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Abstract. Two main challenges of robot action planning in real do-
mains are uncertain action effects and dynamic environments. In this
paper, an instance-based action model is learned empirically by robots
trying actions in the environment. Modeling the action planning prob-
lem as a Markov decision process, the action model is used to build
the transition function. In static environments, standard value iteration
techniques are used for computing the optimal policy. In dynamic envi-
ronments, an algorithm is proposed for fast replanning, which updates
a subset of state-action values computed for the static environment. As
a test-bed, the goal scoring task in the RoboCup 4-legged scenario is
used. The algorithms are validated in the problem of planning kicks for
scoring goals in the presence of opponent robots. The experimental re-
sults both in simulation and on real robots show that the instance-based
action model boosts performance over using parametric models as done
previously, and also incremental replanning significantly improves over
original off-line planning.

1 Introduction

In many robotic applications, robots need to plan a series of actions to achieve
their goals. In comparison to classical planning, planning on-board robotic agents
introduces several new challenges, including (1) exceedingly noisy actions effects,
often with irregular noise distributions; (2) dynamically changing environments;
and (3) a need for real-time decision-making despite limited processing power.
In this paper, the problem of robot action planning in dynamic environments
with uncertain action effects is considered. We introduce an instance-based ac-
tion model that captures arbitrary distributions of action effects and use it for
action planning. To cope with dynamically changing environments, we introduce
an efficient on-line incremental replanning method that modifies the transition
model to account for the effects of other agents and then replans only for the
affected states.

Learning action models has been studied in classical planning (e.g. see [1, 2]),
and also in probabilistic planning (e.g. see prioritized sweeping [3]). But those
methods use many trials to learn the model; instead we use domain heuristics
to learn the model with few experiments prior to planning.
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A common shortcoming of prior methods for learning probabilistic action
models is the assumption that the noise is normally distributed, which in many
cases is not true. To overcome that shortcoming, we propose an instance-based
approach for learning the action model. The action model is built empirically by
trying actions in the environment. Each sample effect is stored and is considered
individually for planning purposes.

The planning problem is modeled as a Markov Decision Process (MDP).
The transition function of the MDP is built with the help of the learned action
model. Using value iteration [4] with state aggregation, a plan which maximizes
the received reward is generated. When the environment is static, the value
iteration algorithm can be run offline. In dynamic environments, the planning
must be performed online. The online algorithm must be fast enough to be
within computational bounds of the robots. Though fast replanning algorithms
for robotic applications have been studied for classical planning problems (e.g.
see [5, 6]), the probabilistic replanning algorithms that we know of (e.g. [7]), are
computationally expensive.

When using an instance-based approach, the observation of each dynamic
factor changes the modeled transition function of the MDP. But it only changes
the values of a small subset of state-action pairs. In the replanning algorithm,
using domain-dependent heuristics, the state-action pairs that are affected by
the dynamic factors are discovered, and only the values of those state-action
pairs are updated.

To evaluate our methods, we use a goal scoring task from the 4-legged
RoboCup competitions. Chernova and Veloso [8] learn models of kicks for the 4-
legged robots, however they do not discuss how they use this model. Their model
consists of the speed and direction of the ball in the first second. We extend their
work by introducing an instance-based model instead of their parametric model,
and show the advantages of using such an instance-based model. Furthermore,
we use the kick model for action planning in the presence of opponent robots.

The two main contributions of this paper are:

– An approach to dynamic replanning of action sequences based on an instance-
based representation of action effects that is fully-implemented and tested
on a physical robot.

– An empirical comparison of an instance-based action model and the more
popular parametric action models on a physical robot.

The remainder of this paper is organized as follows. Related work is discussed
in Section 2. In Section 3 the RoboCup test-bed is presented. In the next three
sections, we consider the problem as an abstract MDP. In Section 4 the details of
the instance-based action model, and how to learn in it, are provided; Section 5
introduces the planning algorithm for static environments; and Section 6 extends
the planning problem to dynamic environments. The implementation details of
the RoboCup domain are presented in Section 7. In Section 8, experimental
results are provided, and Section 9 concludes.
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2 Related Work

In recent years there has been significant progress in building autonomous mobile
robots. For example Burgard et al. have developed an autonomous tour guide
robot [9]. Also, there have been many advances in robot soccer playing agents for
the RoboCup competitions. However the focus of the research in the RoboCup
4-legged community is mainly on the lower level components such as vision,
localization or locomotion. The action selection has generally been reactive or
the result of shallow look-ahead. The main reason is that the action effects are
highly uncertain and creating an accurate action model is challenging. In this
paper using the lower level components, we tackle the problem of building an
accurate action model and use that to incorpate a full-blown planning approach
based on an MDP representation.

Researchers have used planning methods for robotic applications. For exam-
ple Farritor and Dubowsky build a climbing robot which uses planning to find a
sequence of actions which achieves its goal [10]. In earlier work Frommherz and
Werling propose using heuristic search for planning and show experiments in a
simple assembly task [11]. Compared to the problem considered in this paper,
in the mentioned papers the action effects are not nearly as uncertain. Thus a
parametric action model performs sufficiently well. Also, the environment is not
dynamic, so there is no need for replanning.

Instance-based methods have been used for various fields such as health
care, assessment and design [12]. Also Planning tasks have been solved with
instance-based methods [12]. Atkeson [13] investigates the use of an instance-
based method (locally weighted regression) to learn task models for control.
Gabel and Riedmiller use an instance based method for value function approxi-
mation of a reinforcement learning problem in the soccer simulation domain [14].
Atkeson and Santamaria compare model based (using instance-based method)
and model-free reinforcement learning in a simple robotic task (pendulum swing
up) and conclude that model based methods learn faster [15]. Note that in the
mentioned robotic applications the uncertainty of the action effects is low and
also the environment is static. We take the next step of evaluating instance-based
action models in a dynamic robotic environment with highly uncertain action
effects.

3 Problem Description

As a test-bed domain for our research we use a subtask of the RoboCup four
legged league. In this work we consider single robot goal scoring possibly against
multiple opponents. We assume the opponents only block the ball, and do not
kick or grab it.

As baseline software, we use the UT Austin Villa code base [16], which
provides robust color-based vision, fast locomotion, and reasonable localization
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within a 3.6m × 5.4m area1 via a particle filtering approach. Even so, the robot
is not, in general, perfectly localized, as a result of both noisy sensations and
noisy actions effects. The robot also has limited processing power, which limits
the algorithms that can be designed for it.

The baseline software provides different types of kicks. The two that are con-
sidered in this work are called fall-kick (see Figure 1(a)) and head-kick (see
Figure 1(b)). The effects of these kicks are probabilistic based on how accurately
they are executed and what exact part of the robot hits the ball.

(a) (b)

Fig. 1. (a) Representation of fall-kick from left to right (b) Representation of head-

kick from left to right

4 Instance-Based Action Model

The first step of planning with any action is understanding its effects. We build
the action model empirically by trying actions in the domain. In most real robot
applications, actions have probabilistic effects. Thus the model must be able to
represent uncertainty in action effects.

Previous methods (e.g. [8]) use para-

Fig. 2. Representation of the model of
fall-kick. The position of the robot
and kick direction is marked by an ar-
row. Each dot represents a sample action
effect.

metric models of actions. Most popu-
lar methods for modeling the noise as-
sume a Gaussian distribution of noise
for each of the parameters of the ac-
tion model. Instead we take an instance-
based approach, where each action ef-
fect from experiments is called a sam-
ple action effect, and is stored in the
model. We claim and show in the ex-
periments, that our instance-based ac-
tion model is more effective than a
parametric action model.

In addition to noisy action effects, robots are faced with noise from other
sources (e.g. uncertain localization). Previous methods of building action models
(e.g. [8]) try to minimize the effects of such other noises on the action model. If
the action model does not represent the noise from all sources, the effects of the
environment’s noise must be accounted for in some other way for action planning

1 The field is as specified in the 2005 rules of the RoboCup Four-Legged Robot League:
http://www.tzi.de/4legged
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(e.g. an expensive way of accounting for localization errors is by planning from
a group of possible positions). Instead, we aim at having noise from all sources
captured by the action model. In this way, if the action model is used with any
planning algorithm, all the sources of noise are also considered. This requires
the samples to be collected in a situation similar to the one that the robot faces
in the real environment, not in some other controlled setting.

An example of an instance-based action model for the fall-kick in the
RoboCup domain is shown in Figure 2.

5 Planning

In this section, we show how the instance-based action model can be used for
action planning. We model the problem as a Markov decision process (MDP)
and use a value iteration method to solve it. In this section the environment is
assumed to be static. Dynamic environments are considered in Section 6.

The planning problem is modeled as an MDP (S,A, Pr(s
′

|s, a), R), where:

– S is a discrete set of states. If the state space is continuous, it should be
discretized. We show that discretizing the state space does not have much
of a detrimental effect in the RoboCup goal shooting test-bed.

– A is the set of possible actions.
– Pr(s

′

|s, a) is the true continuous state transition probability function. It
gives the probability of getting to state s

′

after taking action a in state s.
Because of noise in the environment and uncertainty of action effects, the
transition function is stochastic

– R(s, a) ∈ R is the reward function.

The goal of the robot is to find a policy π : S 7→ A that maximizes the received
reward. The policy determines which action is chosen by the robot from each
state.

Pr(s
′

|s, a) is not known to the robot, however the robot can use the action

model to approximate it. The approximation of Pr(s
′

|s, a) is called P̃ r(s
′

|s, a).

The approximation is based on the action model. For computing P̃ r(s
′

|s, a),

where s is a discrete state, a representative of s is used for computing P̃ r(s
′

|s, a)
(center of the cell in grid discretization); when s is a continuous state, the true

state (TS) is used to computed P̃ r(s
′

|TS, a). R(s, a) is also computed with the

help of the action model. The details of computing P̃ r(s
′

|s, a) and R(s, a) for
the RoboCup goal shooting test-bed are presented in Section 7.

For state s, the value V π(s) is defined as the expected sum of rewards from s

until the end of the episode, while following policy π. V ∗(s) is the optimal policy
if V ∗(s) ≥ V π(s) for all policies π and all s ∈ S. Qπ(s, a) is defined as the sum
of the rewards received from state s until the end of the episode, while following
policy π (see Equation 1), if the first action executed is a. Q∗(s, a) is the optimal
such policy. The advantage of using Qπ(s, a) over V π(s, a) is presented in the
next section, where only a subset of Q values needs to be updated.
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We use following two equations to perform standard value iteration [17]:

Q(s, a) = R(s, a) +
∑

s
′
∈S

P̃ r(s
′

|s, a)V ∗

t−1(s
′

) (1)

V (s, a) = max
a∈A

Q(s, a) (2)

When the system is in state s, a common practice for action selection is to
discretize the state space (e.g. using a grid instead of the exact position) and to
choose action a such that it maximizes Q(s, a). Discretization makes solving the
MDP tractable. But enforcing that each position in a discrete grid-cell (state)
takes the same action can lead to dramatic sub-optimality. In order to alleviate
this effect, we take the middle ground: for action selection, instead of the grid
state, the robot uses its true state estimate (e.g. true position) that maximizes
the following value:

R(TS, a) +
∑

s
′
∈S

P̃ r(s
′

|TS, a)V ∗(s
′

) (3)

where TS is the true state estimate of the robot. Note that TS is only used for
action selection, not for the learning process.

This way, the effects of discretizing the state are deferred to the next step,
and it results in a better policy. In [16], we empirically show that in the RoboCup
test-bed, discretizing the environment with the true state for action selection is
very close in performance to using the true state in planning.

Note that with discretized state (grid position) the policy can be directly de-
rived from the V -values. However with the true state, all possible actions must be
evaluated, requiring significant, but manageable (on the Aibo) computational re-
sources. In the experiments section the advantage of this action selection method
is showed empirically in simulation.

6 Replanning

In the previous section, the environment was assumed to be static, and the value
function could be computed offline. In this section, the possibility of the presence
of dynamic factors (e.g. the presence of opponent robots in the RoboCup test-
bed) is considered. Existence of dynamic factors changes the transition function
of the MDP, and the value function for the new MDP needs to be computed
online. Because of the robot’s limited processing power and need for real-time
decision making, performing full online value iteration for consideration of the
dynamic factors is not possible. In this section a fast replanning algorithm is
presented, which leverages the Q-values that are computed for the static envi-
ronment.

If the dynamic factors are considered in computing P̃ r(s
′

|s, a) in Equation 4,
the value iteration and action selection algorithms described in Section 5 can
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also be applied to the dynamic environment. However dynamic factors, by their
nature, are not known in advance.

Similar to Qπ(s, a), Qπ(s, a|F ) is defined as the sum of the received reward
in the presence of dynamic factors F , from state s until the end of the episode,
while following policy π (see Equation 3), if the first action to execute is a.
Q∗(s, a|F ) is the optimal such policy.

In the systems that we are considering, the difference between Q∗(s, a) and
Q∗(s, a|F ) is only substantial for states where F has a direct effect on Q(s, a).
For the rest of the states, Q∗(s, a|F ) ≈ Q∗(s, a). This fact, which is typical
of many dynamic systems, where the dynamic factors have an effect on only a
subset of the Q-values, is the basis of the proposed replanning algorithm.

Assuming Q(s, a) is the current Q-function, the algorithm for updating the
Q-values in the event of observing dynamic factor f is as follows:

1. Flag the (s, a) pairs that are potentially affected by f (using domain-dependent
heuristics).

2. For flagged pair (s, a), there is a good chance that Q(s, a|f) is very different
from Q(s, a). Thus, if (s, a) is flagged, Q(s, a|f) is initialized to zero, and
otherwise, it is initialized to Q(s, a).

3. Only for flagged pairs (s, a), the Q(s, a|f) are updated using Equation 1.
Notice that only one round of updates is performed. After all the Q-updates,
the V values are re-computed using Equation 2.

Action selection is the same as in the previous section. The two main benefits
of our replanning algorithm are that it is fast and the robot can distribute the
value iteration steps over several decision cycles, so the robot does not miss
action opportunities.

Recall that the robot does another level of inference on the effects of actions
in the action selection step, so the effects of adding f is effectively backed up
two steps.

7 Implementation Details

In this section the implementation details of the instance-based action model
(Section 4), planning (Section 5), and replanning (Section 6) algorithms for the
goal scoring test-bed (Section 3) are presented.

7.1 Learning a Kick Model

The main action for scoring goals is kicking (assuming the robot walks to the
new position of the ball after each kick action). Kicks (as shown in Figures 1(a)
and 1(b)) have uncertain (i.e. probabilistic) effects on the final position of the
ball, which is based on the exact point of contact between the robot and the ball.
In this section we present the implementation details of learning the instance-
based kick model.
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Chernova and Veloso [8] use the average and standard deviation for the speed
and angle of each kick to model the kick. They measure the angle and distance
that the ball travels in one second after the kick. By just considering the kick in
the first second, and also setting the initial position of the ball by hand, they try
to minimize the noise in their kick model. They do not provide details of how
they use this model. But a popular way of using average and standard deviation
is modeling the parameters (angle and distance) with Gaussian distributions.

In contrast, for creating our kick model, the robot approaches the ball, grabs
it, and kicks it to the center of the field. Right before kicking, it records its
position (kick position), which includes possible localization errors. Afterwards,
the robot follows the ball, and when the ball stops moving, a human observer
sends a signal to the robot and the robot evaluates the ball position and stores
it (final ball position) 2. The gathered sample kick effects (kick position, final
ball position) are processed by an offline program, and for each kick sample,
the difference between the final ball position and the kick position is computed.
These changes in x and y coordinates get discretized and are stored in a grid.

The learned action model is a three dimensional array KT , where for kick
type k, KT [k][x][y] represents the number of kicks that changed the position of
the ball for x grid cells in the x-axis and y grid cells in the y-axis. Figure 2 shows
KT[fall-kick] where the position of the robot (kick position) and kick direction
is shown with the arrow, and each black dot represents one sample action effect
resulting in the ball ending up in that grid cell. The main rectangular grid
represents the size of the legged soccer field.

Two fundamental differences between our model and Chernova and Veloso’s
[8] as well as other usual action models (e.g. [1, 2]) are that ours is (1) instance-
based, and (2) unlike usual action models, where the designers make an effort
to reduce the noise (e.g. tracking for one second, and putting the ball in front of
the robot in [8]), we aim at designing an action model which captures the full
environmental noise.

7.2 Planning

We begin by dividing the robot’s environment into the disjoint grid G. Dotted
lines in Figure 3 show the actual grid used in the experiments. KT is the set
of different kick types available to the robot, and D is a discrete set of possible
kick directions.

In Section 8, we empirically show that discretizing the field does not have
much of a determental effect on the effectiveness of the algorithm.

The MDP (S,A, Pr(s
′

|s, a), R) for the test-bed problem is defined as:
S = G is a set of states, representing the grid cell that the ball is in. The

center of a cell is assumed as the position of the grid cell. In the rest of the
paper, the state is also used to point at the grid cell where the ball is located
in that state. A = KT × D is the set of possible actions, which is kicking with
a specific kick type (from KT ) at a direction (from D). Pr(s

′

|s, a) is the state
transition probabilities. R(s, a) is the reward function and is the probability of
scoring a goal (with just one kick) from state s using action a.

2 In principle it is possible for the robot to recognize when the ball has stopped moving,
but our robots do not have that capability
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The kick model (KT ) is used to approximate P̃ r(s
′

|s, a). KT is projected to
the starting point of the kick with the kick direction to get a distribution over kick
effects (i.e. the possible cells that the ball can land in). This new distribution is

P̃ r(s
′

|s, a). More precisely P̃ r(s
′

|s, a) is computed using the following equation:

Fig. 3. Soccer field which is divided
into a grid. A sample kick with
the possible effects is also shown in
presence of an opponent robot.

P̃ r(s
′

|s, a) =
KT [k][s

′

xd − sxd][s
′

yd − syd]

N [k]
(4)

where sxd (syd) is the x-index3 (y-index)
of the grid cell containing the ball in s, af-
ter the transformation that transforms the
kick direction to the x-axis. For example if
the a is the kick action shown in Figure 3,
and s

′

is the grid cell shown on the field
(Figure 3), then s

′

xd − sxd = 0, s
′

yd − syd =

+1. Thus P̃ r(s
′

|s, a) = KT [k][0][1]
N [k] = 2

118

For each state s, the center of the cell is
used for computing sxd and syd. k is the type of action a, and N [k] is the num-
ber of kick samples of type k.

R(s, a) is also computed with the help of the action model, that is, R(s, a)
is equal to the percentage of the sample kick effects from the kick model that
result in a goal from state s by taking action a. A line is computed from the
robot position to the final kick effect’s position, if that lines intersects the goal
line, it is considered a goal.

The value iteration and action selection algorithms described in Section 5 are
used for computing Q-values and action selection. Note that for static systems
the value iterations are performed offline. Each round of value iteration on the
Aibo robot’s processor roughly takes 2 seconds, and each decision cycle is around
33 milliseconds. This shows why performing multiple rounds of value iteration
is not feasible for dynamic systems, and therefore there is a need for a fast
replanning method.
7.3 Replanning

Opponent robots in the goal scoring test-bed are considered as dynamic factors.
We assume that opponent robots only block the ball and do not grab or kick
it. The robot models the blocking as ball reflection from the opponent robots.
That is, if the kick trajectory of a kick sample in the kick model would hit any
of the opponent robots, the reflection from the opponent robot is assumed by
the robot as the final position of the ball. Sample kick effects of a fall-kick

(see Figure 1(a)) in presence of an opponent robot are shown in Figure 3. The
unfilled circles are the possible kick effects when the opponent does not exist.

The replanning algorithm presented in Section 6 is used to update the Q

values. In the first step of the algorithm, a pair (s, a) in the presence of the
opponent robot f is flagged for recomputation of its value if f is reachable by

3 x-index of the grid-cells in the ith row of the grid is i.
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an average kick a from s (i.e. instead of the kick model of a, it uses the average
distance and angle of kick a). 4

One special case to consider is when the opponent robot o intersects with a
grid cell g, and based on a sample action effect, the ball also ends up in grid cell
g. The value of a point in cell g is highly dependent on which side of opponent o

the point is located. If the final ball point is on the same side of o as the center
of cell g, V ∗(g) is used, and if not, average V values of the cells adjacent to g

and on the same side of o as the ball are used.
One round of full updates with the provided incremental planning roughly

takes 1 second, and we distribute that process over 25 decision cycles. Given the
fact that most of the 33 milliseconds of the decision cycle is already taken by the
vision processing, the robot on average loses every other cycle while perform-
ing the incremental update (effectively the decision cycle while performing the
update is closer to 66 milliseconds).

8 Experimental Results

The algorithms are evaluated both on a custom-built AIBO simulator [16] and
also on the real AIBO robots. The simulator, though abstract with respect to
locomotion, provides a reasonable representation of the AIBO’s visual and lo-
calization capabilities, and allows for a more thorough experimentation with
significant results. The kick model used in the simulator is the same as the one
used on the robot. Thus, the simulation results are based on the assumption
of a correct kick model. There are methods of active localization (e.g. [18]) to
reduce the localization errors, which are not considered here and can be used
orthogonally with this work. Thus, robots should deal with large localization
errors (in the simulation, this is reflected in the learned kick model), and that
results in lower scoring percentages.

Five different algorithms are compared in this section. The considered algo-
rithms include:

– AtGoal: In this algorithm, the robot always shoots directly at the goal
using fall-kick which is the more accurate kick. It is used as a baseline
algorithm.

– Plan: This is the planning algorithm (Section 5) for the clear field, where no
opponent robot is present. In clear fields, this is the algorithm of choice, but
it is also used to compare to RePlan in the presence of opponent robots.

– RePlan: This is the planning algorithm presented in Section 6, where the
robot observes the position of the opponent robots online.

– FullPlan: This algorithm is used for comparison with RePlan. In FullPlan,
it is assumed that the position of the opponent robots is known as a priori,
and an offline algorithm performs the full value iteration, and passes the
Q-values to the robot.

4 More elaborate techniques that consider all kick samples proved to need heavy com-
putation, which is not available on the robots.
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– ParamPlan (ParamFullPlan): This is similar to the Plan (FullPlan

for the case of ParamFullPlan) algorithm, but instead of the full instance-
based kick model, a parametric kick model is used. Average and standard
deviation (similar to [8]) for distance and angle of each kick sample is com-
puted. Two different Gaussians are assumed, one for the angle, and the other
for the distance of the kick samples. Each time the robot considers a kick,
it draws n random samples from each of the Gaussians, where n is equal
to the number of different kick samples that it would have considered for
the instance-based kick model. For each of the n pairs of (angle, distance),
it evaluates the kick. The final evaluation is based on the average of the n

evaluations. This experiment is used to show the power of the instance-based
kick model compared to the parametric kick model with normalized noise.

Comparing RePlan with AtGoal shows the general effectiveness of our
approach. The advantage of RePlan compared to Plan shows the benefit of
the replanning algorithm. Experiments also show that performance of RePlan

is close to FullPlan which highlights the effectiveness of the proposed fast
replanning algorithm. Comparing RePlan with ParamPlan demonstrates the
benefit of using instance-based action models.

The grid used in the experiments is 7 × 10 and is shown in Figure 3. The
number of rounds of value iteration is set at 20.

8.1 Simulation Results

In the first experiment, the environment is assumed to be static. In later exper-
iments, the algorithms are evaluated in dynamic environments. At the end of
this section, the effects of considering the true position for action selection (see
Section 5) are investigated. While doing so, we also argue that, the effects of
assuming a grid for representing the position are minor.

Each episode starts with the ball positioned in a starting point, and is finished
when a goal is scored or the ball goes out of bounds. Each trial consists of 100
episodes. The percentage of the episodes which resulted in goals and the average
number of kicks per episode are computed for each trial. The reported data is
averaged over 28 trials.

Clear Field Experiment We start the experiments with no opponents (Fig-
ure 4). Two starting points for the ball are considered: center point (Figure 4(a))
and the upper-left point (Figure 4(b)).

Recall that the AtGoal algorithm only uses fall-kick. For a fair compari-
son between AtGoal and Plan, the result for the Plan(fall-kick) algorithm,
which is similar to Plan, but only uses fall-kick, is also presented. As the re-
sults in Table 1 suggest, using the head-kick does not make much of a difference
for the Plan algorithm. For that reason, in the next experiments Plan(fall-

kick) is no longer considered. However, one of the benefits of the algorithms
presented in this paper is that they enable the addition of newly designed kicks.
All that is needed is their instance-based models.
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The scoring percentage and average number of kicks per episode for AtGoal,
Plan and ParamPlan are presented in Table 1. As shown in the table, when
the starting ball point is at the center of the field, planning significantly increases
performance over the AtGoal algorithm by 30%, and increases the performance
by 76% when the starting ball position is the upper-left point. For the planning
algorithm, the average number of kicks is also higher, which is a compromise for
achieving a better scoring percentage.

The effectiveness of the instance-based kick model is shown by the significant
advantage of the Plan algorithm compared to ParamPlan in Table 1. Using the
instance-based kick model for the center and upper-left starting points increases
the performance by 43% and 42% compared to ParamPlan, respectively.

(a) (b) (c) (d)

Fig. 4. Clear field. (a) The center of the field is the starting point of the ball. (b) The
upper-left point is the starting point for the ball. (c) The field with one stationary
opponent robot. Sample sequences for RePlan and Plan are shown for the ⋆ starting
point. (d) The field with two stationary opponent robots.

Starting Point: Center (Fig. 4(a))

Algorithm AtGoal Plan Plan(fall-kck) ParamPlan

Scoring% 46.2 ± 4.8 60.5 ± 4.8 58.7 ± 5.0 42.1 ± 5.7

Kicks/episode 3.4 ± 0.1 9.7 ± 0.9 9.6 ± 0.9 10.1 ± 0.8

Starting Point: Upper-Left (Fig. 4(b))

Algorithm AtGoal Plan Plan(fall-kck) ParamPlan

Scoring% 29.1 ± 5.0 51.3 ± 5.4 53.1 ± 5.3 39.0 ± 5.2

Kicks/episode 1.7 ± 0.1 6.3 ± 0.6 6.1 ± 0.8 7.1 ± 0.7

Table 1. Comparing different algorithms for the two starting ball points in the clear
field experiment (see Figure 4).
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One Opponent Experiment In this experiment, a stationary opponent robot
is placed in the field. The field with the opponent robot is shown in Figure 4(c).
The ball’s starting point is at the center of the field. The algorithms AtGoal,
RePlan, FullPlan, Plan, and ParamFullPlan are compared. Success per-
centage and average number of kicks is presented for the above-mentioned algo-
rithms in Table 2.

The RePlan algorithm significantly improves scoring percentage compared
to AtGoal, Plan and ParamFullPlan by 104%, 13%, and 45% respectively.
RePlan is also very close in performance to FullPlan (non-significant differ-
ence of 1.5%), where the transition function is assumed to be known a priori
and the Q-values are computed offline without computational limitations. The
average number of kicks per episode is the most for the RePlan algorithm (see
Figure 4(c) for a sample kick sequence for RePlan), but in this domain, scoring
efficiency is of greater importance.

Algorithm AtGoal RePlan FullPlan Plan ParamFullPlan

Scoring % 32.00 ± 5.83 65.92 ± 4.20 67.10 ± 3.92 57.42 ± 3.76 45.17 ± 4.59

# Kicks/episode 1.77 ± 0.11 11.74 ± 1.00 8.22 ± 0.67 8.42 ± 0.63 9.59 ± 0.69

Table 2. Scoring percentage and average number of kicks for different algorithms, in
the one opponent robot scenario (see Figure 4(c)).

Two Opponents Experiment In this experiment, an additional robot is po-
sitioned on the field. The field is shown in Figure 4(d). The scoring rate and
average number of kicks for different algorithms is presented in Table 3. The
trend in the result is consistent with the observation in the one opponent robot
scenario in the previous experiment (Section 8.1).

Algorithm AtGoal RePlan FullPlan Plan ParamFullPlan

Scoring % 21.85 ± 4.64 54.25 ± 5.58 54.64 ± 5.59 46.46 ± 5.10 38.07 ± 4.39

# Kicks/episode 5.09 ± 0.32 19.45 ± 1.97 11.43 ± 0.90 13.04 ± 1.14 11.84 ± 0.96

Table 3. Comparing different algorithms for playing against the two opponents case
(Fig. 4(a)).

Moving Opponents Experiment In this experiment two moving opponent
robots are present on the field. In each episode, the opponent robots start from
the position of the opponent robots in the previous experiment (Figure 4(d)), and
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after each kick, they move 150cm5 randomly in one of the four main directions
(i.e. left, right, up or down). In an effort to reduce the noise in the result, the
seed of the pseudo-random generator, which determines what direction opponent
robots move is fixed for all trials (not episodes).

The scoring percentage and average number of kicks for AtGoal, RePlan,
and Plan algorithms is provided in Table 4. The performance of RePlan is
178% better than AtGoal and 6% better than the Plan algorithm. Since the
robot movement is random, the position of the opponent robots can not be
known as a priori, and no offline algorithm like FullPlan can be developed.

Algorithm AtGoal RePlan Plan

Scoring % 20.60 ± 5.14 57.32 ± 4.82 54.14 ± 3.98

# Kicks/episode 4.52 ± 0.37 9.51 ± 0.65 9.51 ± 0.67

Table 4. Comparing AtGoal, Plan and RePlan algorithms in the presence of two
moving opponent robots.

8.2 Real Robots

In this section, experiments on a real robot are reported. Robot experiments are
time consuming and it is not possible to do as many trials as in simulation. First,
experiments in the clear field case (Figure 4(b)) and then against two opponent
robots (Figure 4(d)) are described.

Real Robot on a Clear Field The configuration is the same as the one
shown in Figure 4(b). Each trial consists of 50 episodes, and the result for one
trial is reported in Table 5. The trend is similar to the simulation experiment
of the same configuration, and Plan increases performance over AtGoal and
ParamPlan by 80% and 20% respectively.

Algorithm AtGoal Plan ParamPlan

Scoring % 20 36 30

Table 5. Comparing different algorithms for upper-left starting ball points for the
clear field experiment (see Figure 4(b)) with a real robot.

5 Recall that the size of the field is 5400cm × 3600cm.
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Real Robot Against Two Opponent Robots In this experiment the con-
figuration of the field in Figure 4(d) is used for a real robot. Each trial consists
of 25 episodes, and the results are reported in Table 6.6 The results show the
same trend as the simulation on this field: RePlan is better than Plan and
AtGoal.

Algorithm AtGoal Plan RePlan

Scoring % 4 16 24

Table 6. Comparing different algorithms for real robot in the experiment against two
opponent robots (see Figure 4(d)).

9 Conclusion

This paper considers the action planning problem in noisy environments, model-
ing it as an MDP. An instance-based action model is introduced to model noisy
action effects. The action model is then used to build the transition function
of a MDP. Furthermore a fast algorithm for action planning in dynamic envi-
ronments, where dynamic factors have effect on only a subset of state-action
pairs is introduced. To evaluate these approaches, goal scoring in the RoboCup
4-legged league is used as a test-bed. The experiments show the advantage of
using an instance-based approach compared to parametric action models. They
also show that the fast replanning algorithm outperforms off-line planning and
approaches the best possible performance assuming the full transition model is
known a priori.

In future work, the performance of the incremental replanning algorithm may
be improved by learning the effects of dynamic factors on the transition model.
Also, extending this approach to team behaviors, where the value of each state
also depends on the positions of teammates, is an interesting direction for future
consideration.
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