocations and utilities from game 3070. Client 1's \B4" under

\Ent'ment" indicates baseball on day 4.

3.1 Bidding Strategy

TAC was de�ned so as to be simple enough to have a low barrier to entry, yet complex

enough to prevent tractable solution via direct game-theoretic analysis. Given that an

optimal solution is not attainable, we use a principled approach that takes advantage of

details of the TAC scenario. In general, ATTac-2000 aims to be robust to the parameter

space de�ned by TAC as well as to conceivable opponent strategies.

At every bidding opportunity, ATTac-2000 begins by computing the most pro�table

allocation of goods to clients (which we shall denote G�), given the goods that are currently

owned and the current prices of hotels and ights. (See Section 3.3 for a caveat.) For the

purposes of this computation, ATTac-2000 allocates, but does not consider buying or selling,

entertainment tickets. In most cases, G� is computed using integer linear programming, as

described in Section 3.2.

ATTac-2000's high-level bidding strategy is based on the following two observations:

192

1. While the auctions are open:

� Obtain updated market prices.

� Compute G�: the most pro�table allocation of goods given current holdings and

prices.

� Bid in 1 of 2 di�erent modes

Passive: bid to keep options open

Active: at end, bid aggressively on packages

2. Allocate:

� Compute G� with closed auctions and allocate purchased goods to clients.

Table 3: An overview of ATTac-2000's high-level strategy.

1. Since airline prices periodically increase or decrease with equal probability, the ex-

pected change in price for each airline auction is $0. Indeed, it can be shown that if

the airline auction is considered in isolation, waiting until the very end of the game to
purchase tickets is an optimal strategy (except in the rare case that the price reaches

the lowest allowed value).

2. Since hotel prices are monotonically increasing, as the game proceeds, the hotel prices

approach the eventual closing prices.

Therefore, ATTac-2000 aims to delay most of its purchases, and particularly its airline

purchases, until late in the game. ATTac-2000's high-level bidding strategy is based on the

premise that it is best to delay \committing" to the current G� for as long as possible.

Although it continually reevaluates G�, and is therefore never technically committed to

anything, the markets are such that it is rarely advantageous to change a client's travel

package if it would mean wasting an airline ticket or an expensive hotel room (thus requiring
additional ones to be purchased).

ATTac-2000 accomplishes this delay of commitment by bidding in two di�erent modes:

passive and active. The passive mode, which lasts most of the game, is designed to keep as

many options open as possible. During the passive mode, ATTac-2000 computes the average

time it takes for it to compute and place its bids, Tb (Tb is the average time it takes to go

through one iteration of the loop in step 1 of Table 3). We found that Tb ranged from 10

seconds to well over a minute, and was primarily dependent upon the server's load. Call

the time left in the game Tl. When Tl � 2 � Tb, ATTac-2000 switches to its active mode,

during which it buys the airline tickets required by the current G� and places high bids for

the required hotel rooms. Note that ATTac-2000 expects to run at most 2 bidding iterations

in active mode. In fact, only 1 such iteration is necessary, but there is a huge cost to failing
to complete the iteration before the end of the game. Planning for 2 active iterations leaves

room for some error.

Based on the current G�, its current mode, and Tl, ATTac-2000 bids for ights, hotel

rooms, and entertainment tickets.

193

, , ,

3.1.1 Flights

While in the passive mode, ATTac-2000 does not bid in the airline auctions. In active mode,
ATTac-2000 buys all currently unowned airline tickets needed for the current G�. In most

cases, that means that it only bids for airline tickets during its �rst bidding opportunity

in the active mode. However, in the face of drastically changing (hotel and entertainment

ticket) prices, G� could change suÆciently to necessitate purchasing additional ights, in-

stead of simply using the ones that have already been purchased.

3.1.2 Hotels

When in the passive mode, ATTac-2000 bids in the hotel auctions either to try to win hotels

cheaply should the auction close early, or to try to prevent the hotel auctions from closing

early. It might be advantageous to prevent a hotel auction from closing if no rooms are

currently desired in order to keep open the option of switching to that hotel should future

market prices warrant it.

For each hotel room of type i (such as \Grand Hotel, night 3"), let Hi be the number

of rooms of type i needed for G�. Based on the current price of i, Pi, ATTac-2000 tries to

acquire n rooms where

n =

8>>><
>>>:

8 if Pi = 0 (only true at the outset of the game)

max(Hi; 4) if Pi � 10

max(Hi; 2) if Pi � 20

max(Hi; 1) if Pi � 50:

If ATTac-2000's outstanding bids would already win n rooms should the auction close at

the current price, then ATTac-2000 does nothing: should the auction close prematurely,

ATTac-2000 wins the n rooms cheaply, and competitors lose the opportunity to get any

rooms of type i later in the game. Otherwise, ATTac-2000 bids for n rooms at $1 above
the current ask price. The formula for computing n was selected so as to risk wasting up

to $40{$50 per room type for the bene�t of maintaining exibility later in the game. The

exact parameters here were chosen in an ad-hoc fashion without detailed experimentation.

Our intuition is that ATTac-2000's performance is not very sensitive to their exact values.

In the active mode, ATTac-2000 bids on hotel rooms based on their marginal value within

allocation G�. Let V (G�) be the value of G� (the income from all clients, minus the cost of

the yet-to-be-acquired goods). Let G�0
c be the optimal allocation should client c fail to get

its hotel rooms. Note that G�0
c might di�er from G� in the distribution of entertainment

tickets as well as in the ights and hotels of client c. ATTac-2000 bids for the hotel rooms

assigned to client c in G� at a price of V (G�) � V (G�0
c). Since at this point ights are a

sunk cost, this price tends to be more than $1000.

Notice that ATTac-2000 bids the full marginal utility for each hotel room required by

the client's travel package. An alternative would have been to divide the marginal utility
over the number of rooms in the package, which would have eliminated the risk of spending

more on hotels than the itinerary is worth. On the other hand, failing to win a single hotel

room is enough to invalidate the entire itinerary. ATTac-2000 bids the full marginal utility

to maximize the chance that valid itineraries are obtained for all clients. In a combinatorial

194

auction, the bidder would be able to be place a bid for the conjunction of the desired rooms
and would therefore not need to choose between these two alternatives.

3.1.3 Entertainment Tickets

ATTac-2000's bidding strategy for the entertainment tickets hypothesizes that for each

ticket, the opponent buy (sell) price remains constant over the course of a single game

(but may vary from game to game). So as to avoid underbidding (overbidding) for that

price, ATTac-2000 gradually decreases (increases) its bid over the course of the game. The

initial bids are always as optimistic as possible, but by the end of the game, ATTac-2000 is

willing to settle for deals that are minimally pro�table. In addition, this strategy serves to

hedge against ATTac-2000's early uncertainty in its �nal allocation of goods to clients.

On every bidding iteration, ATTac-2000 places a buy bid for each type of entertainment

ticket, and a sell bid for each type of entertainment ticket that it currently owns. In all cases,

the prices depend on the amount of time left in the game (Tl), becoming less aggressive as

time goes on (see Figure 1).

Buy value

5 100
Game Time (min.)

200

100

B
id

 P
ri

ce
 (

$)

15

$30

}

}

$50

$20

Owned, unallocated
sell value

Owned,allocated
sell value

Figure 1: ATTac-2000's bidding strategy for entertainment tickets. The black circles indi-

cate the calculated values of the tickets to ATTac-2000. The lines indicate the bid

prices corresponding to those values. For example, the solid line (which increases

over time) corresponds to the buy price relative to the buy value. Correspon-

dence between the text and the lines is indicated by similar line types and boxes

surrounding the text.

For each owned entertainment ticket E, if E is assigned in G�, let V (E) be the value

of E to the client to whom it is assigned in G� (\owned, allocated sell value" in Figure 1).

ATTac-2000 o�ers to sell E for min(200; V (E) + Æ) where Æ decreases linearly from 100 to

20 based on Tl.
1 If there is a current bid price greater than the resulting sell price, then

ATTac-2000 raises its sell price to 1 cent lower than the current bid price in order to get as

high a price as possible.

If E is owned but not assigned in G� (because all clients are either unavailable that night

or already scheduled for that type of entertainment in G�), let V (E) be the maximum value

1. Recall that $200 is the maximum possible value of E to any client under the TAC parameters.

195

, , ,

for E over all clients, i.e. the greatest possible value of E given the client pro�les (\owned,
unallocated sell value" in Figure 1). ATTac-2000 o�ers to sell E for max(50; V (E) � Æ)

where Æ increases linearly from 0 to 50 based on Tl. Once again, ATTac-2000 raises its price

to meet an existing bid price that is greater than its target price. This strategy reects

the increasing likelihood as the game progresses that G� will be close to the �nal client

allocation, and thus that any currently unused tickets will not be needed in the end. When

in active mode, ATTac-2000 assumes that G� is �nal and o�ers to sell any unneeded tickets

for $30 in order to obtain at least some value for them (represented by the discrete point at

the bottom right in Figure 1). Below $30, ATTac-2000 would rather waste the ticket than

allow a competitor to make a large pro�t.

Finally, ATTac-2000 bids to buy each type of entertainment ticket E (including those

that it is also o�ering to sell) based on the increased value that would be derived by owning

E. Let G�0
E be the optimal allocation that would result were E owned (\buy value" in

Figure 1). Note that G�0
E could have di�erent ight and hotel assignments than G� so as to

make most e�ective use of E. Then, ATTac-2000 o�ers to buy E for V (G�0
E)� V (G�)� Æ,

where Æ decreases linearly from 100 to 20 based on Tl.

All of the parameters described in this section were chosen arbitrarily without detailed
experimentation. Again our intuition is that, unless opponents know and explicitly exploit

these values, ATTac-2000's performance is not very sensitive to them.

3.2 Allocation Strategy

As is evident from Section 3.1, ATTac-2000 relies heavily on computing the current most

pro�table allocation of goods to clients, G�. Since G� changes as prices change, ATTac-2000
needs to recompute it at every bidding opportunity. By using an integer linear programming

approach, ATTac-2000 was able to compute optimal �nal allocations in every game instance

during the tournament �nals|one of only 2 entrants to do so.2

Most TAC participants used some form of greedy strategy for allocation (Greenwald

& Stone, 2001). It is computationally feasible to quickly determine the maximum utility

achievable by client 1 given a set of purchased goods, move on to client 2 with the remaining

goods, etc. However, the greedy strategy can lead to suboptimal solutions. For example,

consider 2 clients A and B with identical travel days IAD and IDD as well as identical
entertainment values EV , but with A's GHV = $50 and B's GHV = $150. If the agent

has exactly one of each type of hotel room for each day, the optimal assignment is clearly

to assign the BGH to client B. However, if client A's utility is optimized �rst, it will be

assigned the BGH, leaving B to stay in LFI. The agent's resulting score would be 100 less

than it could have been.

As an improvement over the basic greedy strategy, we implemented a heuristic approach

that implements the greedy strategy over 100 random client orderings and chooses the most

pro�table resulting allocation. Empirically, the resulting allocation is often optimal, and
never far from optimal. In addition, it is always very quick to compute. In a set of seven

games from just before the tournament, the greedy allocator was run approximately 600

times and produced allocations that averaged 99.5% of the optimal value.

2. As computed by Shou-de Lin of the TAC organizing team.

196

As the competition drew near, however, it became clear that every point would count.
We therefore implemented an allocation strategy that is guaranteed to �nd the optimal

allocation of goods.3 The integer linear programming approach used by ATTac-2000 works

by de�ning a set of variables, constraints on these variables, and an objective function.

An assignment to the variables represents an allocation to the clients and the constraints

ensure that the allocation is legal. The objective function encodes the fact that we seek the

allocation with maximum value (utility minus cost).

The following notation is needed to describe the integer linear program. The formal no-

tation is included for completeness; an equivalent English description follows each equation.

The symbol c is a client (1 through 8). The symbol f is a feasible travel package, which

consists of: the arrival day AD(f) (1 through 4); the departure day DD(f) (2 through 5),

and the choice of hotel H(f) (BGH or LFI). There are 20 such travel packages. Symbol e
is an entertainment ticket, which consists of: the day of the event D(e) (1 through 4), and

the type of the event T (e) (baseball b, symphony s, or theater t). There are 12 di�erent

entertainment tickets. Symbol r is a resource (AD, DD, BGH, or LFI).

Using this notation, the 272 variables are: P (c; f), which indicates whether client c will

be allocated feasible travel package f (160 variables); E(c; e), which indicates whether client

c will be allocated entertainment ticket e (96 variables); and, Br(d) is the number of copies

of resource r we would like to buy for day d (16 variables).

There are also several constants that de�ne the problem: or(d) is the number of tickets

of resource r currently owned for day d, pr(d) is the current price for resource r on day d,

uP (c; f) is utility to customer c for travel package f , and uE(c; e) is the utility to customer

c for entertainment ticket e.
Given this notation, the objective is to maximize utility minus cost

X
c;f

uP (c; f)P (c; f) +
X
c;e

uE(c; e)E(c; e)

�
X

d2f2;3;4;5g

pDD(d)BDD(d)

�
X

d2f1;2;3;4g;r2fBGH;LFI;ADg

pr(d)Br(d)

subject to the following 188 constraints:

� For all c,
P

f P (c; f) � 1: No client gets more than one travel package (8 constraints).

� For all d 2 f1; 2; 3; 4g,

X
c

X
f jAD(f)=d

P (c; f) � oAD(d) +BAD(d);

For all d 2 f1; 2; 3; 4g and h 2 fBGH;LFIg,

X
c

X
f jH(f)=h & AD(f)�d<DD(f)

P (c; f) � oh(d) +Bh(d);

3. The general allocation problem is NP-complete, as it is equivalent to the set-packing problem (Garey &
Johnson, 1979). Exhaustive search is computationally intractable even with only 8 clients.

197

, , ,

For all d 2 f2; 3; 4; 5g,

X
c

X
f jDD(f)=d

P (c; f) � oDD(d) +BDD(d) :

The demand for resources from the selected travel packages must not exceed the sum

of the owned and bought resources (16 constraints).

� For all e,
P

cE(c; e) � oE(e): The total quantity of each entertainment ticket allocated

does not exceed what is owned (12 constraints).

� For all c and e,
P

f jAD(f)�D(e)<DD(f) P (c; f) � E(c; e): An entertainment ticket can

only be used if its day is between the arrival and departure day of the selected travel

package (96 constraints).

� For all c and d 2 f1; 2; 3; 4g,
P

ejD(e)=dE(c; e) � 1: Each client can only use one

entertainment ticket per day (32 constraints).

� For all c and y 2 fb; s; tg,
P

ejT (e)=y E(c; e) � 1: Each client can only use each type of

entertainment ticket once (24 constraints).

� All variables are integers.

The solution to the resulting integer linear program is a value-maximizing allocation

of owned resources to customers along with a list of resources that need to be purchased.

Using the linear programming package \LPsolve", ATTac-2000 is usually able to �nd the

globally optimal solution in under one second on a 650 MHz Pentium II.

Note that this is not by any means the only possible formulation of the allocation.

Greenwald, Boyan, Kirby, and Reiter (2001) studied a variant and found that it performed

extremely well on a collection of large, random allocation problems.

The above approach is guaranteed to �nd the optimal allocation, and usually does so

quickly. However, since integer linear programming is an NP-complete problem, some inputs

can lead to signi�cantly longer solution times. In a sample of 32 games taken shortly before

the �nals, the allocator was called 1866 times. In 93% of the cases, the optimization took a

second or less. Less than 1% took 6 or more seconds. However, the 3 longest running times

were all over a minute and all came from the same game. ATTac-2000 used the strategy

that if an integer linear program takes 6 or more seconds to solve, the above-mentioned

greedy strategy over random client orderings is used as a fall-back strategy for the rest of

the game. This fall-back strategy was not needed during the tournament �nals.

3.3 Adaptivity

In a TAC game instance, the only information available to agents is the ask prices|

individual bids are not visible. After each game, transaction-by-transaction data is available,
but the lack of within-game information precluded competitors from using detailed models

of opponent strategies in decision making. ATTac-2000 instead adapts its behavior on-line

in three di�erent ways: adaptable timing of bidding modes; adaptable allocation strategy;

and adaptable hotel bidding.

198

3.3.1 Timing of Bidding Modes

ATTac-2000 decides when to switch from the passive to the active bidding mode based on

the observed server latency Tb during the current game instance (see Section 3.1).

3.3.2 Allocation

ATTac-2000 adapts its allocation strategy based on the amount of time it takes for the

integer linear programming approach to determine optimal allocations in the current game

instance (see Section 3.2).

3.3.3 Hotel Bidding

Perhaps most signi�cantly, ATTac-2000 predicts the closing prices of hotel auctions based

on their closing prices in previous games. Hotel bidding in TAC was particularly challenging

due to the extreme volatility of prices near the end of the game. As stated in Section 3.1.2,

at the end of the game ATTac-2000 bids the marginal utility for each desired hotel room,

which was often in excess of $1000.

During the preliminary competition, few agents bid their marginal utilities on hotel

rooms. Those that did, however, generally dominated their competitors; such agents were

high-bidders, bidding � $1000, always winning the hotels on which they bid, but paying far

less than their bids. Having observed a dominant strategy during the preliminary rounds,

most agents, including ATTac-2000, adopted this high-bidding strategy during the actual

competition. The result was many negative scores, as prices skyrocketed in the last moments
of the game once there were 16 high bids for a given room.

In Section 3.1, we stated that ATTac-2000 computes G� based on the current prices of

the hotel rooms. Should the prices eventually become very high, ATTac-2000 would either

end up paying too high a price for the hotel rooms or else fail to get travel packages for

some of its clients. The only alternative was to avoid counting on obtaining contentious

hotel rooms.

Since strategies were changing up to the last minute before the �nals, there was no way

to identify a priori which hotels would be most contentious or whether hotel prices would

actually skyrocket in the tournament. Therefore, ATTac-2000 divided the 8 hotel rooms
into 4 equivalence classes, exploiting symmetries in the game (hotel rooms on days 1 and

4 should be equally in demand as should rooms on days 2 and 3), assigned priors to the

expected closing prices of these rooms, and then adjusted these priors based on the observed

closing prices during the tournament.

As expected, the Grand Hotel on days 2 and 3 turned out to be most contentious during

the �nals. Le Fleabag Inn on the same days was also fairly contentious. Whenever the

actual price for a hotel was less than the predicted closing price, ATTac-2000 used the

predicted hotel closing price for computing all of its allocation values.

One additional method for predicting whether hotel prices would skyrocket in a given

game is to notice who the participants are and whether or not they tended to be high-
bidders in past games (see Figure 2). Although such information was not available via the

server's API, a game's participants were always published beforehand on the TAC web page.

By automatically downloading this information from the web (a practice whose ethicality

was questioned at the competition), and matching against a precompiled database of which

199

, , ,

agents were high-bidders in the past, ATTac-2000 would only use the predicted hotel closing
prices in games with 3 or more high-bidders involved: in games with fewer high-bidders, the

prices of hotel rooms almost never skyrocketed4. As it turned out, all but one of ATTac-

2000's games in the semi-�nals, and all games in the �nals, involved several high-bidders,

thus triggering the use of predicted hotel closing prices.

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

250
RiskPro grand day 2 recent

5 100 15
Game Time (min.)

B
id

 P
ri

ce
 (

$)

RiskPro: Grand Day 2
200

100

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

1200

1400
aster grand day 2

5 10

1200

800

400

0 15
Game Time (min.)

Aster: Grand Day 2

B
id

 P
ri

ce
 (

$)

Figure 2: Graphs of two di�erent agents' bidding patterns over many games. Each line

represents one game's worth of bidding in a single auction. Left: RiskPro never

bids over $250 in the games plotted. Right: Aster consistently bids over $1000

for rooms.

Empirical testing (Section 4) indicates that this strategy is extremely bene�cial in situa-

tions in which hotel prices do indeed escalate, while it does not lead to signi�cantly degraded

performance when they do not.

4. Results

TAC consisted of a preliminary round that ran over the course of a week and involved

roughly 80 games for each of the 22 participants. The top 12 �nishers were invited to

the semi-�nals and �nals in Boston, MA on July 8th. Since agents and conditions were

constantly changing, and since only 13 games were played by each agent in the semi-�nals

and �nals, the competition does not provide a controlled testing environment. In this

section, we describe ATTac-2000's success in the tournament, but also present empirical

results of controlled tests that demonstrate the e�ectiveness and robustness of ATTac-2000's
adaptive strategy.

4.1 The Competition

ATTac-2000's scores in the 88 preliminary-round games ranged from �3000 to over 4500

(mean 2700, std. dev. 1600). A good score in a game instance is in the 3000 to 4000 range.

We noticed that there were many very bad scores (12 less than 1000 and seven less than 0).

4. With just 2 high-bidders, the only way to have the price escalate would be if they bid for a combined
total of 16 rooms of the same hotel type. That could only happen if all of their clients were to stay in
the same hotel on the same night, a very unlikely scenario given the TAC parameters.

200

This is largely the result of ATTac-2000 not yet being imbued with its adaptive timing of
bidding modes. During the preliminary round, ATTac-2000 shifted from passive to active

bidding mode with 50 seconds left in the game instance. While 50 seconds is usually plenty

of time to allow for at least 2 iterations through ATTac-2000's bidding loop, there were

occasions in which the network and server lags were such that it would take more than 50

seconds to obtain updated market prices and submit bids. In this case, ATTac-2000 would

either fail to buy airline tickets, or worse still, would buy airline tickets but not get the

�nal hotel bids in on time. Noticing that the server lag tended to be consistent within a

game instance (perhaps due to the traÆc patterns generated by the participating agents),

we introduced the adaptive timing of bidding modes described in Section 3.3. After this

change, ATTac-2000 was always able to complete at least one, and usually two, bidding

loops in the active bidding phase.

The adaptive allocation strategy never came into play in the �nals, as ATTac-2000 was

able to optimally solve all of the allocation problems that came up during the �nals very
quickly using the integer linear programming method.

However, the adaptive hotel bidding did play a big role. ATTac-2000 performed as well
as the other best teams in the early TAC games when hotel prices (surprisingly) stayed low,

and then out-performed the competitors in the �nal games of the tournament when hotel

prices suddenly rose to high levels. Indeed, in the last 2 games, some of the popular hotels

closed at over $400. ATTac-2000 steered clear of these hotel rooms more e�ectively than its

closest competitors.

Table 4 shows the scores of the 8 TAC �nalists (Wellman et al., 2001). ATTac-2000's

consistency (std. dev. 443 as opposed to 1600 in the preliminaries) is apparent: it avoided

having any disastrous games, presumably due in large part to its adaptivity regarding timing

and hotel bidding.

Rank Team Avg. Score Std. Dev. Institution

1 ATTac-2000 3398 443 AT&T Labs { Research

2 RoxyBot 3283 545 Brown University, NASA Ames Research

3 aster 3068 493 STAR Lab, InterTrust Technologies

4 umbctac1 3051 1123 University of Maryland at Baltimore County

5 ALTA 2198 1328 Arti�cial Life, Inc.

6 m rajatish 1873 1657 University of Tulsa

7 RiskPro 1570 1607 Royal Inst. Technology, Stockholm University
8 T1 1167 1593 Swedish Inst. Computer Science, Industilogik

Table 4: The scores of the 8 TAC �nalists in the semi-�nals and �nals (13 games).

4.2 Controlled Testing

In order to evaluate ATTac-2000's adaptive hotel bidding strategy in a controlled manner,

we ran several game instances with ATTac-2000 playing against two variants of itself:

201

, , ,

1. High-bidder always computed G� based on the current hotel prices (as opposed to
using priors and averages of past closing prices).

2. Low-bidder always computed G� as in variant 1, but also only bid for hotel rooms at

$50 over the current ask price (as opposed to the marginal utility, which tended to be
more than $1000).

At the extremes, with ATTac-2000 and 7 high-bidders playing, at least one hotel price

skyrockets in every game since all agents bid very high for the hotel rooms. On the other
hand, with ATTac-2000 and 7 low-bidders playing, hotel prices never skyrocket since all

agents but ATTac-2000 bid close to the ask price. Our goal was to measure whether ATTac-

2000 could perform well in both extreme scenarios as well as various intermediate ones.

Table 5 summarizes our results.

#high agent 2 agent 3 agent 4 agent 5 agent 6 agent 7 agent 8

7 (14) � 9526 |||||||||||||�!
6 (87) � 10679 ||||||||||�! 1389

5 (84) � 10310 |||||||�! � 2650

4 (48) � 10005 ||||�! �|||| 4015

3 (21) � 5067 �! �||||||| 3639

2 (282) � 209 �|||||||||| 2710

Table 5: The di�erence between ATTac-2000's score and the score of each of the other

seven agents averaged over all games in a controlled experiment. All di�erences

are statistically signi�cant at the 0:001 level, except the one marked in italics.

Each row corresponds to a di�erent number of high-bidders (excluding ATTac-

2000 itself). The �rst column presents the number of high-bidders as well as the

number of experiments we ran for that scenario (in parentheses). The column

labeled \agent i" shows how much better ATTac-2000 did on average than agent i.
Scores above the stair-step line are for high-bidders (variant 1) and scores below

the line are for low-bidders (variant 2). Results for identical agents are averaged

to obtain a single average score di�erence for each type of agent in each row. In

all cases, ATTac-2000 beats the other agents.

Each row of Table 5 corresponds to a di�erent number of high-bidders in the game;

for example, the row labeled with 4 high-bidders corresponds to ATTac-2000 playing with

4 copies of variant 1 and 3 copies of variant 2. Results for identical agents are averaged

to obtain a single average score di�erence for each type of agent in each row. In the �rst

column, we also show in parentheses the number of games played for the results in each
row|each row reects a di�erent number of runs. In all cases, we ran enough game instances

to achieve statistically signi�cant results. However, in some cases we ran more instances

than turned out to be required. The column labeled agent i shows the di�erence between

ATTac-2000's score and the score of agent i averaged over all games. In all scenarios, these

202

di�erences are positive, showing that ATTac-2000 outscored all other agents on average.5

Statistical signi�cance was computed from paired T-tests; all results are signi�cant at the

0:001 level except for the one marked in italics. As mentioned before, if the number of

high-bidders is greater than or equal to 3, we expect the price for contentious hotels to rise,

and in all such scenarios ATTac-2000 signi�cantly outperforms all the other agents. The

large score di�erences appearing in the top rows of Table 5 are mainly due to the fact that

the other agents get large, negative scores since they end up buying many expensive hotel

rooms.

In these experiments, ATTac-2000 always uses its adaptive hotel price expectations, even

when there are only 2 high-bidders. In the last row, when the number of high-bidders is 2,

very little bidding up of hotel prices is expected and in this case, we do not get statistical

signi�cance relative to the two high-bidders (agent 2 and agent 3), since their strategies are

nearly identical to ATTac-2000's in this case. We do get high statistical signi�cance relative

to all the other agents (copies of variant 2), however. Thus, ATTac-2000's adaptivity to

hotel prices seems to help a lot when hotel prices do skyrocket and does not seem to

prevent ATTac-2000 from winning on average when they don't.

The results of Table 5 provide strong evidence for ATTac-2000's ability to adapt robustly

to varying number of competing agents that bid up hotel prices near the end of the game.

Note that ATTac-2000 is not designed to perform well against itself. If 8 copies of ATTac-

2000 play against each other repeatedly, they will all favor the same hotel rooms and thus

consistently all get large negative scores. It would be interesting to determine whether there

exists a strategy that is both harmful to ATTac and bene�cial to the adversary.

5. Related Work

Although there has been a good deal of research on auction theory, especially from the per-

spective of auction mechanisms (Klemperer, 1999), studies of autonomous bidding agents

and their interactions are relatively few and recent. TAC is one example. FM97.6 is an-

other auction test-bed, which is based on �shmarket auctions (Rodriguez-Aguilar, Martin,

Noriega, Garcia, & Sierra, 2001). Automatic bidding agents have also been created in this

domain (Gimenez-Funes, Godo, Rodriguez-Aguiolar, & Garcia-Calves, 1998). There have

been a number of studies of agents bidding for a single good in multiple auctions (Ito,

Fukuta, Shintani, & Sycara, 2000; Anthony, Hall, Dang, & Jennings, ; Preist, Bartolini, &

Phillips, 2001). Outside of, but related to, the auction scenario, automatic shopping and

pricing agents for internet commerce have been studied within a simpli�ed model (Green-

wald & Kephart, 1999).

Twenty-two agents from 6 countries entered TAC, 12 of which quali�ed to compete

in the semi-�nals and �nals in Boston. The designs of these agents were motivated by a

wide variety of research interests including machine learning, arti�cial life, experimental

economics, real-time systems, and choice theory (Greenwald & Stone, 2001).

Our own approach was motivated by our research interests in multiagent learning (Littman,

1994; Stone, 2000; Singh, Kearns, & Mansour, 2000). Based on the problem description,

we expected to �nd several learning opportunities in the domain. As noted above, detailed

5. In general, ATTac-2000's average score decreased with increasing numbers of high-bidders, as games
became more volatile.

203

, , ,

opponent modeling was precluded by the system dynamics. Nonetheless, ATTac-2000's
adaptivity is one of the keys to its success, particularly in avoiding skyrocketing hotels.

The 2nd and 3rd place agents both used a di�erent strategy to prepare for the possibility

of skyrocketing hotels. Rather than avoiding popular hotels entirely by tracking closing

prices across game instances, they both discouraged their agents from bidding for too many

of any particular hotel room, thus spreading their demand across the rooms (Greenwald &

Stone, 2001). While such a strategy is safer in the limit (i.e., it continues to work even if

everyone uses it), it has a greater potential to cost the agent in the event that hotel prices

do not skyrocket, since the agent will still distribute its demand to the less desirable rooms.

On the other hand, ATTac-2000 would notice that the prices are not skyrocketing and thus

bid for the optimal travel packages given current prices.

6. Conclusion and Future Work

TAC-2000 was the �rst autonomous bidding agent competition. While it was a very success-

ful event, some minor improvements would increase its interest from a multiagent learning

perspective.

� Currently, there is no incentive to buy airline tickets until the end of the game. Were

the price of ights to tend to increase, or were supply limited, agents would have to

balance the advantage of keeping their options open against the savings of committing

to travel packages earlier6.

� The information structure of the TAC setup was such that it was impossible to observe

the bidding patterns of individual agents during games. Nonetheless, the strategic

behavior of individual agents often profoundly a�ected market dynamics|particularly

in the hotel auctions. It seems that it would be bene�cial to be able to directly observe

the behavior of each individual agent. Were there to be information available regarding

the bidding behavior of the agents during the game (such that other agents could infer

clients' preferences, and therefore market supply, demand, and prices), TAC agents

would potentially be able to learn to predict market behavior as a game proceeds.

With or without these modi�cations, we hope to be able to participate in future TACs,

with the goal of adding additional adaptive elements to ATTac-2000.

Another direction of future research is to apply the lessons learned from TAC to real
simultaneous interacting auctions. It is straightforward to write bidding agents to partic-

ipate in on-line auctions for a single good if the value to the client is �xed ahead of time:

the agent can bid slightly over the ask price until the auction closes or the price exceeds

the value. However, when the values of multiple goods interact, such as is the case in TAC,

agent deployment is not nearly so straightforward.

One such real application is the Federal Communications Commission's auctioning o�

of radio spectrum (Weber, 1997; Cramton, 1997). Especially for companies that are trying

to achieve national coverage, the values of the di�erent licenses interact in complex ways.

Perhaps autonomous bidding agents will be able to a�ect bidding strategies in such future

6. This change has been adopted in the speci�cation of TAC-01.

204

auctions. Indeed, in related research we have begun down this path by creating straight-
forward bidding agents in a realistic FCC Auction Simulator (Csirik, Littman, Singh, &

Stone, 2001).

In a more obvious application, an extended version of ATTac-2000 could potentially

become useful to real travel agents, or to end users who wish to create their own travel

packages.

Acknowledgements

We would like to thank the TAC team at the University of Michigan, includingMichael Well-

man, Peter Wurman, Kevin O'Malley, Daniel Reeves, and William Walsh, for constructing

the TAC server and responding promptly and cordially to our many requests while con-

ducting the research reported here. We would also thank the anonymous reviewers for their

helpful comments and suggestions.

References

Anthony, P., Hall, W., Dang, V. D., & Jennings, N. R. Autonomous agents for participating

in multiple on-line auctions..

Cramton, P. C. (1997). The FCC spectrum auctions: An early assessment. Journal of

Economics and Management Strategy, 6 (3), 431{495.

Csirik, J. A., Littman, M. L., Singh, S., & Stone, P. (2001). FAucS: An FCC spec-

trum auction simulator for autonomous bidding agents. In Proceedings of the Sec-

ond International Workshop on Electronic Commerce. To appear. Available at

http://www.research.att.com/~pstone/papers.html.

Eisenberg, A. (2000). In online auctions of the future, it'll be bot vs. bot vs. bot. The New

York Times. August 17th.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-completeness. Freeman, San Francisco, CA.

Gimenez-Funes, E., Godo, L., Rodriguez-Aguiolar, J. A., & Garcia-Calves, P. (1998). De-

signing bidding strategies for trading agents in electronic auctions. In Proceedings of

the Third International Conference on Multi-Agent Systems, pp. 136{143.

Greenwald, A., Boyan, J., Kirby, R. M., & Reiter, J. (2001). Bidding algorithms for simul-

taneous auctions. In Proceedings of Third ACM Conference on E-Commerce, p. to

appear.

Greenwald, A., & Kephart, J. O. (1999). Shopbots and pricebots. In Proceedings of the

Sixteenth International Joint Conference on Arti�cial Intelligence, pp. 506{511.

Greenwald, A., & Stone, P. (2001). Autonomous bidding agents in the trading agent com-

petition. IEEE Internet Computing, 5 (2), 52{60.

205

, , ,

Ito, T., Fukuta, N., Shintani, T., & Sycara, K. (2000). Biddingbot: a multiagent support
system for cooperative bidding in multiple auctions. In Proceedings of the Fourth

International Conference on MultiAgent Systems, pp. 399{400.

Klemperer, P. (1999). Auction theory: A guide to the literature. Journal of Economic

Surveys, 13 (3), 227{86.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learn-

ing. In Proceedings of the Eleventh International Conference on Machine Learning,

pp. 157{163 San Mateo, CA. Morgan Kaufman.

Preist, C., Bartolini, C., & Phillips, I. (2001). Algorithm design for agents which partici-

pate in multiple simultaneous auctions. In Agent Mediated Electronic Commerce III

(LNAI), pp. 139{154. Springer-Verlag, Berlin.

Rodriguez-Aguilar, J. A., Martin, F. J., Noriega, P., Garcia, P., & Sierra, C. (2001). Towards

a test-bed for trading agents in electronic auction markets. AI Communications. In

press. Available at http://sinera.iiia.csic.es/~pablo/pncve.html.

Singh, S., Kearns, M., & Mansour, Y. (2000). Nash convergence of gradient dynamics in

general sum games. In Proceedings of the Sixteenth Conference on Uncertainty in

Arti�cial Intelligence (UAI), pp. 541{548.

Stone, P. (2000). Layered Learning in Multiagent Systems: A Winning Approach to Robotic

Soccer. MIT Press.

Weber, R. J. (1997). Making more from less: Strategic demand reduction in the FCC

spectrum auctions. Journal of Economics and Management Strategy, 6 (3), 529{548.

Wellman, M. P., Wurman, P. R., O'Malley, K., Bangera, R., Lin, S.-d., Reeves, D., & Walsh,

W. E. (2001). A trading agent competition. IEEE Internet Computing, 5 (2), 43{51.

206

