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Abstract. The Soccer Server system provides a rich and challenging
multiagent, real-time domain. Agents must accurately perceive and act
despite a quickly changing, largely hidden, noisy world. They must also
act at several levels, ranging from individual skills to full-team collabo-
rative and adversarial behaviors. This article presents the CMUnited-97
approaches to the above challenges which helped the team to the semi-
�nals of the 29-team RoboCup-97 tournament.

1 Introduction

The Soccer Server system [5] used at RoboCup-97 [2] provides a rich and chal-
lenging multiagent, real-time domain. Sensing and acting is noisy, while inter-
agent communication is unreliable and low-bandwidth.

In order to be successful, each agent in a teammust be able to sense and act in
real time: sensations arrive at unpredictable intervals while actions are possible
every 100ms. Furthermore, since the agents get local, noisy sensory information,
they must have a method of converting their sensory inputs into a good world
model.

Action capabilities range from low-level individual skills, such as moving to
a point or kicking the ball, to high-level strategic collaborative and adversarial
reasoning. Agents must be able to act autonomously, while working together
with teammates towards their common overall goal. Since communication is
unreliable and perception is incomplete, centralized control is impossible.

This article presents the CMUnited-97 approaches to the above challenges
which helped the team to the semi�nals of the 29-team RoboCup-97 simulator
tournament. Section 2 introduces our overall agent architecture which allows for
team coordination. Section 3 presents our agents' world model in an uncertain
environment with lots of hidden state. Section 4 lays out the agents' hierarchical
behavior structure that allows for machine learning at all levels of behavior
from individual to collaborative to adversarial. Our team's exible teamwork
structure, which was also used by the CMUnited-97 small-size robot team [7], is
presented in Section 5. Section 6 concludes.



2 Team Member Architecture

Our new teamwork structure is situated within a team member architecture
suitable for domains in which individual agents can capture locker-room agree-
ments and respond to the environment, while acting autonomously. Based on
a standard agent architecture, our team member architecture allows agents to
sense the environment, to reason about and select their actions, and to act in
the real world. At team synchronization opportunities, the team also makes a
locker-room agreement for use by all agents during periods of low communica-
tion. Figure 1 shows the functional input/output model of the architecture.
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Fig. 1. The team member architecture for PTS domains.

The agent keeps track of three di�erent types of state: the world state, the
locker-room agreement, and the internal state. The agent also has two di�erent
types of behaviors: internal behaviors and external behaviors.

The World State reects the agent's conception of the real world, both via
its sensors and via the predicted e�ects of its actions. It is updated as a
result of processed sensory information. It may also be updated according to
the predicted e�ects of the external behavior module's chosen actions. The
world state is directly accessible to both internal and external behaviors.

The Locker-Room Agreement is set by the team when it is able to privately
synchronize. It de�nes the exible teamwork structure as presented below
as well as inter-agent communication protocols. The locker-room agreement
may change periodically when the team is able to re-synchronize; however, it
generally remains unchanged. The locker-room agreement is accessible only
to internal behaviors.



The Internal State stores the agent's internal variables. It may reect previ-
ous and current world states, possibly as speci�ed by the locker-room agree-
ment. For example, the agent's role within a team behavior could be stored
as part of the internal state, as could a distribution of past world states. The
agent updates its internal state via its internal behaviors.

The Internal Behaviors update the agent's internal state based on its current
internal state, the world state, and the team's locker-room agreement.

The External Behaviors reference the world and internal states, sending com-
mands to the actuators. The actions a�ect the real world, thus altering the
agent's future percepts. External behaviors consider only the world and in-
ternal states, without direct access to the locker-room agreement.

Internal and external behaviors are similar in structure, as they are both sets
of condition/action pairs where conditions are logical expressions over the inputs
and actions are themselves behaviors as illustrated in Figure 2. In both cases,
a behavior is a directed acyclic graph (DAG) of arbitrary depth. The leaves of
the DAGs are the behavior types' respective outputs: internal state changes for
internal behaviors and action primitives for external behaviors.
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Fig. 2. Internal and external behaviors are organized in a directed acyclic graph.

Our notion of behavior is consistent with that laid out in [4]. In particular,
behaviors can be nested at di�erent levels: selection among lower-level behav-
iors can be considered a higher-level behavior, with the overall agent behavior
considered a single \do-the-task" behavior. There is one such top-level internal
behavior and one top-level external behavior; they are called when it is time to
update the internal state or act in the world, respectively. The team structure
presented in Section 5 relies and builds upon this team member architecture.

3 Predictive Memory

Based on the sensory information received from the environment, each agent
can build its own world state. We developed a predictive memory model that
builds a probabilistic representation of the state based on past observations. By



making the right assumptions, an e�ective model can be created that can store
and update knowledge even when there are inaccessible parts of the environment.
The agent relies on past observations to determine the positions of objects that
are not currently visible. We conducted experiments to compare the e�ectiveness
of this approach with a simpler approach, which ignored the inaccessible parts of
the environment. The results obtained demonstrate that this predictive approach
does generate an e�ective memory model, which outperforms a non-predictive
model [1].

4 Layered Learning

Once the world model is successfully created, the agents must use it to respond
e�ectively to the environment. As described in Section 2, internal behaviors up-
date the internal state while external behaviors produce executable actuator
commands. Spanning both internal and external behaviors, layered learning [6]
is our bottom-up hierarchical approach to client behaviors that allows for ma-
chine learning at the various levels (Figure 3). The key points of the layered
learning technique are as follows:
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Fig. 3. An overview of the Layered Learning framework. It is designed for use in
domains that are too complex to learn a mapping straight from sensors to actuators.
We use a hierarchical, bottom-up approach

{ The di�cult aspects of the domain determine which behaviors are to be
learned.

{ The learned behaviors are combined in a vertical fashion, one being used as
a part of the other.



Table 1 illustrates possible behavior levels within the robotic soccer domain.
Because of the complexity of the domain, it is futile to try to learn intelligent
behaviors straight from the primitives provided by the server. Instead, we iden-
ti�ed useful low-level skills that must be learned before moving on to higher level
strategies. Using our own experience and insights to help the clients learn, we
acted as human coaches do when they teach young children how to play real
soccer.

Layered Strategic Level Behavior Type Examples

Robot{ball individual intercept

Action selection individual pass or dribble
One-to-one player collaborative pass, aim
One-to-many player collaborative pass to teammate

Team formation team strategic positioning
Team-to-opponent adversarial strategic adaptation

Table 1. Examples of di�erent behavior levels.

The low-level behaviors, such as ball interception and passing, are external
behaviors involving direct action in the environment. Higher level behaviors,
such as strategic positioning and adaptation, are internal behaviors involving
changes to the agent's internal state. The type of learning used at each level
depends upon the task characteristics. We have used neural networks and de-
cision trees to learn ball interception and passing respectively [6]. These o�-
line approaches are appropriate for opponent-independent tasks that can be
trained outside of game situations. We are using on-line reinforcement learning
approaches for behaviors that depend on the opponents. Adversarial actions are
clearly opponent-dependent. Team collaboration and action selection can also
bene�t from adaptation to particular opponents.

5 Flexible Team Structure

One approach to task decomposition in the Soccer Server is to assign �xed
positions to agents.1 Such an approach leads to several problems: i) short-term
inexibility in that the players cannot adapt their positions to the ball's location
on the �eld; ii) long-term inexibility in that the team cannot adapt to opponent
strategy; and iii) local ine�ciency in that players often get tired running across
the �eld back to their positions after chasing the ball. Our introduced formations
allow for exible teamwork and combat these problems.

1 One of the teams in Pre-RoboCup-97 (IROS'96) used and depended upon these
assignments: the players would pass to the �xed positions regardless of whether
there was a player there.



The de�nition of a position includes home coordinates, a home range, and a
maximum range, as illustrated in Figure 4(a). The position's home coordinates
are the default location to which the agent should go. However, the agent has
some exibility, being able to set its actual home position anywhere within the
home range. When moving outside of the max range, the agent is no longer
considered to be in the position. The home and max ranges of di�erent positions
can overlap, even if they are part of the same formations.

A formation consists of a set of positions and a set of units. The forma-
tion and each of the units can also specify inter-position behavior speci�cations
for the member positions. Figure 4(b) illustrates the positions in one particu-
lar formation, its units, and their captains. Here, the units contain defenders,
mid�elders, forwards, left players, center players, and right players.

Home Coordinates

Max Range

Home Range

Center

Midfielder,
Left

Goalie,

= Unit = Unit Captain

(a) (b)

Fig. 4. (a) Di�erent positions with home coordinates and home and max ranges. (b)
Positions can belong to more than one unit.

Since the players are all autonomous, in addition to knowing its own position,
each one has its own belief of the team's current formation along with the time at
which that formation was adopted, and a map of teammates to positions. Ideally,
the players have consistent beliefs as to the team's state, but this condition
cannot be guaranteed between synchronization opportunities.

Our team structure allows for several signi�cant features in our simulated soc-
cer team. These features are: (i) the de�nition of and switching among multiple
formations with units; (ii) exible position adjustment and position switching;
(iii) and pre-de�ned special purpose plays (set plays).



5.1 Dynamic Switching of Formations

We implemented several di�erent formations, ranging from very defensive (8-2-0)
to very o�ensive (2-4-4).2

The full de�nitions of all of the formations are a part of the locker-room
agreement. Therefore, they are all known to all teammates. However during the
periods of full autonomy and low communication, it is not necessarily known
what formation the rest of the teammates are using. Two approaches can be
taken to address this problem:
� static formation - the formation is set by the locker-room agreement and
never changes;

� run-time switch of formation - during team synchronization oppor-
tunities, the team sets globally accessible run-time evaluation metrics as
formation-changing indicators.
The CMUnited RoboCup-97 team switched formations based on the amount

of time left relative to the di�erence in score: the team switched to an o�ensive
formation if it was losing near the end of the game and a defensive formation
if it was winning. Since each agent was able to independently keep track of the
score and time, the agents were always able to switch formations simultaneously.

5.2 Flexible Positions

In our multiagent approach, the player positions itself exibly such that it an-

ticipates that it will be useful to the team, either o�ensively or defensively.
Two ways in which agents can use the position exibility is to react to the

ball's position and to mark opponents. When reacting to the ball's position, the
agent moves to a location within its range that minimizes its distance to the
ball. When marking opponents, agents move next to a given opponent rather
than staying at the default position home. The opponent to mark can be chosen
by the player (e.g., the closest opponent), or by the unit captain which can
ensure that all opponents are marked, following a preset algorithm as part of
the locker-room agreement.

Homogeneous agents can play di�erent positions. But such a capability raises
the challenging issue of when the players should change positions. The locker-
room agreement provides procedures to the team that allow for coordinated role
changing. In our case, the locker-room agreement designates an order of prece-
dence switching among positions within each unit. By switching positions within
a formation, the overall joint performance of the team is improved. Position-
switching saves player energy and allows them to respond more quickly to the
ball.

5.3 Pre-Planned Set Plays

The �nal implemented improvement facilitated by our exible teamwork struc-
ture is the introduction of set plays, or pre-de�ned special purpose plays. As a
part of the locker-room agreement, the team can de�ne multi-step multiagent

2 Soccer formations are typically described as goalie-defenders-mid�elders--
forwards [3].



plans to be executed at appropriate times. Particularly if there are certain sit-
uations that occur repeatedly, it makes sense for the team to devise plans for
those situations.

In the robotic soccer domain, certain situations occur repeatedly. For exam-
ple, after every goal, there is a kicko� from the center spot. When the ball goes
out of bounds, there is a goal-kick, a corner-kick, or a kick-in. In each of these
situations, the referee informs the team of the situations. Thus all the players
know to execute the appropriate set play. Associated with each set-play-role is
not only a location, but also a behavior. The player in a given role might pass to
the player �lling another role, shoot at the goal, or kick the ball to some other
location.

We found that the set plays signi�cantly improved our team's performance.
During the RoboCup-97 competitions, several goals were scored o� of of set
plays.

6 Conclusion

The Soccer Server system provides a wide range of AI challenges. Here we have
described our approaches to problems ranging from world modelling to multia-
gent cooperation. Machine leaning techniques are used throughout to improve
performance of individual and team behaviors. Our successful implementation
reached the semi�nals of RoboCup-97.
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