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Abstract. Planning in real-world environments can be challenging for intelligent
robots due to incomplete domain knowledge that results from unpredictable do-
main dynamism, and due to lack of global observability. Action language BC can
be used for planning by formalizing the preconditions and (direct and indirect)
effects of actions, and is especially suited for planning in robotic domains by in-
corporating defaults with the incomplete domain knowledge. However, planning
with BC is very computationally expensive, especially when action costs are con-
sidered. We introduce algorithm PlanHG for formalizing BC domains at different
abstraction levels in order to trade optimality for significant efficiency improve-
ment when aiming to minimize overall plan cost. We observe orders of magnitude
improvement in efficiency compared to a standard “flat” planning approach.

1 Introduction

To operate in real-world environments, intelligent robots need to represent and rea-
son with a large amount of domain knowledge about robot actions and environments.
However, domain knowledge given to the robot is usually incomplete (due to unpre-
dictable domain dynamism) and defeasible (i.e., usually true but not always). From
STRIPS [4] to PDDL [17], many action languages (and their extensions) have been
developed to support automated plan generation by formalizing action preconditions
and effects. While some action languages support reasoning about the knowledge not
directly related to actions, e.g., PDDL has semantics to reason with axioms [25], most
action languages lack a strong capability of reasoning with incomplete knowledge in
dynamic domains, making it difficult to embrace rich domain knowledge into planning
scenarios. Action language BC can be used for planning with guaranteed soundness by
formalizing the preconditions and (direct and indirect) effects of actions [14]. BC in-
herits the knowledge representation and reasoning (KRR) advantages from action lan-
guages B [9] and C+ [10], and is especially suited for planning in robotic domains.

Unfortunately, in robotic domains where action costs need to be considered, plan-
ning with action language BC is very computationally expensive. For instance, in the
office domain presented in [13], generating the optimal plan to visit three people in
different rooms takes more than 5 minutes on a powerful desktop machine (details in
Section 5), where the optimal plan has about 30 actions. Such long planning time pre-
vents the robot from being deemed useful in real-world environments.



Hierarchical planning has been studied for years and people have developed many
algorithms including Hierarchical Task Network (HTN) [3] and Hierarchical Planning
in the Now (HPN) [12]. Different from existing work on hierarchical planning that aims
to reduce the amount of search with guaranteed optimality (e.g., [16]), we trade opti-
mality for significant improvements in efficiency (similar to HPN). We adapt the idea
of describing task domains at different abstraction levels [6] and propose an algorithm
to enable hierarchical planning with action language BC in real-world robotic domains.

This algorithm has been fully implemented in simulation and on a physical robot.
Experiments on a mail collection problem show 2 orders of magnitude improvements of
efficiency with a 11.25% loss in optimality, compared to a baseline algorithm that plans
with a non-hierarchical domain description in BC [13]. To the best of our knowledge,
this is the first work that combines the KRR advantages of a modern action language
and the efficiency of hierarchical planning to enable mobile robots to compute provably
sound plans in real-world environments.

2 Related Work
This work is closely related to research areas including action languages and hierarchi-
cal planning. We select representative research on these topics.

Action Languages: The planning domain definition language (PDDL) has been widely
applied to planning problems [17]. One of the most appealing advantages of (the of-
ficial versions of) PDDL is its syntax, which despite being simple supports important
features of STRIPS [4], ADL [20], and other features such as conditional action ef-
fects (PDDL1.2) and numeric fluents (PDDL2.1). Furthermore, advanced planning al-
gorithms such as Fast-Foward [19] and Fast-Downward [11] have been implemented in
existing planning systems supporting PDDL.

While PDDL is strong in efficient plan generation, the official versions of PDDL do
not focus on reasoning with default knowledge, which is important for robots to plan
with incomplete knowledge in dynamic environments. Action language C+ supports
the representation and reasoning with defaults [10], but does not allow recursively de-
fined fluents that are frequently needed in robotic domains (action language B does),
as will be shown in Section 3. BC, an action language recently developed based on an-
swer set semantics [8], can be used to compute provably sound plans while supporting
representation of and reasoning with defaults with exceptions at different levels [14].

Recently, a two-level architecture has been developed for KRR in robotics [26],
where the high level uses action language AL for symbolic planning and the low level
uses probabilistic algorithms for modeling uncertainties. In that work, each default is
associated with a consistency-restoring rule for restoring consistency in history. In con-
trast, we intentionally make our robots memoryless to avoid reasoning about history,
i.e, whenever robot observations have conflicts with defaults, our robot starts over by
replanning with defaults and the observed “facts”.

Hierarchical Planning: In existing research on hierarchical planning, the hierarchy
is frequently constructed through setting up connections either between actions or be-
tween states. For instance, macro-actions (also called complex or composite actions) are



described as a sequence of primitive actions and possibly some imperative constructs,
e.g., hierarchical task network [3], planning with composite actions [1], planning with
complex actions [18], ordered task decomposition [2], and hierarchical planning in the
now [12]. These macro-actions are either directly expanded after a plan is generated,
or expanded in the reasoning process using a predefined structure. These macro-actions
limit the flexibility of reducing plan costs at a finer abstraction level.

Another way of constructing the hierarchy is to describe the domain at different
abstraction levels through setting up connections between states, where a state at a
coarser (higher) level includes a set of states at a finer (lower) level [23, 24, 6]. Planning
in such systems happens in a top-down manner and constraints extracted from coarser
levels help improve the efficiency in computing plans at finer levels. This mechanism
allows more flexibility in planning at finer levels, compared to macro-based hierarchical
planning algorithms. In this paper, we introduce action costs to such abstraction-based
hierarchical planning algorithms and implement the algorithm using action language
BC on a real robot system.

3 Abstraction Hierarchy Formalization
A BC action descriptionD denotes a transition system T (D), which is a digraph whose
vertices are states, which is a set of atoms, and whose edges are actions. A transition
in T (D) is of the form 〈s, a, s′〉, where a is an action constant, and s and s′ are states
before and after executing a. A path P (n) of length n in the transition system is of the
form:

〈s0, a0, . . . , sn−1, an−1, sn〉

where si (0 ≤ i ≤ n) are states and ai (0 ≤ i ≤ n − 1) are actions. We use Len(P )
to denote the length of a path. P s(i) denotes state si and P a(i) denotes action ai. We
use f(D) to represent the set of fluents occurring in D, and a(D) to represent the set
of actions occurring in D. To define the notion of abstraction hierarchy, we first define
the cost function C that maps a tuple (s, a) to an integer C(s, a) that denotes the cost
of executing action a at state s. Furthermore, cost

(
P (n)

)
is the cost of path P (n):

cost
(
P (n)

)
= Σ0≤i<nC(si, ai) (1)

Given an action description D and a cost function C, its abstraction hierarchy H is
a tuple (D,L): D is a list of action descriptions D1, D2, . . . , Dd such that f(Di) ⊆
f(Dj) for 1 ≤ i < j ≤ d, where Dd = D and d is the depth of H; and L is the step
bound estimation function.

L(a) = max
〈s, a, s′〉 ∈ T (Di)

(
Len

(
P̂ (s, s′)

))
(2)

Given an action constant a ∈ a(Di), L maps a to an integer L(a) representing
the minimum number of steps needed to ensure that the effect of a can be optimally
achieved using actions in a(Di+1) as shown in Equation 2, where L is independent of
s and s′, and is precomputed to reduce the planning time1. P̂ represents the path of the

1 As a preprocessing step, computing L does not affect the runtime efficiency, so we leave the
discussion of its complexity to future work.



plan that leads the transition from s to s′ with minimum plan cost. If we use A(s) to
represent the set of literals that specify state s, P̂ (s, s′) can be computed by:

P̂ (s, s′) = argmin
P (n) ∈ T (Di+1), n ∈ N,

A
(
P s(0)

)
⊆ A(s), A

(
P s(n)

)
⊆ A(s′)

(
cost

(
P (n)

))
(3)

Note that states s and s′ and action a are at level i while path P is at level i + 1.
Intuitively, the abstraction hierarchyH contains a set of action descriptions where each
description formalizes the same dynamic domain at a different granularity. The hierar-
chy is organized from the most coarse description D1 to the most concrete description
Dd. Different from existing work on hierarchical planning using macro actions, we use
function L to provide step bounds in the search for plans at lower levels. This is an
important criterion of our approach as it provides flexibility in reducing overall plan
costs in lower levels. As an example, we next apply this hierarchy to a real-world robot
planning problem in BC.
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Fig. 1: Example floor plan.

Mail Collection Problem: A mobile robot
drops by offices at 2pm every day to collect
outgoing mail from the residents. However,
some people may not be in their offices at that
time, so they can pass their outgoing mail to
colleagues in other offices, and send this infor-
mation to the robot. When the robot collects
the mail, it should obtain it while only visiting
people as necessary. An example floor plan is
shown in Figure 1. We will use meta-variables E, E1, E2, . . . to denote people (alice,
bob, carol, daniel and erin), R, R1, R2, . . . to denote rooms, and K, K1, K2, . . . to
denote doors. Specifically, o1, o2, o3, o4 are offices, lab1 is a lab and cor is a room,
where offices and labs are sub-sorts of room.

This example domain has been formulated at three levels of abstraction. The fluents
at the most abstract level primarily describe how mail is passed from one person to
another and if mail has been collected from each person. At the middle level, we add
fluents to describe the connections of rooms through doors, but still disregard the details
about the robot’s more refined position in a room and if the doors are open or not.
Finally, all domain details are added into the bottom level. An action in the bottom
level must be primitive (i.e., can be physically executed by the robot) and currently this
hierarchy is manually constructed.
Action Description D1: In D1, we use passto(E1, E2) to describe E1’s mail has been
passed toE2. The current locations of the robot and a personE are described by loc=R
and inside(E,R) respectively. Whether the robot has collected mail from person E is
represented by mailcollected(E). For instance, the static law below states: if E1’s mail
has been passed to E2 and that the robot has collected mail from E2, then E1’s mail has
been collected as well using a recursive definition of fluent mailcollected:

mailcollected(E1) if mailcollected(E2), passto(E1, E2).

The two laws below state that person E cannot be in two different rooms at the same
time and that by default E’s location does not change over time (a commonsense law



of inertia), where inside is an inertial fluent.

∼inside(E,R2) if inside(E,R1) (R1 6= R2).
inertial inside(E,R).

Action serve in D1 states that serving person E in room R causes mailcollected(E) to
be true and the robot to be in R.

serve(E) causes mailcollected(E).
serve(E) causes loc = R if inside(E,R).

Action DescriptionD2: D2 inherits all fluents and corresponding non-action rules from
D1 (actions ofD1 are discarded) and further adds fluents to describe whether a room has
a door using hasdoor(R,K) and whether two adjacent rooms are connected through a
door using acc(R1,K,R2). The static laws below state that if two rooms share the same
door, then they are accessible to each other through the door and that acc is symmetric.

acc(R1,K,R2) if hasdoor(R1,K), hasdoor(R2,K).
acc(R1,K,R2) if acc(R2,K,R1).

We add defaults to reason with incomplete knowledge. For instance, rooms R1 and R2

are not accessible through door K by default. This default value can be reverted if there
is evidence supporting the opposite.

default ∼acc(R1,K,R2).

Using the fluents inD2, we can formalize action collectmail(E) that is similar to action
serve in D1, and action cross(K) that allows the robot to cross door K to move from
room R1 to room R2, if R2 is accessible from R1 through door K. There is a restric-
tion on the executability of cross(K): the robot cannot cross a door if that door is not
accessible from the robot’s current location.

cross(K) causes loc = R2 if loc = R1, acc(R1,K,R2).
nonexecutable cross(K) if loc = R,∼hasdoor(R,K).

Action DescriptionD3: D3 inherits all fluents and corresponding non-action rules from
D2 (actions of D2 are discarded) and further introduces fluents beside(K) to describe
whether the robot is beside door K, facing(K) to describe whether the robot is beside
and facing door K, and open(K) to describe if door K is open. We use Monte Carlo
Localization [5] to estimate the robot’s exact position (including orientation) in physical
environments. Using an occupancy-grid map with manually added semantic labels, this
exact position specifies the values of loc, beside and facing and is also used for path
planning. Using the fluents inD3, we can formalize the primitive actions approach(K),
opendoor(K), gothrough(K), and collectmail(E). D3 corresponds to the “flat” action
description presented in previous work [13].

Action descriptions D1, D2 and D3 together determine D, the first element of
the abstraction hierarchy H. The other element is the step bound estimation function
L, which is partially decided by the cost function C, as presented Equation 1. The
value of C(s, a) is assigned empirically based on robot experiments using existing ap-
proach [13]. As an illustrative example, let us consider the calculation of L(serve) using



Equation 2-3. Since serve is an action in D1, we first collect all possible 〈s, serve, s′〉 ∈
T (D1). The longest path inD2 that can be used to achieve the same effect as a serve ac-
tion in D1 occurs when loc = o3 ∈ s and mailcollected(alice) ∈ s′. The corresponding
path P2(5) includes the following actions in the order of execution:

cross(d3), cross(d6), cross(d5), cross(d1), collectmail(alice).

Consequently, L(serve) = 5. Similarly, L(cross) = 3.

4 Planning using an Abstraction Hierarchy

In this section, we formally define two planning problems that aim to minimize the
plan length (Type-I) and plan cost (Type-II) respectively, where the first is a special
case of the second. Then we propose two algorithms to solve Type-II problems using
an abstraction hierarchy.

Type-I Problem: A Type-I planning problem aims at minimizing the plan length (i.e.,
the number of actions), and is defined as a tuple (D,S,G). D is an action description;
S is a state constraint set including state constraints of the form i : Ai, where i is an
integer denoting the timestamp at which Ai (a set of fluent atoms) needs to be met; and
G is a list of fluent atoms Gi, which are goals. The initial system state is specified as a
part of the state constraint set as 0:A0 ∈ S.

Given (D,S,G), a satisfactory path is a path P (n) (defined in Section 3) of the
transition system T (D) such that Ai ⊂ si for every i : Ai ⊂ S, and Gi ∈ sn for
every Gi ∈G. The satisfactory plan is the list (a0, · · · , an−1) obtained from P (n). A
satisfactory plan is a shortest plan if the length of the satisfactory path is minimal among
all satisfactory paths. Algorithms that solve this problem do not consider the overall cost
of plans. To find the shortest-length plan in a Type-I problem, we incrementally increase
the plan length in solvers until a satisfactory plan is found.

Type-II Problem: A Type-II problem aims at minimizing overall plan cost, and can
be defined as a tuple (D,S,G,C), where C is the cost function of actions. Given an
optimizing planning problem, an optimal path P (n) is a satisfactory path of the satis-
factory planning problem (D,S,G) such that the overall cost of the path, cost

(
P (n)

)
, is

minimal among all satisfactory paths of (D,S,G). Incrementally lengthening the plan
length will not necessarily lead to the optimal plan because a very long plan could have
the lowest cost. Algorithms that solve this problem compute plans toward minimizing
the overall cost of the plan.

Without concurrent actions, a Type-I problem can be reduced to a Type-II problem
by using unit cost for any (s, a) in function C. Therefore, we will focus on applying the
abstraction hierarchy to Type-II problems.

4.1 PlanHG: the Proposed Planning Algorithm
Given a Type-II problem (D,S,G,C) and hierarchy H = (D,L), for a state P s(i) in
a path P (n), we define its shifted timestamp in Equation 4. The shifted timestamp for
state P s(i) is the timestamp when this state constraint needs to be achieved when P (n)
is further elaborated at the next level i+1. State constraint sh(i) : P s(i) is functionally



Algorithm 1 PlanHG: Planning usingH while applying L globally

Input: Type-II problem (D,S,G,C), and abstraction hierarchy H = (D,L), where D =
(D1, . . . , Dd), and Dd = D

1: create a list of problems (Di, Si, Gi, C), 1 ≤ i ≤ d using (D,S,G,C) and D
2: generate path P1 for (D1, S1, G1, C)
3: for level i ∈ {2, . . . , d} do
4: compute S′i based on Si and Pi−1, using Equation (5)
5: generate path Pi for (Di, S

′
i, Gi, C)

6: end for
7: return the plan obtained from Pd

a “bottleneck” that guides the solution path in the next level of hierarchy by reducing
the search space.

sh(i) =
∑

aj∈P (n), j<i

L
(
P a(j)

)
− 1 (4)

Furthermore, we impose the restriction that the only constraint contained in S is the
initial state that can be sensed by the robot. This restriction allows us to easily project
S and G on to each level of the hierarchy as Si and Gi, respectively. As a result,
we obtain an optimizing planning problem at each abstraction level: (D1, S1, G1, C),
(D2, S2, G2, C), . . ., (Dd, Sd, Gd, C). For a Type-II problem (Di, Si, Gi, C) at the ith
level, let the path obtained from level i − 1 be Pi−1(n). We define the extended state
constraint set at the ith level, S′i, in Equation 5. Therefore, a guided Type-II problem
(Di, S

′
i, Gi, C) is formed at the ith level using (Di, Si, Gi, C) and state constraints ex-

tracted from level i − 1. We call it a “guided” problem because the state constraints
reduce the search space in planning at the ith level.

S′i = Si ∪
⋃

1≤j≤n−1

sh(j) :P s
i−1(j). (5)

Solving Type-II problems directly using the optimization function of answer set
solvers may require prohibitively long time. Using an abstraction hierarchy, we can ob-
tain a list of guided Type-II problems. In practice, each level has action noop(I) of zero
cost representing no operation at timestamp I. The optimal path generated at a higher
level is passed down as “bottlenecks” such that the Type-II problem at a lower level be-
comes a guided Type-II problem, until the bottom level is reached. This approach guar-
antees the soundness of generated plans but may lead to sub-optimal results. We present
Algorithm 1 that solves Type-II problems using an abstraction hierarchy H = (D,L).
We call this algorithm PlanHG to identify the use of the hierarchy and global mini-
mization of plan costs at each level.

In the mail collection domain, the robot can obtain the initial state constraint from
its internal knowledge base and sensor readings. For instance, initially the robot can
perceive that it is located in cor and beside d4. Such information is used to automatically
create a state constraint set S:

{0: loc = cor, 0: beside(d4), 0:∼facing(D)}.



Algorithm 2 PlanHL: Planning usingH while applying L locally

Input: Type-II problem (D,S,G,C), and abstraction hierarchy H = (D,L), where D =
(D1, . . . , Dd), and Dd = D

1: generate path P ′ for (Di, S,G,C), where, in a top-down manner, i = 1 at the first call.
2: if P ′ includes only primitive actions then
3: return P ′

4: end if
5: generate a list of optimizing planning problems using P ′ and (D,L): (Di, jk : sk, sk+1, C),

where k ∈ {1, . . . , l − 1}, and l is the length of P ′

6: for k ∈ {1, . . . , l − 1} do
7: call Algorithm 2 to solve (Di+1, jk : sk, sk+1, C), and compute P ′k
8: end for
9: return P = (P ′1, . . . , P

′
l−1)

Given a goal G of mailcollected(erin), at level 1 the projection S1 becomes {0 :
loc = cor} and the goal G1 = G. The solver returns the optimal path:

〈s0={loc=cor,∼mailcollected(erin)}, a0={serve(erin)},
s1={loc= lab1,mailcollected(erin)}〉

Now, we can compute the shifted timestamps for s0 and s1 given L(serve) = 5 (Section
3) and we obtain the guided state constraint set S′2:

0: loc = cor, 0:∼mailcollected(erin),
5: loc = lab1, 5:mailcollected(erin).

The guided Type-II problem (D2, S
′
2, G2, C) aims to find an optimal plan such that at

time 0 the robot is in cor, at time 5 the robot is in lab1 and Erin’s mail is collected, and
the goal of Erin’s mail being collected is achieved. Indeed, the optimal plan generated
at this level consists of two actions: cross(d7), collectmail(erin). Note that cross(d7) is
selected because it has a lower cost than cross(d5) and cross(d6). Using this plan, we
can generate the next level of state constraints that require the robot to be in lab1. At
level 3, the robot will execute approach(d6), open(d6), gothrough(d6) instead of go-
ing through d7 because this plan meets the state constraint requirements, but is cheaper
due to the robot’s current position (beside d4). This flexibility is attributed to the strat-
egy that instead of expanding macro-actions, we generate plans for the same problem
described at different abstraction levels and meet the requirement of state constraints.

We will use PlanFG to represent a special form of algorithm PlanHG that does not
pass state constraints to lower levels but simply plans at the bottom level. PlanFG is a
“flat” planning algorithm as presented in [13].

4.2 PlanHL: a Baseline Planning Algorithm
Alternatively, instead of satisfying all state constraints simultaneously, we can treat each
pair of consecutive state constraints as a specification of a subproblem. In this case, the
step bound estimation function L is used for finding local optimal plans. Following
this idea, a guided Type-II problem at the ith level, (Di, S

′
i, Gi, C), can be split into a

sequence of Type-II subproblems (Di, jk : sk, sk+1, C) for 0 ≤ k ≤ l− 1, where S′i is
of the form: {j0 : s0, . . . , jl : sl}, where j1 < j2 < . . . < jl



The optimal paths of these problems are then joined to obtain the solution to the
original Type-II problem. This algorithm is presented in Algorithm 2, where the im-
plementation uses depth-first search to recursively call itself until reaching the bottom
level. We name this algorithm PlanHL to identify the use of H and local minimiza-
tion of plan costs using function L at each level. In comparison to PlanHL, algorithm
PlanHG (proposed) does not decompose the original problem to subproblems at each
level. Instead, it generates paths for the original problem to simultaneously satisfy all
state constraints (by applying step bound estimation function L globally) at each level,
toward minimizing the overall plan cost. Since both the algorithms are sacrificing plan
quality for efficiency in solving Type-II problem, neither of the algorithms can guaran-
tee the optimality (i.e. minimal cost) of generated plans, but the provably sound seman-
tics of action language BC ensures the soundness of PlanHG (and PlanHL).

5 Experiments

The abstraction hierarchy H (Section 3) and the planning algorithms (Section 4) have
been fully implemented in simulation and on a real robot using the mail collection prob-
lem domain. This section describes the results of experiments evaluating the efficiency,
solution quality, and scalability of the proposed algorithm. Generally, a planning algo-
rithm’s quality can be measured by optimality and efficiency. Since we trade optimality
for significant efficiency improvement in this work, our hypotheses are: 1) PlanHG can
solve planning problems that existing “flat” algorithms cannot solve in reasonable time
(PlanHG vs. PlanFG); and 2) PlanHG can generate better-quality plans than the ones
generated by existing hierarchical algorithms (PlanHG vs. PlanHL).

5.1 Experiments in Simulation

The simulated domain used in experiments consists of 10 people, 20 rooms and 25
doors in an office environment, where mail needs to be collected from everyone inside
the building. No two people are in the same room. We vary how mail is passed between
people such that the number of people that need to be visited to collect all the mail varies
from 1 to 10. Initially, the robot is placed in the corridor beside a randomly-selected
door. Each data point is an average of 1000 trials. If the trials take more than 5 hours, we
terminate the trials and take the average over the available data. Action descriptions in
BC are translated into logic programming, and the algorithms are implemented natively
in CLINGO 4.3 [7]. Unless otherwise stated, experiments were conducted on a 32-bit
laptop machine with 4G memory and 2.0GHz Dual Core processor.

PlanHG vs. PlanFG on Type-I Problems: We first compared PlanHG against PlanFG
on the efficiency of solving Type-I problems that aim at minimizing the length of plans.
The approach of applying PlanFG on Type-I problems was presented in previous re-
search [15]. The planning time is plotted in Figure 2(a). Not surprisingly, PlanHG leads
to significantly reduced planning time over PlanFG by inserting state constraints (as
“bottlenecks”) at lower levels. For instance, creating a plan to visit six people (in six
different rooms) takes PlanHG less than 20 seconds, but requires more than 13 minutes
for PlanFG. Therefore, PlanHG can significantly reduce the planning time in solving
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Fig. 2: (a) PlanHG vs. PlanFG in efficiency on the Type-I problems (i.e., minimizing plan length);
and (b) PlanHG vs. PlanFG in efficiency on Type-II problems (i.e., minimizing plan cost).

Type-I planning problems. While PlanHG is not guaranteed to find the shortest length
plan, both PlanHG and PlanFG find the shortest length plan in our testing domain.

PlanHG vs. PlanFG on Type-II Problems: As shown in Figure 1, multi-entrance rooms
make the shortest plan not necessarily the lowest-cost plan. We compare PlanHG against
PlanFG on Type-II problems that aim at minimizing overall plan costs. Previous re-
search has studied applying the PlanFG algorithm on Type-II problems [13], where the
lowest-cost plan is found by searching among all plans of length less than a user spec-
ified upper-bound. Instead, we use Equations 2 and 3 of PlanHG to estimate this upper
bound. The efficiency has been significantly improved, because instead of directly solv-
ing the Type-II problem, PlanHG solves a set of low-weight guided Type-II problems
generated using the abstraction hierarchy.

Figure 2(b) shows the significant improvement in efficiency against PlanFG. To
run larger numbers of trials, the experiments were conducted on a powerful desktop
machine with 15G memory and Intel Core i7 CPU at 3.40GHz. For instance, to create a
plan visiting three people, PlanFG needs 5.98 minutes, while PlanHG requires less than
one second. When a small number of people need to be visited, PlanHL took more time
than PlanHG, because PlanHL calls the ASP solver more frequently. Although PlanHG
(the proposed approach) becomes slower than PlanHL while planning for visiting more
than three people, both require significantly less time than PlanFG. PlanHL’s significant
loss in plan quality will be discussed.

Table 1: Scalability of PlanHG on Type-
II problems with three people need to be
visited (in seconds).

# of ppl. Number of rooms
10 15 20 25

5 1.41 2.86 5.65 10.28
10 1.83 4.18 7.69 11.56
15 - 6.20 9.93 14.58

Scalability of PlanHG on Type-II Problems:
We next evaluate the scalability of PlanHG to
learn how the planning time changes given dif-
ferent problem domains. We keep the number of
people who need to be visited fixed at three, and
then vary the total number of people in the build-
ing from 5 to 15, rooms from 10 to 25, and doors
from 13 to 27. Table 1 presents the planning time as the size of the domain increases.

Plan Quality: Figure 3(a) compares all approaches in plan quality (i.e. cost) in the
domain shown in Figure 1. In this set of experiments, the trials (totally 1000) are paired
for different algorithms: the robot is initially placed in the corridor beside a randomly-
selected door; and n people (n varies from 2 to 4) are randomly selected to need the
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Fig. 3: (a) Evaluation of plan quality in minimizing plan cost using different planning algorithms
(normalized, paired)—results of trials that would require longer then five hours to complete were
not included; and (b) Visual illustration of computed plans (worst case) in a test case.

robot’s visit. Realistic action costs are learned and associated with the actions using
algorithms presented in [13]. We observe that algorithms solving a Type-I problem do
not perform as well as those solving the corresponding Type-II problem as they do not
attempt to minimize overall plan cost, but in turn have much faster execution times.

Figure 3(a) shows that PlanFG, the “flat” planning approach that computes optimal
plans, produces plans of the best quality in overall plan cost, but cannot solve Type-
II problems with more than two people in reasonable time (as shown in Figure 2(b)).
Comparing with PlanFG on Type-II problem with two people, we find PlanHG has only
a 11.25% loss in optimality. Compared to PlanHL, the baseline hierarchical planning
algorithm, PlanHG significantly improved the quality of generated plans—when com-
pared over 1000 trials using a student’s t-test with p-value < 10−50.

Figure 3(b) presents a test case of planning to visit two people, to demonstrate why
PlanHG can produce lower cost plans than PlanHL, where the robot is initially beside
d7 at the corridor, and the goal is to collect mail from Alice and Erin. We present the
plans in the worst case. As expected, algorithm PlanFG generated the optimal plan with
the minimum cost (195). While planning with PlanHG, the robot decided to visit room
o1 first (suboptimal) because the robot’s finer position (e.g., beside(d7)) could not be
represented at level 1—D1 only “knows” the robot is in the corridor. While planning
with PlanHL, the robot decided to go through d6 because the subproblem is to find the
optimal plan going into lab1. As a result, PlanHG and PlanHL produce plans with costs
of 205 and 345 respectively. Without minimizing plan cost globally, the robot could not
know going through d5 could reduce the overall cost.

5.2 Illustrative Trials of PlanHG on a Robot
Algorithm PlanHG has been implemented on an autonomous Segway-based robot—
see Figure 4(b). The robot uses a Hokuyo URG-04LX LIDAR and a Kinect RGB-
D camera for sensing and navigation. The robot moves in indoor environments at a
maximum speed of 0.7m/s. Figure 4(a) shows part of the real world map generated
using a simultaneous localization and mapping (SLAM) algorithm. Since manipulation
tasks are not the focus of this paper, similar to [22], the robot simply asks help from
humans to open doors. The system architecture has been implemented using Robot
Operating System (ROS) [21].

As a trial, we initially placed the robot at a position labeled by the yellow dot in
Figure 4(a) and asked the robot to collect mail from three people in lab1, lab2 and
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Fig. 4: (a) Part of the inflated occupancy-grid map with a path (green bubbles) planned for going
through a door; and (b) The robot platform used in experiments.

room1 respectively. Using PlanHG, the robot found the plan within 2 seconds. In con-
trast, the robot needed more than 5 minutes to find the plan when PlanFG was used (see
Figure 2(b)). The plan suggests following this path: start

d1−→lab1∗
d1−→cor1

d2−→lab2∗
d4−→

cor2
d5−→room1∗, where mail was collected at the rooms labeled with the star sign. The

red dot in Figure 4(a) shows the position where the robot finished the task. It should be
noted that there are multiple plans of similar lengths leading to the goal. For instance,
the robot can cross d3 after serving the first person in lab1. This plan is not preferred,
because d3 is a narrow door and has a high cost of navigating through it. A video of the
robot’s performance can be viewed online: https://youtu.be/-QpFj7BbiRU

6 Conclusions

In this paper, we present algorithm PlanHG for robotic task planning using an abstrac-
tion hierarchy represented in action language BC. The hierarchy is obtained by com-
posing additional domain descriptions at coarser granularities and plans computed at
coarser levels are used to generate “bottlenecks” in the form of search depth bounds
at lower levels. This work combines the KRR advantages of BC and the efficiency
of hierarchical planning to enable mobile robots to compute provably sound plans in
real-world environments. The hierarchy and algorithm have been fully implemented in
simulation and on real robots. We observed orders of magnitude improvements in effi-
ciency with only a 11.25% loss in optimality compared to a “flat” planning approach.
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25. Thiébaux, S., Hoffmann, J., Nebel, B.: In defense of PDDL axioms. In: International Joint

Conference on Artificial Intelligence (IJCAI) (2003)
26. Zhang, S., Sridharan, M., Gelfond, M., Wyatt, J.: Towards an architecture for knowledge

representation and reasoning in robotics. In: Int. Conf. on Social Robotics (ICSR) (2014)


