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ABSTRACT
As computational learning agents move into domains
that incur real costs (e.g., autonomous driving or finan-
cial investment), it will be necessary to learn good poli-
cies without numerous high-cost learning trials. One
promising approach to reducing sample complexity of
learning a task is knowledge transfer from humans to
agents. Ideally, methods of transfer should be accessible
to anyone with task knowledge, regardless of that per-
son’s expertise in programming and AI. This paper fo-
cuses on allowing a human trainer to interactively shape
an agent’s policy via reinforcement signals. Specifi-
cally, the paper introduces “Training an Agent Manu-
ally via Evaluative Reinforcement,” or tamer, a frame-
work that enables such shaping. Differing from previous
approaches to interactive shaping, a tamer agent mod-
els the human’s reinforcement and exploits its model by
choosing actions expected to be most highly reinforced.
Results from two domains demonstrate that lay users
can train tamer agents without defining an environ-
mental reward function (as in an MDP) and indicate
that human training within the tamer framework can
reduce sample complexity over autonomous learning al-
gorithms.
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1. INTRODUCTION
As computational learning agents continue to improve
their ability to learn sequential decision-making tasks,
a central but largely unfulfilled goal of the field is to
deploy these agents in real-world domains, making de-
cisions that affect our lives. However, with real-world
deployment comes real-world costs. For such a deploy-
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ment to be viable, agents will not be able to use hun-
dreds or thousands of learning trials to reach a good
policy when each suboptimal trial is costly. For exam-
ple, an autonomous driving agent should not learn to
drive by crashing into road barriers and endangering
the lives of pedestrians.

Fortunately, for many of these tasks, humans have do-
main knowledge that could speed the learning process,
reducing costly sample complexity. Currently, most
knowledge transfer from humans to agents occurs via
programming, which is time-consuming and inaccessi-
ble to the general public. It is important to develop
agents that can learn from natural methods of commu-
nication. The teaching technique of shaping is one such
method. In this context, we define shaping as interac-
tively training an agent through signals of positive and
negative reinforcement.1 In a shaping scenario, a hu-
man trainer observes an agent and reinforces its behav-
ior through push-buttons, spoken word (“yes” or “no”),
or any other signal that can be converted to a scalar sig-
nal of approval or disapproval. The key challenge, then,
is to create agents that can be shaped effectively. Our
problem definition is as follows:

The Shaping problem Within a sequential decision-
making task, an agent receives a sequence of state
descriptions (s1, s2, ... where siεS) and action op-
portunities (choosing aiεA at each si). From a
human trainer who observes the agent and un-
derstands a predefined performance metric, the
agent also receives occasional positive and nega-
tive scalar reinforcement signals (h1, h2, ...) that
are correlated with the trainer’s assessment of re-
cent state-action pairs. How can an agent learn the
best possible task policy (π : S → A), as measured
by the performance metric, given the information

1We use the term “shaping” as it is used in animal learning
literature (in which it was initially developed by B.F. Skin-
ner). There, shaping is defined as training by reinforcing
successively improving approximations of the target behav-
ior [6]. In reinforcement learning literature, it is sometimes
used as in animal learning, but more often “shaping” is re-
stricted to methods that combine the shaping reinforcement
signal and the reward signal of the environment into a single
signal [14]. An important feature of our tamer framework
is that the two signals are not combined.



contained in the input?

In a Markov Decision Process (MDP), the environmen-
tal reward signal, along with the rest of the MDP speci-
fication (see [16] for details), unambiguously define a set
of optimal policies. Since our goal is to allow the human
trainer to fully control the agent’s behavior, the envi-
ronmental reward signal is not used. Following Abbeel
and Ng’s terminology [1], we call this an MDP\R.

Expected benefits of learning from human reinforce-
ment2 include the following.

1. Shaping decreases sample complexity for learning
a “good” policy.

2. An agent can learn in the absence of a coded evalu-
ation function (e.g., an environmental reward func-
tion).

3. The simple mode of communication allows lay users
to teach agents the policies which they prefer, even
changing the desired policy if they choose.

4. Shaped agents can learn in more complex domains
than autonomous learning allows.

This paper addresses the first three of these benefits.
In it, we review previous work on agents that can learn
from a human teacher through natural methods of com-
munication (Section 2). We treat shaping as a specific
mode of knowledge transfer, distinct from (and proba-
bly complementary to) other natural methods of com-
munication, including programming by demonstration
and giving advice. Shaping only requires that a per-
son can observe the agent’s behavior, judge its qual-
ity, and send a feedback signal that can be mapped
to a scalar value (e.g. by button press or verbal feed-
back of “good” and “bad”). We then present a novel
method by which human trainers can shape agents (Sec-
tion 3). This agent-trainer framework, called Train-
ing an Agent Manually via Evaluative Reinforcement
(tamer), makes use of established supervised learn-
ing techniques to model a human’s reinforcement func-
tion and then uses the learned model to choose actions
that are projected to receive the most reinforcement.
The tamer framework, the insights that motivate it,
and an extension to delayed reinforcement are the key
contributions of this paper. Furthermore, we describe
two specific, fully implemented tamer algorithms that
provide proofs-of-concept for two contrasting task do-
mains (Section 4). Experimental results in these do-
mains show that tamer agents, under the tutelage of
human trainers, learn a “good” policy faster than effec-
tive autonomous learning agents (Section 5).
2In this paper, we distinguish between human reinforcement
and environmental reward within an Markov Decision Pro-
cess. To avoid confusion, human feedback is always called
“reinforcement.”

2. RELATED WORK: LEARNING FROM A
HUMAN

Work on human-teachable agents has taken many forms,
all with the aim of reducing the amount of program-
ming required by an expert, using more natural modes
of communication. In this section, we describe past
work on agents that learn from humans. We argue that
the relative strengths and weaknesses of our training
system put it in a unique space that is not currently oc-
cupied by any other approach. Furthermore, we believe
that many of the approaches we review are complemen-
tary to ours: an ideal learning agent might combine
elements from several of them.

2.1 Learning from Advice
Advice, in the context of Markov Decision Processes
(MDPs), is defined as suggesting an action when a cer-
tain condition is true. Maclin and Shavlik [12] pioneered
the approach of giving advice to reinforcement learn-
ers. Giving advice via natural language could be an
effective way for non-technical humans to teach agents.
Kuhlmann et al. [11] created a domain-specific natural
language interface for giving advice to a reinforcement
learner.

The informational richness of advice is clearly powerful,
however there still remain a number of technical chal-
lenges. The first of these is that general natural lan-
guage recognition is unsolved, so many current advice-
taking systems [12, 13] require that the human encode
her advice into a scripting or programming language,
making it inaccessible to non-technical users. The natu-
ral language unit of Kuhlmann et al. [11] required man-
ually labeled training samples. Moreover, work still re-
mains on how to embed advice into agents that learn
from experience.

Additionally, there will likely be times when the trainer
knows that the agent has performed well or poorly, but
cannot determine exactly why. In these cases, advice
will be much more difficult to give than positive or neg-
ative feedback.

2.2 Learning from Demonstration
Another way for a human to teach an agent is to demon-
strate a task via remote-control or with his own body,
while the agent records state-action pairs, from which
it learns a general policy for the task [3].

In Apprenticeship Learning [1], a type of learning from
demonstration, the algorithm begins with an MDP\R
(as does the tamer framework; see Section 1). The
algorithm learns a reward function R from a human’s
period of control, and then the agent trains on the MDP.

Considering the demonstration type in which a human
controls the agent, there are some tasks that are too
difficult for a human trainer. This might be because
the agent has more actuators than can be put in a sim-
ple interface (e.g., many robots) or because the task



requires that the human be an expert before being able
to control the agent (e.g., helicopter piloting in simu-
lation). In these cases, a demonstration is infeasible.
But as long as the human can judge the overall quality
of the agent’s behavior, then he or she should be able
to provide feedback via tamer regardless of the task’s
difficulty.

2.3 Learning from Reinforcement (Shaping)
Within the context of human-teachable agents, a human
trainer shapes an agent by reinforcing successively im-
proving approximations of the target behavior. When
the trainer can only give positive reinforcements, this
method is sometimes called clicker training, which comes
from a form of animal training in which an audible click-
ing device is previously associated with reinforcement
and then used as a reinforcement signal itself to train
the animal.

Previous work on clicker training has involved teach-
ing tricks to entertainment agents. Kaplan et al. [9]
and Blumberg et al. [4] implement clicker training on
robotic and simulated dogs, respectively. Blumberg et
al.’s system is especially interesting, allowing the dog to
learn multi-action sequences and associate them with
verbal cues. Though significant in that they are novel
techniques of teaching pose sequences to their respective
platforms, neither is evaluated using an explicit perfor-
mance metric, and it remains unclear if and how these
methods can be generalized to other, possibly more
complex MDP settings.

Thomaz & Breazeal [18] interfaced a human trainer
with a table-based Q-learning agent in a virtual kitchen
environment. Their agent seeks to maximize its dis-
counted total reward, which for any time step is the sum
of human reinforcement and environmental reward.3

In another example of mixing human reinforcement with
on-going reinforcement learning, Isbell et al. [8] enable
a social software agent, Cobot, to learn to model hu-
man preferences in LambdaMOO. Cobot “uses rein-
forcement learning to proactively take action in this
complex social environment, and adapts his behavior
based on multiple sources of human [reinforcement].”
Like Thomaz and Breazeal, the agent doesn’t explicitly
learn to model the human reinforcement function, but
rather uses the human reinforcement as a reward signal
in a standard RL framework.

The tamer system is distinct from previous work on
human-delivered reinforcement in that it is designed
both for a human-agent team and to work in complex
domains through function approximation, generalizing
3As indicated in Footnote 1, combining human reinforce-
ment and environmental reward into one reward signal is
the narrower definition of shaping in reinforcement learn-
ing. As argued in [10], h and r are fundamentally different
signals that contain different information and thus should
be treated differently.
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Figure 1: Framework for Training an Agent Manually via Evaluative
Reinforcement (tamer).

to unseen states. It also uniquely forms a model of the
human trainer’s intentional reinforcement, which it ex-
ploits for action selection in the presence or absence of
the human trainer.

3. THE TAMER FRAMEWORK
Consider the Shaping problem description given in Sec-
tion 1. The agent’s role is by nature somewhat un-
derconstrained: it must learn from reinforcement such
that it maximizes performance (which it cannot mea-
sure). We hypothesize that the agent best fills its role
by learning a model of the trainer’s reinforcement and
exploiting the model in action selection.

A tamer agent seeks to learn the human trainer’s re-
inforcement function H : S ×A → R. Presented with a
state s, the agent consults its learned model Ĥ and, if
choosing greedily, takes the action a that maximizes
Ĥ(s, a). Figure 1 shows interaction between a hu-
man, the environment, and a tamer agent within an
MDP\R. Since the agent seeks only to maximize human
reinforcement, the optimal policy is defined solely by
the trainer, who could choose to train the agent to per-
form any behavior that its model can represent. When
the agent’s performance is evaluated using an objective
metric, we expect its performance to be limited by the
information provided by the teacher.

3.1 Motivating Insights
When we speak of autonomous learning agents, we mean
those that receive feedback in the form of environmental
reward (i.e., reinforcement learning agents [16]). The
principal challenge for such agents is, upon receiving
environmental reward, to assign credit from that re-
ward to the entire history of past state-action pairs. In
domains where the only discriminating reward is at the
end of the task, assigning this credit can be particularly
difficult. A key insight of the tamer framework is that
the problem of credit assignment inherent in reinforce-
ment learning is no longer present with an attentive
human trainer. The trainer can evaluate an action or
short sequence of actions, considering the long-term ef-
fects of each, and deliver positive or negative feedback
within a small temporal window after the behavior. As-
signing credit within that window presents a challenge



in itself, which we discuss in Section 3.3, but it is much
easier than assigning credit for an arbitrarily delayed re-
ward signal as in reinforcement learning. Assuming, for
now, that credit is properly assigned within the tempo-
ral window, we assert that a trainer can directly label
behavior. Therefore, modeling the trainer’s reinforce-
ment function H is a supervised learning problem.

Intuition and some evidence [8] suggest that a human
trainer’s reinforcement function, H, is a moving target.
Intuitively, it seems likely that a human trainer will
raise his or her standards as the agent’s policy improves,
expecting more to get the same reinforcement. Though
we have not experimentally studied this claim that a
human’s reinforcement function is a moving target, it
is discussed in further detail in [10]. Considering our
conjecture that H is a moving target function and that
the tamer agent should be able to exploit new data as
it becomes available, the supervised learning algorithm
should both be able to handle changes in the target
function and allow incremental updates.4 Additionally,
for best results, the algorithm should generalize to all
unseen samples (i.e., to states and possibly actions).
Examples of such algorithms include gradient descent
over the weights of a linear model (which we use in
our experiments) and backpropagation in a multi-layer
neural network.

As we will report in Section 5, compared to autonomous
learning algorithms, tamer dramatically reduces the
number of episodes required to learn a good policy. One
result of lowering the sample complexity is that if the
incremental updates to the model use a small step size,
the model’s output will not move far enough to ever
be the “true” human reinforcement function. But ide-
ally the learned function Ĥ should map to the human
reinforcement function H such that

Ĥ(s, a1) > Ĥ(s, a2) ⇐⇒ H(s, a1) > H(s, a2).
In this case, the policies created by greedily exploiting
Ĥ and H are equivalent.

3.1.1 Exploration
The tamer framework is agnostic to exploration, leav-
ing action selection as a black box to be filled by the
agent designer. However, we have found that greed-
ily choosing the action that is expected to receive the
highest reinforcement provides sufficient exploration for
many tasks, including those described in Section 5. This
counterintuitive finding is easily justified. In a given
state, a good trainer negatively reinforces any undesired
action, eventually dropping its expected reinforcement
below another action, resulting in a new (exploratory)
action choice. A non-greedy action selection method
is needed if there are actions of which the trainer is
not aware or does not know the value. Otherwise, the
4Supervised learning algorithms that have been used suc-
cessfully as function approximators for reinforcement learn-
ing fit these two requirements and thus make good candi-
dates for modeling the human.

Algorithm 1 A general greedy tamer algorithm

Require: Input: stepSize
1: ReinfModel.init(stepSize)

2: −→s ← −→
0

3:
−→
f ← −→

0
4: while true do
5: h ← getHumanReinfSincePreviousTimeStep()
6: if h $= 0 then

7: error ← h - ReinfModel.predictReinf(
−→
f )

8: ReinfModel.update(
−→
f , error)

9: end if
10: −→s ← getStateVec()
11: a ← argmaxa(ReinfModel.predict(getFeatures(−→s , a)))

12:
−→
f ← getFeatures(−→s , a)

13: takeAction(a)
14: wait for next time step
15: end while

trainer should be able to guide the tamer agent’s ex-
ploration sufficiently under greedy action selection.

3.1.2 Comparison with Reinforcement Learning
The tamer framework for shaping agents shares much
common ground with reinforcement learning, but there
are some key differences that are important to under-
stand in order to fully appreciate tamer.

In reinforcement learning, agents seek to maximize re-
turn, which is a discounted sum of all future reward. In
contrast, a tamer agent does not seek to maximize a
discounted sum of all future human reinforcement. In-
stead, it attempts to directly maximize the short-term
reinforcement given by the human trainer. It does this
because the trainer’s reinforcement signal is a direct la-
bel on recent state-action pairs.

Correspondingly, the human’s reinforcement function H
is not an exact replacement for a reward function R
within an MDP. Although it may be possible for a re-
inforcement learning algorithm to use H in lieu of a re-
ward function, it would be unnecessary extra computa-
tion, since H already defines a policy. We use MDP\Rs
because the environmental reward within MDPs func-
tion dictates the optimal policy, so R is removed to
make the human’s reinforcement function the sole de-
terminant of good and bad behavior.

Many reinforcement learning algorithms can be easily
converted to TAMER algorithms. We encourage inter-
ested readers to follow our step-by-step instructions at
http://www.cs.utexas.edu/users/bradknox/kcap09.

3.2 High-Level Algorithm
A high-level algorithm for implementing tamer is de-
scribed in Algorithm 1. After initialization of the rein-
forcement model ReinfModel, the state vector −→s , and
the feature vector

−→
f (lines 1-3), the algorithm begins a

loop that occurs once per time step (line 4).

In the loop, the agent first obtains a scalar measurement
of the human trainer’s reinforcement since the previous
time step (line 5). If the reinforcement value is nonzero,



then the error is calculated as the difference between
the actual reinforcement and the amount predicted by
the agent’s reinforcement model (line 7). The model,
left undefined for the general tamer algorithm, can be
instantiated in multiple ways as discussed below. The
calculated error is then used, along with the previous
feature vector, to update the reinforcement model (line
8). The update is not performed when h = 0 because
the trainer may not be paying attention or might even
have quit training altogether, satisfied with the trained
policy.

After the agent obtains the new state description, it
then greedily chooses the action a that, according to
the human reinforcement model, yields the largest pre-
dicted reinforcement (lines 10-11). Although we have
found that greedy action selection is sufficient in our
work thus far, more sophisticated action selection meth-
ods may be needed in some situations, and would fit just
as well within the tamer framework. The agent calcu-
lates features

−→
f of the state and action of the current

time step (line 12) and takes the chosen action (line 13)
before restarting the loop.

3.3 Credit Assignment to a Dense State-Action
History

In some task domains, the frequency of time steps is
too high for human trainers to respond to specific state-
action pairs before the next one occurs. In simulation,
it is technically possible to lower the frequency of time
steps. But doing so may change the character of the
task, and in physical domains (e.g. helicopter flight)
it may not be possible. Although we have not studied
exactly where the frequency threshold is, our experi-
ence and studies of human response times (Figure 2)
[7] have made it clear that having several seconds be-
tween time steps is enough for specific labeling and,
conversely, having several time steps per second is too
frequent for specific labeling.

Figure 2: Hockley’s
study of the distri-
bution of human re-
sponse times for vi-
sual searches of differ-
ent levels of complex-
ity.

For these faster domains, credit
from the human’s reinforce-
ment must be appropriately
distributed across some subset
of the previous time steps. Our
approach for credit assignment
with a linear model and gradi-
ent descent updates is shown
in Algorithm 2, which is an
extension of Algorithm 1 with
the model inline. The error
for an update is the differ-
ence between the projected re-
inforcement predicted by the
linear model, where the input
is a weighted sum of the state-
action features for each preced-
ing time step (lines 9-13), and

the actual reinforcement received (line 14). The weight
for any time step is its “credit”. The model is then
updated with that error and the weighted sum of fea-
tures (line 15).

3.3.1 Credit Calculation
To assign credit, we assume that the reinforcement sig-
nal (received at time 0) is targeting a single state-action
pair. This assumption will undoubtedly be wrong at
times, but the effects of the assumption will probably
be small since the credit is still spread out amongst re-
cent events, as described below. There are n time steps
that might be the target, beginning at times t1, t2, ..., tn,
where if i < j, then ti occurred more recently than tj .
(Therefore the time step beginning at ti ends at time
ti−1 if i > 1.) We define credit ct for a time step start-
ing at time ti5 and ending at ti−1 (or 0 if i = 1) to be
the probability that the reinforcement signal was given
for the event (s, a) that occurred during that time step.

We create a probability density function f over the de-
lay of the human’s reinforcement signal. Then for any
state-action pair, credit is calculated as the integral of
f from ti−1 to ti.

ct = P (event starting at ti was targeted)
= P (target event between ti−1 and ti sec. ago)

=
∫ ti

ti−1

f(x)dx

(If i = 1, then ti−1 = 0 in the above equation.) We
observe the constraint

n∑

i=1

P (event starting at ti was targeted) = 1

An example probability density function is shown in
Figure 3. In practice, we maintain a window of re-
cent time steps, pruning out those time steps that are
older and have near-zero probability (lines 10 and 21).
We also always use functions that have zero probabil-
ity before 0.2 seconds, assuming that human trainers
cannot respond in less than 0.2 seconds (supported by
Figure 2).

4. IMPLEMENTED ALGORITHMS
tamer is fully implemented and tested in two contrast-
ing domains. Though the tamer agent actively seeks to
maximize predicted human reinforcement H, the true
objective of the human-agent system is to maximize
some performance criteria, whether it be the trainer’s
subjective evaluation or an explicitly defined metric.
For this reason, and because measuring directly against
H is impractical to impossible, we evaluate tamer us-
ing R to provide the performance metric, which is the
cumulative MDP reward received throughout all episodes
5A time step can be thought of as a slice in time or an
interval in time. Considering that a choice to take action
a in state s changes the display seen by the human trainer
until the next time step, we consider a time step to be an
interval.



Figure 3: Probability density function f(x) for a gamma(2.0, 0.28)
distribution. Reinforcement signal h is received at time 0. If t and
t′ are times of consecutive time steps, credit for the time step at t
is

R t
t′ f(x)dx. Note that time moves backwards as one moves right

along the x-axis.

Algorithm 2 A greedy tamer algorithm with credit assign-
ment, using a linear model and gradient descent updates

Require: Input: stepSize, windowSize,
1: Crediter.init(windowSize)

2: −→s ← −→
0

3:
−→
f ← −→

0

4: −→w ← −→
0

5: while true do
6: Crediter.updateTime(clockTime())
7: h ← getHumanReinfSincePreviousTimeStep()
8: if h $= 0 then

9:
−−−−−−−→
credFeats ← 0

10: for all (
−→
ft , t) ∈ Crediter.historyWindow do

11: ct ← Crediter.assignCredit(t)

12:
−−−−−−−→
credFeats ←

−−−−−−−→
credFeats + (ct ×

−→
ft )

13: end for
14: error ← h − ( −→w ·

−−−−−−−→
credFeats )

15: −→w ← −→w+(stepSize × error ×
−−−−−−−→
credFeats)

16: end if
17: −→s ← getStateVec()
18: a ← argmaxa( −→w · (getFeatures(−→s , a)))

19:
−→
f ← getFeatures(−→s , a)

20: takeAction(a)

21: Crediter.updateWindow(
−→
f )

22: wait for next time step
23: end while

in a run. In each domain, R (ignored by the agent) was
easily communicated to the trainer, who was instructed
to train his or her agent to earn the highest sum of
environmental reward per trial episode.6 Also, in each
domain the state and action are displayed graphically
to the human trainer. Both task domains were imple-
mented within the RL-Library.7 One domain is Tetris,
a puzzle computer game with a large state space and a
variable number of actions per time step (as is standard
in the literature, a final placement of a falling Tetris
piece is considered an action). The time step frequency
in Tetris, at less than one action per second, allowed
human trainers to easily reinforce individual actions.

The other domain is Mountain Car, in which a simu-
lated car must get to the top of a hill. The car begins
between two steep hills and must go back and forth
to gain enough momentum to reach the goal. Moun-
6Our Tetris specification follows that described by Bert-
sekas and Tsitsiklis [2]. Experimental details and videos
of agents before, during, and after training can be found at
http://www.cs.utexas.edu/users/bradknox/kcap09.
7http://code.google.com/p/rl-library/

tain Car has a continuous, two-dimensional state space.
In our experiments, actions occurred approximately ev-
ery 150 milliseconds, preventing trainers from labeling
specific actions. Also, agents started each episode in a
random location within bounds around the bottom of
the hill.

These two domains complement each other. Tetris has a
complex state-action space and low time step frequency,
and Mountain Car is simpler but occurs at a high fre-
quency.

4.1 Tetris
The algorithm used to implement tamer on Tetris is a
specific implementation of Algorithm 1, using a linear
model and gradient descent over the weights of each
feature. The function getFeatures(−→s , a) on line 13
of the algorithm considers feature vectors derived from
both the current state and the next state (before the
new Tetris piece appears). The next state is merely
the previous state with the new blocks in place (which
the action dictates) with any full horizontal lines re-
moved. The difference between the two feature vectors
is returned and actually used by tamer as the features
over which to learn.

4.2 Mountain Car
The Mountain Car tamer algorithm follows the algo-
rithm given for tamer with credit assignment described
in Algorithm 2, also using a linear model with gradient
descent updates. The function getFeatureVec(−→s , a)
on lines 19 and 20 is implemented using 2-dimensional
Gaussian radial basis functions as described in [16].
Credit assignment followed a Uniform(0.2, 0.6) distri-
bution (described in more detail in Section 3.3).

5. RESULTS AND DISCUSSION
Our experiments test the first three of the the expected
benefits of shaping that are described in the Introduc-
tion: shaping decreases sample complexity for learning
a ”good” policy, an agent can learn in the absence of
a coded evaluation function, and lay users can teach
agents the policies they prefer. For the experiments,
human trainers observed the agents in simulation on a
computer screen. Positive and negative reinforcement
was given via two keys on the keyboard. The train-
ers were read instructions and were not told anything
about the agent’s features or learning algorithm. Nine
humans trained Tetris agents. Nineteen trained Moun-
tain Car agents. For each task, at least a fourth of the
trainers did not know how to program a computer.

5.1 Tetris
Tetris is notoriously difficult for temporal difference learn-
ing methods that model a function such as a value or
action-value function. In our own work, we were only
able to get Sarsa(λ) [16] to clear approximately 30 lines
per game with a very small step size α and after hun-
dreds of games. Bertsekas and Tsitiklis report that
they were unable to get optimistic TD(lambda) to make



”substantial progress”. RRL-KBR [15] does somewhat
better, getting to 50 lines per game after 120 games or
so.8 The only successful approach that learns a value
function (of those found by the authors) is λ-policy it-
eration [2], which reaches several thousand lines after
approximately 50 games.

However, λ-policy iteration differs in two important ways
from the rest of these value-based approaches. First, it
begins with hand-coded weights that already achieve
about 30 lines per game. Getting to that level of play
is nontrivial, and some learning algorithms, such as
Sarsa(λ), fail to even reach it when starting with all
weights initialized to zero. Second, λ-policy iteration
gathers many state transitions from 5 games and per-
forms a least-squares batch update. All other successful
learning methods likewise perform batch updates after
observing a policy for many games (as many as 500
in the best-performing algorithms), likely because of
the high stochasticity of Tetris. Additionally, of those
that have the necessary data available, all previous algo-
rithms that model a function are unstable after reaching
peak performance, unlearning substantially until they
clear less than half as many lines as their peak.

In our experiments, human trainers practiced for two
runs. Data from the third run is reported. Of the al-
gorithms that model an actual function, our gradient
descent, linear tamer is the only one that clearly does
not unlearn in Tetris.9 Of those that also perform in-
cremental updates, tamer learns the fastest and to the
highest final performance, reaching 65.89 lines per game
by the third game (Table 1 and Figure 4).10

Policy search algorithms, which do not model a value
or reinforcement function, attain the best final per-
formance, reaching hundreds of thousands of lines per
game [5, 17], though they require many games to get
there and do not learn within the first 500 games.

Within our analysis, tamer agents learn much more
quickly than all previously reported agents and reach
a final performance that is higher than all other incre-

8We should note that Ramon et. al. rejected a form of their
algorithm that reached about 42 lines cleared on the third
game. They deemed it unsatisfactory because it unlearned
by the fifth game and never improved again, eventually per-
forming worse than randomly. Ramon et al.’s agent is the
only one we found that approaches the performance of our
system after 3 games.
9This statement is supported by training by one of the au-
thors but not necessarily by the subjects, since the trainer
subjects usually stopped training after the tamer agent
reached satisfactory performance.

10Most trainers stopped giving feedback by the end of the
fifth game, stating that they did not think they could train
the agent to play any better. Therefore most agents are op-
erating with a static policy by the sixth game. Score varia-
tions come from the stochasticity inherit in Tetris, including
the highest scoring game of all trainers (809 lines cleared),
which noticeably brings the average score of game 9 above
that of the other games.

Table 1: Results of various Tetris agents.

Method Mean Lines Cleared Games

at Game 3 at Peak for Peak

tamer 65.89 65.89 3

RRL-KBR [15] 5 50 120

Policy Iteration [2]
∼ 0 (no learning 3183 1500

until game 100)

Genetic Algorithm [5]
∼ 0 (no learning 586,103 3000

until game 500)

CE+RL [17]
∼ 0 (no learning 348,895 5000

until game 100)
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Figure 4: The mean number of lines cleared per game by experimen-
tal group.

mentally updating algorithms.

5.2 Mountain Car
The Tetris results demonstrate TAMER’s effectiveness
in a domain with relatively infrequent actions. Con-
versely, our experiments in Mountain Car test its per-
formance in a domain with frequent actions. The au-
tonomous algorithm used for comparison was Sarsa(λ) [16]
with the same function approximator (a linear model
over Gaussian RBF features, using gradient descent up-
dates), an algorithm that is known to perform well on
Mountain Car. Two Sarsa(λ) agents were used: one
tuned for total cumulative environmental reward across
all previous episodes (Figure 6) after 3 episodes and
one tuned for after 20 episodes (which we will refer
to as Sarsa-3 and Sarsa-20, respectively). We tuned
via a hill-climbing algorithm that varied one parame-
ter (α, λ, or ε in the standard notation of Sarsa [16])
at a time, testing the agent’s performance under each
value for that parameter, taking the best performing
value, and then repeating (for fifty or more iterations).
The specific number of episodes (3 and 20) were chosen
to exhibit different emphases on the trade-off between
learning quickly and reaching the best asymptotic per-
formance.

The tamer agents were shaped for three runs of twenty
episodes by each trainer. We consider the first run
a practice run for the trainer and present the com-
bined data from second and third runs. Results are
shown in Figures 5 and 6. Figure 5(a) shows that the
TAMER agents, on average, consistently outperformed
the Sarsa-3 agent and outperformed the Sarsa-20 for the
first five episodes, after which Sarsa-20 agents showed
comparable performance. Under the guidance of the
best trainers (Figure 5(b)), tamer agents consistently
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Figure 5: Error bars show a 95% confidence interval (with a Gaussian
assumption). (a) The mean environmental reward (-1 per time step)
received for the Mountain Car task for the second and third agents
(runs) shaped by each trainer under tamer and for autonomous agents
using Sarsa(λ), using parameters tuned for best cumulative reward
after 3 and 20 episodes. (b) The average amount of environmental
reward received by agents shaped by the best five and worst five
trainers, as determined over all three runs.
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Figure 6: Mean cumulative environmental reward received for the
Mountain Car task.

outperform any Sarsa agent, and, under the worst train-
ers, they perform somewhat worse than the Sarsa-20
agent. Most importantly, tamer agents, on average,
also outperformed each Sarsa agent in mean cumula-
tive environmental reward through the length of a run
(Figure 6). Since each time step incurred a -1 environ-
mental reward, Figure 6 is also a measure of sample
complexity. The four trainers who did not have a com-
puter science background achieved performance as good
or marginally better than the fifteen who did. Overall,
the results, though less dramatic than those for Tetris,
support our claim that tamer can reduce sample com-
plexity over autonomous algorithms.

6. CONCLUSION AND FUTURE WORK
The tamer framework, which allows human trainers to
shape agents via positive and negative reinforcement,
provides an easy-to-implement technique that:

1. works in the absence of an environmental reward
function,

2. reduces sample complexity, and
3. is accessible to people who lack knowledge of com-

puter science.
Our experimental data suggests that tamer agents out-
perform autonomous learning agents in the short-term,
arriving at a “good” policy after very few learning tri-
als. It also suggests that well-tuned autonomous agents
are better at maximizing final, peak performance after
many more trials.

Given this difference in strengths, we aim to explore how
best to use both human reinforcement, H, and, when

available, environmental reward, R, relying on the for-
mer more heavily for early learning and on the latter for
fine-tuning to achieve better results than either method
can achieve in isolation. We would also like to imple-
ment TAMER in tasks that are currently intractable for
autonomous learning algorithms. Further, we wish to
investigate how tamer might need to be modified for
tasks in which a trainer cannot evaluate behavior within
a small temporal window (e.g., the behavior is hidden
at times or the results of the behavior are delayed).
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