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Abstract
Reinforcement learning in simulation is a promising alternative to the prohibitive sample 
cost of reinforcement learning in the physical world. Unfortunately, policies learned in sim-
ulation often perform worse than hand-coded policies when applied on the target, physi-
cal system. Grounded simulation learning (gsl) is a general framework that promises to 
address this issue by altering the simulator to better match the real world (Farchy et al. 2013 
in Proceedings of the 12th international conference on autonomous agents and multiagent 
systems (AAMAS)). This article introduces a new algorithm for gsl—Grounded Action 
Transformation (GAT)—and applies it to learning control policies for a humanoid robot. 
We evaluate our algorithm in controlled experiments where we show it to allow policies 
learned in simulation to transfer to the real world. We then apply our algorithm to learning 
a fast bipedal walk on a humanoid robot and demonstrate a 43.27% improvement in for-
ward walk velocity compared to a state-of-the art hand-coded walk. This striking empiri-
cal success notwithstanding, further empirical analysis shows that gat may struggle when 
the real world has stochastic state transitions. To address this limitation we generalize gat 
to the stochastic gat (sgat) algorithm and empirically show that sgat leads to success-
ful real world transfer in situations where gat may fail to find a good policy. Our results 
contribute to a deeper understanding of grounded simulation learning and demonstrate its 
effectiveness for applying reinforcement learning to learn robot control policies entirely in 
simulation.
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1 Introduction

Manually designing control policies for every possible situation a robot could encounter is 
impractical. Reinforcement learning (RL) provides a promising alternative to hand-coding 
skills. Recent applications of RL to high dimensional control tasks have seen impressive 
successes within simulation (Schulman et al., 2015b; Lillicrap et al., 2015). Unfortunately, 
a large gap exists between what is possible in simulation and the reality of learning on a 
physical system. State-of-the-art learning methods require thousands of episodes of experi-
ence which is impractical for a physical robot. Aside from the time it would take, collect-
ing the required training data may lead to substantial wear on the robot. Furthermore, as 
the robot explores different policies it may execute unsafe actions which could damage the 
robot.

An alternative to learning directly on the robot is learning in simulation (Cutler & How, 
2015; Koos et al., 2010). Simulation is a valuable tool for robotics research as execution of 
a robotic skill in simulation is comparatively easier than real world execution. Robots in 
simulation can be run unsupervised without fear of them breaking or wearing down. Simu-
lation can often be ran faster than real time or parallelized to increase the speed at which 
data for RL can be collected. However, the value of simulation learning is limited by the 
inherent inaccuracy of simulators in modeling the dynamics of the physical world (Kober 
et al., 2013). As a result, learning that takes place in a simulator is unlikely to improve real 
world performance.

Grounded Simulation Learning (gsl) is a framework for learning with a simulator in 
which the simulator is modified with data from the physical robot, learning takes place in 
simulation, the new policy is evaluated on the robot, and data from the new policy is used 
to further modify the simulator (Farchy et  al., 2013). The work introducing gsl demon-
strates the effectiveness of the method in a single, limited experiment, by increasing the 
forward walking velocity of a slow, stable bipedal walk by 26.7%. This article introduces a 
new algorithm—Grounded Action Transformation (gat)—for simulator grounding within 
the gsl framework. gat grounds the simulator by modifying the robot’s actions as they 
are passed to the simulator to, in effect, create a simulator with different dynamics. The 
grounding function is learned with a small amount of real world and simulated data, allow-
ing the simulator to be modified with less reliance on manual system identification. Addi-
tionally, by modifying the simulated robot’s actions we can treat the simulator as a black-
box and do not require access to change internal parameters of the simulator.

As a first step, in order to facilitate extensive evaluations, we fully implement and evalu-
ate gat on two tasks using a high-fidelity simulator as a surrogate for the real world. The 
results of this controlled study contribute to a deeper understanding of transfer from simu-
lation methods and the effectiveness of gat. We then present two examples of using gat for 
sim-to-real transfer of bipedal locomotion policies learned in simulation to a real humanoid 
robot. In contrast to prior work (Farchy et al., 2013), one task in our real-world evaluation 
starts from a state-of-the-art walking controller as the initial policy, and nonetheless is able 
to improve the walk velocity by over 43%, leading to what may be the fastest known stable 
walk on the SoftBank nao robot.

Furthermore, to better understand situations where gat may be successful we consider 
real world environments that have a high degree of stochasticity. We show in simulated 
environments that gat may fail to find high performing policies when environment state 
transitions are noisy. To address this limitation we generalize gat to the stochastic gat 
(sgat) algorithm and show in simulated, stochastic environments that sgat finds higher 
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performing policies than gat. We implement sgat on the nao robot and show that we can 
learn a fast and stable walking policy over a rough surface while gat fails to find a stable 
policy.

2  Preliminaries

In this section we formalize the reinforcement learning setting and the problem of sim-to-
real learning.

2.1  Notation

We assume the environment is an episodic Markov decision process with state set S , action 
set A , transition function, P ∶ S ×A × S → [0, 1] , reward function r ∶ S ×A → ℝ , dis-
count factor � , and initial state distribution d0 (Puterman, 2014). We assume that S = ℝ

k 
and A = ℝ

m for some k,m ∈ ℕ+ . We assume that the transition function, P, is unknown 
and the reward function, r, is known. We use P(s�|s, a) ∶= P(s, a, s�) to denote the condi-
tional probability of state s′ given state s and action a. P is also sometimes called the envi-
ronment’s dynamics. A policy, � ∶ S → A , is a function mapping states to actions.

The agent interacts with the environment mdp as follows: The agent begins in initial 
state S0 ∼ d0 . At discrete time-step t the agents takes action At = �(St) . The environment 
responds with Rt ∶= r(St,At) and St+1 ∼ P(⋅|St,At) according to the reward function and 
transition function. After interacting with the environment for at most l steps the agent 
returns to a new initial state and the process repeats. For notational convenience, we will 
write that all interactions last l steps, though in fact they may end earlier. In the MDP defi-
nition, we also include a terminal state, s∞ , that allows the possibility of episodes ending 
before time-step l . If at any time-step, t, St = s∞ , then for all t′ ≥ t , St� = s∞ and Rt� = 0.

Let h ∶= (s0, a0, r0, s1,… , sl−1, al−1, rl−1) be a trajectory. Any policy, � , and MDP, M , 
induce a distribution over trajectories, Pr(H = h|�,M) , where H is a random variable rep-
resenting a trajectory. Let R(h) ∶=

∑l−1

t=0
� trt be the discounted return of h. We define the 

value of a policy, v(�,M) ∶= �[R(H)|H ∼ (�,M)] , as the expected discounted return 
when sampling a trajectory with policy � in MDP M . We are interested in learning a pol-
icy, � , for an mdp, M , such that v(�,M) is maximized. We wish to minimize the number of 
actions that must be taken in M before a good policy is learned, i.e., we desire low sample 
complexity for learning.

2.2  Learning in simulation

In this article we study reinforcement learning in a simulated environment with the objec-
tive that learned policies will perform well in the real world. We formalize this setting 
as learning a policy, � , in one MDP, M��� , with the objective of maximizing v(�,M) . 
The MDP M��� is the simulator and M is the real world. Formally, M and M��� are 
identical MDPs except for the transition function P.1 We use P to denote the transition 

1 A closely related body of work considers how learning can take place in simulation when the observa-
tions the agent receives are different from the real world (e.g., rendered images vs. natural images). We dis-
cuss this work in our related work section but consider this problem orthogonal to the problem of differing 
dynamics.
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function of the real world and P��� to denote the transition function of the simulator. 
We make the assumption that the reward function, r, is user-defined and thus is identi-
cal for M and M��� . However, the different dynamics distribution means that for any 
policy, � , v(�,M) ≠ v(�,M���) since � induces a different trajectory distribution in M 
than in M��� . Thus, for any �′ with v(𝜋�,M���) > v(𝜋,M���) , it does not follow that 
v(𝜋�,M) > v(𝜋,M)—in fact v(��,M) could be much worse than v(�,M) . In practice and 
in the literature, learning in simulation often fails to improve expected performance (Far-
chy et al., 2013; Christiano et al., 2016; Rusu et al., 2016b; Tobin et al., 2017).

3  Related work

The challenge of transferring learned policies from simulation to reality has received much 
research attention of late. This section surveys this recent work as well as older research 
in simulation-transfer methods. We note that our work also relates to model-based rein-
forcement learning (Sutton & Barto, 1998). However, much of model-based reinforcement 
learning focuses on learning a simulator for the task mdp (often from scratch) while we 
focus on settings where an inaccurate simulator is available a priori.

We divide the sim-to-real literature into four categories: simulator modification, simula-
tor randomization or simulator ensembles, simulators as prior knowledge, and sim-to-real 
perception learning.

3.1  Simulator modification

We classify sim-to-real works that attempt to use real world experience to change the simu-
lator as simulator modification approaches. This category of work is the category most 
similar to this work.

Abbeel et al. (2006) use real-world experience to modify an inaccurate model of a deter-
ministic mdp. The real-world experience is used to modify P��� so that the policy gradient 
in simulation is the same as the policy gradient in the real world. Cutler et al. (2014) use 
lower fidelity simulators to narrow the action search space for faster learning in higher 
fidelity simulators or the real world. This work also uses experience in higher fidelity simu-
lators to make lower fidelity simulators more realistic. Both these methods assume random 
access modification—the ability to arbitrarily and locally modify the simulated dynamics 
of any state-action pair. This assumption is restrictive in that it may be false for many simu-
lators especially for real-valued states and actions.

Other work has used real world data to modify simulator parameters (e.g., coefficients 
of friction) (Zhu et al., 2018) or combined simulation with Gaussian processes to model 
where real world data has not been observed (Lee et  al., 2017). Such approaches may 
extrapolate well to new parts of the state-space, however, they may fail if no setting of 
the physics parameters can capture the complexity of the real world. Golemo et al. (2018) 
train recurrent neural networks to predict differences between simulation and reality. Then, 
following actions in simulation, the resulting next state is corrected to be closer to what it 
would be in the real world. This approach requires the ability to directly set the state of the 
simulator which is a requirement we avoid in this work.

Manual parameter tuning is another form of simulator modification that can be done 
prior to applying reinforcement learning. Lowrey et al. (2018) manually identify simula-
tion parameters before applying policy gradient reinforcement learning to learn to push an 
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object to target positions. Tan et al. (2018) perform similar system identification (including 
disassembling the robot and making measurements of each part) and adding action latency 
modeling before using deep reinforcement learning to learn quadrapedal walking. In con-
trast to these approaches, the algorithms we introduce take a data-driven approach to modi-
fying the simulator without the need for expert system identification.

Finally, while most approaches to simulator modification involve correcting the sim-
ulator dynamics, other approaches attempt to directly correct v(�,M���) . Assuming 
v(�,M) = v(�,M���) + �(�) , Iocchi et  al. (2007) attempt to learn �(�) for any � . Then 
policy search can be done directly on v(�,M���) + �(�) without needing to evaluate 
v(�,M) . Rodriguez et al. (2019) introduce a similar approach except they take into account 
uncertainty in extrapolating the estimate of �(�) and use Bayesian optimization for policy 
learning. Like this work, both of these works apply their techniques to bipedal locomotion. 
Koos et al. (2010) use multi-objective optimization to find policies that trade off between 
optimizing v(�,M���) and a measure of how likely � is to transfer to the real world.

3.2  Robustness through simulator variance

Another class of sim-to-real approaches is methods that attempt to cross the reality gap by 
learning robust policies that can work in different variants of the simulated environment. 
The key idea is that if a learned policy can work in different simulations then it is more 
likely to be able to perform well in the real world. The simplest instantiation of this idea is 
to inject noise into the robot’s actions or sensors (Jakobi et al., 1995; Miglino et al., 1996) 
or to randomize the simulator parameters (Peng et al., 2017; Molchanov et al., 2019; Ope-
nAI et al., 2018). Unlike data driven approaches, such domain randomization approaches 
learn policies that are robust enough to cross the reality gap but may give up some ability 
to exploit the target real world environment. This problem may be more acute when learn-
ing with simple policy representations, as simpler policies may lack the capacity to per-
form well under a wide range of environment conditions (Mozifian et al., 2019).

A number of works have attempted to combine domain randomization and real world 
data to adapt the simulator. Chebotar et al. (2019) randomize simulation parameters and 
use real world data to update the distribution over simulation parameters while simulate-
nously learning robotic manipulation tasks. Ramos et al. (2019) take a similar approach. 
Muratore et al. (2018) attempt to use real world data to predict transferrability of policies 
learned in a randomized simulation. Mozifian et al. (2019) attempt to maintain a wide dis-
tribution over simulator parameters while ensuring the distribution is narrow enough to 
allow reinforcement learning to exploit instances that are most similar to the real world.

Domain randomization produces policies that are robust enough to transfer to the 
real world. An alternative approach that does not involve randomness is to learn policies 
that perform well under an ensemble of different simulators (Boeing & Bräunl, 2012; 
Rajeswaran et  al., 2017; Lowrey et  al., 2018). Pinto et  al., (2017b) simultaneously learn 
an adversary that can perturb the learning agent’s actions while it learns in simulation. The 
learner must learn a policy that is robust to disturbances and then will perform better when 
transferred to the real world.

3.3  Simulator as prior knowledge

Another approach to sim-to-real learning is to use experience in simulation to reduce learn-
ing time on the physical robot. Cully et al. (2015) use a simulator to estimate fitness values 
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for low-dimensional robot behaviors which gives the robot prior knowledge of how to adapt 
its behavior if it becomes damaged during real world operation. Cutler and How (2015) use 
experience in simulation to estimate a prior for a Gaussian process model to be used with 
the pilco (Deisenroth & Rasmussen, 2011) learning algorithm. Rusu et al. (2016a, b) intro-
duce progressive neural network policies which are initially trained in simulation before 
a final period of learning in the true environment. Christiano et al. (2016) turn simulation 
policies into real world policies by transforming policy actions so that they produce the 
same effect that they did in simulation. Marco et al. (2017) use simulation to reduce the 
number of policy evaluations needed for Bayesian optimization of task performance. In 
principle, our work could be used with any of these approaches to correct the simulator 
dynamics which would lead to a more accurate prior.

3.4  Reality gap in the observation space

Finally, while we focus on the reality gap due to differences in simulated and real world 
dynamics, much recent work has focused on transfer from simulation to reality when the 
policy maps images to actions. In this setting, even if P and P��� are identical, policies may 
fail when transferred to the real world due to the differences between real and rendered 
images. Domain randomization is a popular technique for handling this problem. Unlike 
the dynamics randomization techniques discussed above, in this setting domain randomi-
zation means randomizing features of the simulator’s rendered images (Sadeghi & Lev-
ine, 2017; Tobin et al., 2017, 2018; Pinto et al., 2017a). This approach is useful in that it 
forces deep reinforcement learning algorithms to learn representations that focus on higher 
level properties of a task and not low-level details of image appearance. Computer vision 
domain adaptation methods can also be used to overcome the problem of differing obser-
vation spaces (Fang et al., 2018; Tzeng et al., 2016; Bousmalis et al., 2018; James et al., 
2019). A final approach is to learn perception and control separately so that the real world 
perception system is only trained with real world images (Zhang et al., 2016; Devin et al., 
2017). The problem of overcoming a reality gap in the agent’s observations of the world is 
orthogonal to the problem of differing dynamics that we study.

4  Grounded simulation learning

In this section we introduce the grounded simulation learning (gsl) framework as pre-
sented by Farchy et  al. (2013). Our main contribution is a novel algorithm that instanti-
ates this general framework. gsl allows reinforcement learning in simulation to succeed 
by using trajectories from M to first modify M��� such that the modified M��� is a higher 
fidelity model of M . The process of making the simulator more like the real world is 
referred to as grounding.

The gsl framework assumes the following: 

1. There is an imperfect simulator mdp, M��� , that models the mdp environment of 
interest, M . Furthermore, M��� must be modifiable. In this article, we formalize 
modifiable as meaning that the simulator has parameterized transition probabilities 
P�(⋅|s, a) ∶= P���(⋅|s, a;�) where the vector � can be changed to produce, in effect, a 
different simulator.
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2. There is a policy improvement algorithm, �������� , that searches for � which increase 
v(�,M���) . The �������� routine returns a set of candidate policies, � to evaluate in 
M.

We formalize the notion of grounding as minimizing a similarity metric between the real 
world trajectories and the trajectory distribution of the simulation. Let d(h, Pr���(⋅|�;�)) be 
a score for the likelihood of a given trajectory in the simulator parameterized by � . Given a 
dataset of trajectories, D���� ∶= {hi}

m
i=1

 , collected by running a policy, � , in M , simulator 
grounding of M��� amounts to finding �⋆ such that:

For instance, if d(h, Pr���(⋅|�;�)) ∶= log Pr���(h|�;�) then �⋆ maximizes the negative log-
likelihood or equivalently the empirical Kullback-Leibler divergence between Pr(⋅|�,M) 
and Pr���(⋅|𝜋,�⋆).

Intuitively, Eq. (1) is solved by making the real world trajectories under � more likely 
when running � in the simulator. Though exactly solving Eq. (1) may be intractable, if we 
can make real world trajectories more likely in the simulator then the simulator will be bet-
ter for policy optimization. Assuming a mechanism for optimizing (1), the gsl framework 
is as follows: 

1. Execute an initial policy, �0 , in the real world to collect a data set of trajectories, 
D���� = {hj}

m
j=1

.
2. Optimize (1) to find �⋆ that makes Pr(H = h|�0,M���) closer to Pr(H = h|�0,M) for 

all h ∈ D����.
3. Use �������� to find a set of candidate policies � that improve v(⋅,M���) in the modi-

fied simulation.
4. Evaluate each proposed �c ∈ � in M and return the policy: 

gsl can be applied iteratively with �1 being used to collect more trajectories to ground 
the simulator again before learning �2 . The re-grounding step is necessary since changes 
to � result in changes to the distribution of trajectories that the agent observes. When the 
distribution changes, a simulator that has been modified with data from the trajectory dis-
tribution of �0 may be a poor model under the trajectory distribution of �1 . The entire gsl 
framework is illustrated in Fig. 1.

5  The grounded action transformation algorithm

We now introduce the main contribution of this article—a novel gsl algorithm called 
the grounded action transformation (gat) algorithm. gat instantiates the gsl framework 
by introducing a specific implementation of the grounding step (Step 2) of the gsl frame-
work. The main idea behind gat is to augment the simulator with a differentiable action 
transformation function, g, which transforms the agent’s simulated action into an action 
which—when taken in simulation—produces the same transition that would have occurred 
in the physical system. The function, g, is represented with a parameterized function 

(1)𝜙⋆ = argmax
𝜙

∑

h∈D����

d
(
h, Pr���(⋅|𝜋;𝜙)

)
.

�1 ∶= argmax
�c∈Π

v(�c,M).
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approximator whose parameters serve as � for the augmented simulator in the gsl frame-
work. We leave open the gat instantiation of the other gsl steps (data collection, policy 
optimization, and final policy evaluation). The main contribution of gat is a novel method 
to ground the simulator.

The gat algorithm learns two functions: f which predicts the effects of actions in M and 
f −1
���

 , which predicts the action needed in simulation to reproduce the desired effects. Let 
� be a subset of the components of state � and let X  be the set of all possible values for � . 
We refer to the components of � as the state variables of interest. We define gat as ground-
ing a subset of the state components to allow users to inject domain knowledge into the 
grounding process if they know what components are most important to model correctly; 
a user can always opt to include all components of the state as state variables of interest 
if they lack such domain knowledge. Formally, the function f ∶ S ×A → X  is a forward 
model that predicts the effect on the state variables of interest given an action chosen in 
a particular state in M . The function f −1

���
∶ S × X → A is an inverse model that predicts 

the action that causes a particular effect on the state variables of interest given the current 
state in simulation. The overall action transformation function g ∶ S ×A → A is specified 
as g(�, �) ∶= f −1

���
(�, f (�, �)) . When the agent is in state �t in the simulator and takes action 

�t , the augmented simulator replaces �t with g(�t, �t) and the simulator returns �t+1 where 
the �t+1 components of �t+1 are closer in value to what would be observed in M had �t been 
taken there. Figure 2 illustrates the augmented simulator.

Fig. 1  Diagram of the grounded 
simulation learning framework

Fig. 2  The augmented simulator which can be grounded to the real world with supervised learning. The 
policy computes an action that is then passed to the action grounding module. This module first predicts the 
values for the state variables of interest if the action had been taken in the real world. The module then uses 
an inverse dynamics model, f −1

���
 , to compute the action that produces the same effect in simulation. Finally, 

the policy’s action is replaced with the predicted action and this modified action is passed to the simulator
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gat learns the functions f and f −1
���

 with supervised learning. The function f is 
learned by collecting a small number of real world trajectories and then constructing a 
supervised learning dataset {(�i, �i)} → {��

i
} . Similarly, the function f −1

���
 is learned by 

collecting simulated trajectories and then constructing a supervised learning dataset 
{(�i, �

�
i
)} → {�i} . This pair of supervised learning problems can be solved by a vari-

ety of techniques. In our experiments we use either neural networks or linear models 
trained with gradient descent on a squared error loss. Pseudocode for the full gat algo-
rithm is given in Algorithm 1.

Algorithm 1 Grounded Action Transformation (gat). Input: An initial
policy, π0, the environment, M, a simulator, Msim, and a policy improvement
method, optimize. The function rollout(Env, π, m) executes m trajectories
with π in the provided environment, Env, and returns the observed state
transition data. The functions trainForwardModel and trainInverseModel
estimate models of the forward and inverse dynamics respectively given a
dataset of trajectories. The function optimize takes the simulator, an initial
policy, and the grounding function, g, and runs an RL algorithm that finds
policies that improve on the initial policy in the grounded simulator.
1: i ← 0
2: repeat
3: Dreal ← Rollout(M, πi,m)
4: Dsim ← Rollout(Msim, πi,m)
5: f ← trainForwardModel(Dreal)
6: f−1

sim ← trainInverseModel(Dsim)
7: g(s, a) ← f−1

sim (s, f(s, a))
8: Π ← optimize(Msim, πi, g)
9: i ← i+ 1
10: πi ← argmaxπ∈Π v(π)
11: until v(πi) < v(πi−1) // No improvement in real world performance.
12:
13: Return argmaxi v(πi)

Because we take a data-driven approach to simulator modification, the result is not 
necessarily a globally more accurate simulator for the real world. Our only goal is that 
the simulator is more realistic for trajectories sampled with the grounding policy. If we 
can achieve this goal, then we can locally improve the policy without any additional 
real world data. A simulator that is more accurate globally may provide a better start-
ing point for gat, however, by focusing on simulator modification local to the ground-
ing policy we can still obtain policy improvement in low fidelity simulators.

We also note that gat minimizes the error between the immediate state transitions of 
M��� and those of M . Another possible objective would be to observe the difference 
between trajectories in M and M��� and ground the simulator to minimize the total 
error over a trajectory. Such an objective could lead to an action modification function 
g that accepts short-term error if it reduces the error over the entire trajectory, how-
ever, it would require the simulator dynamics to be differentiable. As it is unclear how 
to select the modified actions that minimize multi-step error, we accept minimizing the 
one-step error as a good proxy for minimizing our ultimate objective which is that the 
current policy � produces similar trajectories in both M and M��� . The specific choice 
of g used by GAT allows GAT to learn the actions that minimize the one-step error in 
simulated and real world transitions.
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5.1  Modifying actions vs. modifying parameters

Before presenting an empirical evaluation of gat, we discuss the motivation for modifying 
actions instead of internal simulator parameters. Our main motivation for modifying the 
agent’s simulated action is that we can then treat the simulator as a black box. While phys-
ics-based simulators typically have a large number of parameters determining the physics 
of the simulated environment (e.g., friction coefficients, gravitational values) these param-
eters are not necessarily amenable to numerical optimization of Eq. (1). First, just because 
a simulator has such parameters does not mean that they’re exposed to the user or can be 
modified without additional software engineering. On the other hand, when applying RL, it 
is reasonable to assume that a user has access to the actions output by the policy and could 
thus include an action transformation to ground the simulator. Second, even if changing 
physics parameters is straightforward, it may be computationally or manually intensive to 
determine how to change a parameter to make the simulator produce trajectories closer to 
the ones we observe in the real world. In contrast, action modification with gat allows us to 
transform simulator modification into a supervised learning problem.

In this article we focus on the blackbox setting where we are unable to change the simu-
lator’s internal parameters. However, if these parameters are exposed to the user then there 
may be settings where correctly identifying the real world parameters may provide more 
reliable transfer than action modification. A characterization of the settings where one 
approach is preferable to the other is an interesting direction for future research.

6  GAT empirical study

We now present an empirical study of applying the gat algorithm for reinforcement learn-
ing with simulated data. Our experiments are designed to answer the following questions: 

1. Does grounding a simulation with gat allow skills learned in simulation to transfer to 
the real world?

2. Does gat make the simulated robot’s actions have similar effects to those they would 
have in the real world.

To answer these questions we apply gat on three tasks with the simulated and physical 
NAO robot. Though our focus is on sim-to-real transfer, we include two experiments in 
a sim-to-sim setting where we use one simulator as a surrogate for the real world. These 
experiments allow us to run a larger number of experimental trials than would be practical 
in the tasks using a physical robot. We first give a general description of the empirical set-
up. We then proceed to describe each task and the empirical results observed.

6.1  General NAO task description

All empirical tasks use either a simulated or physical Softbank nao robot.2 The nao is a 
humanoid robot with 25 degrees of freedom (see Fig. 3a). Though the nao has 25 degrees 
of freedom, we restrict ourselves to observing and controlling 15 of them (we ignore joints 

2 https:// www. ald. softb ankro botics. com/ en.

https://www.ald.softbankrobotics.com/en
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(a) A Softbank nao Robot (b) nao in Gazebo (c) nao in SimSpark

Fig. 3  The three robotic environments used here. The Softbank nao is our target physical robot. The nao 
is simulated in the Gazebo and SimSpark simulators. Gazebo is a higher fidelity simulator which we also 
use as a surrogate for the real world in an empirical comparison of grounded action transformation (gat) to 
baseline methods

Fig. 4  Diagram of the Softbank nao robot with joints (degrees of freedom) labeled. Each joint has a sen-
sor that reads the current angular position of the joint and can be controlled by providing a desired angular 
position for the joint. In this work, we ignore the HeadYaw, HeadPitch, left and right ElbowRoll, left and 
right ElbowYaw, left and right WristYaw, and left and right Hand joints. There is also no need to control 
the right HipYawPitch joint as, in reality, this degree of freedom is controlled by the movement of the left 
HipYawPitch Joint. This image was downloaded from: http:// doc. aldeb aran. com/2- 8/ family/ nao_ techn ical/ 
lola/ actua tor_ sensor_ names. html

http://doc.aldebaran.com/2-8/family/nao_technical/lola/actuator_sensor_names.html
http://doc.aldebaran.com/2-8/family/nao_technical/lola/actuator_sensor_names.html
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that are less important for our experimental tasks—joints in the head, hands, and elbows). 
We will refer to the degrees of freedom as the joints of the robot. Figure 4 shows a diagram 
of the nao and its different joints.

We define the state variables of interest to be the angular position of each of the robot’s 
joints. In addition to angular position, the robot’s state consists of joint angular veloci-
ties and other task-dependent variables. The robot’s actions are desired joint angular posi-
tions which are implemented at a lower software level using pid control. There is a one-to-
one correspondence between components of the robot’s action and the state variables of 
interest.

In all tasks our implementation of gat uses a history of the joint positions and desired 
joint positions as an estimate of the nao’s state to input into the forward and inverse mod-
els. Instead of directly predicting �t+1 , the forward model, f, is trained to predict the change 
in �t after taking �t . The inverse model f −1

���
 takes the current �t and a desired change at �t+1 

and outputs the action needed to cause this change. Since both the state variables of inter-
est and actions have angular units, we train both f and f −1

���
 to output the sine and cosine of 

each output angle. From these values we can recover the predicted output with the arctan 
function. Since f −1

���
 and f are trained with supervised learning, they may make small errors 

when used to change the agent’s actions (Ross et al., 2011). Since small errors may make 
the output of g not smooth from timestep to timestep, we sometimes find it useful to use 
a smoothing parameter, � , to ensure stable motions. The action transformation function 
(Algorithm 1, line 7) is then defined as:

In our experiments involving bipedal walking, we set � as high as possible subject to the 
robot remaining stable in simulation when executing �0 . In all other experiments, we use 
� = 1.0.

We consider two simulators in this work: the Simspark3 Soccer Simulator used in the 
annual RoboCup 3D Simulated Soccer competition and the Gazebo simulator from the 
Open Source Robotics Foundation.4 SimSpark enables fast simulation but is a lower fidel-
ity model of the real world. Gazebo enables relatively high fidelity simulation with an addi-
tional computational cost. The nao model in both of these simulations is shown in Fig. 3a.

Across all tasks we use the covariance matrix adaptation evolutionary strategies (cma-
es) algorithm (Hansen et  al., 2003) for the policy optimization routine. cma-es is a sto-
chastic search algorithm that updates a population of candidate policies over a set number 
of generations. At each generation, cma-es samples a population of policy parameter val-
ues from a Gaussian distribution. It then uses the evaluation of each candidate policy in 
simulation to update the sampling distribution for the population at the next generation. 
cma-es has been found to be very effective at optimizing robot skills in simulation (Urieli 
et al., 2011). In all experiments we use a population size of 150 candidate policies at each 
generation as we were able to submit up to 150 parallel policy evaluations at a time on the 
University of Texas Computer Science distributed computing cluster.

With the exception of the final experiment in this section, we run a single iteration of 
gat per experimental setting. A single iteration allows us to keep the initial policy fixed so 
that we have a more controlled measure of the efficacy of simulator grounding. In all cases 

g(�, �) ∶= �f −1
���

(�, f (s, �)) + (1 − �)�.

3 http:// simsp ark. sourc eforge. net.
4 http:// gazeb osim. org.

http://simspark.sourceforge.net
http://gazebosim.org
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we select the architectures of the forward and inverse dynamics models via optimizing a 
least-squares loss on a held-out set of transitions. These models are trained with stochastic 
gradient descent using the Adam optimizer (Kingma & Ba, 2014).

6.2  Learning arm control

Our first task requires the nao to learn to raise its arms from its sides to a goal position, �⋆ 
which is defined to be halfway to horizontal (lift 45 degrees). We call this task the “Arm 
Control” task. In this task, the robot’s policy only controls the two shoulder joints responsi-
ble for raising and lowering the arms. The angular position of these joints are the state vari-
ables of interest, � . The policy is a linear mapping from �t and �t−1 to the action �t:

where � and � are learnable parameters. At time t, the agent receives reward:

and the episode terminates after 200 steps or when either of the robot’s arms raise higher 
than 45 degrees. The optimal policy is to move as close as possible to 45 degrees without 
lifting higher.

We apply gat for sim-to-sim transfer from Simspark ( M��� ) to Gazebo ( M – effectively 
treating Gazebo as the real world). We represent f and f −1

���
 with linear functions. To train f, 

we collect 50 trajectories in M and train f −1
���

 with 50 trajectories from M���.
On this task our baseline is learning without simulator modification. For each method 

(gat and “No Modification”), we run 10 experimental trials where each trial consists of 
running 50 generations of cma-es and taking the best performing candidate policy from 
each generation and evaluating it in M . Our main point of comparison is which method 
finds a policy that allows the robot to move its arms closer to the target position (higher 
v(�,M)).

Figure 5 shows the mean distance from the target position for the final policy learned 
in simulation either with gat or with “No Modification.” Results show that gat is able to 
overcome the reality gap and results in policies that reduce error in final arm position.

�(�t, �t−1) = � ⋅ (�t, �t−1) + �

r(�t) =
1

|�t − �⋆|2
2

Fig. 5  Mean performance of 
best policies found on the Arm 
Control task. We run 10 experi-
mental trials using gat and 10 
experimental trials directly trans-
ferring from M��� to M (“No 
Modification”). The vertical axis 
gives the average distance to the 
target position during a trajectory 
(lower is better). Error bars are 
for a 95% confidence interval
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We also visualize the effect of the action modification function, g, in the simulator. Fig-
ure 6 shows how the robot’s LeftShoulderPitch joint moves in M , M��� , and the grounded 
M��� when a constant action of −15 degrees is applied. In M��� the position of the Left-
ShoulderPitch responds immediately to the command while in M the position changes 
much more slowly. In Simspark, the shoulder joints are more responsive to commands and 
thus the robot needs to learn it must take weaker actions to prevent overshooting the target. 
In Gazebo, the joints are less responsive to the actions and the same policy fails to get the 
arms close to the target. After applying gat, the position changes much slower in simula-
tion as the action modification function reduces the magnitude of the desired change. This 
visualization helps answer our second empirical question as to whether or not action modi-
fication makes the simulator behave more like reality.

6.3  Linear walk policy optimization

Our second task is walking forward with a linear control policy on the physical robot. The 
state variables of interest are 10 joints in the robot’s legs (ignoring the left HipYawPitch 
joint) and the 4 joints controlling its shoulders. The actions are desired angular positions 
for all 15 of these joints.

The policy inputs are the gyroscope that measures forward-backward angular velocity, 
y, and the gyroscope that measures side-to-side angular velocity, x. We also provide as 
input an open-loop sine wave. The sine wave encodes prior knowledge that a successful 
walking policy will repeat actions periodically. The final form of the policy is:

�(⟨x, y, sin(c ⋅ t)⟩) = � ⋅ ⟨x, y, sin(c ⋅ t)⟩ + �

Fig. 6  Visualization of the robot’s LeftShoulderPitch joint position in M , M��� , and M��� after apply-
ing gat. The horizontal axis is time in frames (50 frames per second). The vertical axis has units of angles 
which is the unit for both the plotted actions and states. Trajectories were generated in each environment 
with a policy that sets a constant desired position of −15 degrees (“Action”). “Real State” shows the Left-
ShoulderPitch position in M , “No Grounding State” shows position in M��� , and “Grounded State” shows 
position in the grounded M��� . “Grounded Action” shows the action that the gat action modification func-
tion takes in place of “Action”
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where c is a learnable scalar that controls the walking step frequency. The policy outputs 
only commands for the left side of the robot’s body and the commands for the right side are 
obtained by reflecting these commands around a learned value. That is, for each joint, j, on 
the left side of the robot’s body we learn a parameter �j and obtain the action for the right 
side of the robot’s body by reflecting the policy’s output for j across �j . This representation 
is equivalent to expressing the policy for the right side of the robot’s body as:

In our experiments, instead of optimizing a separate � vector, we clamp � to be equal to 
the bias, �.

We define the reward as a function of the distance the robot has travelled at the final 
time-step. Let �(st, s0) be the robot’s forward change in position between state st and 
state s0 and let �(st) take value 1 if the robot has fallen over in state st and 0 otherwise. In 
simulation:

where the penalty of −25 discourages cma-es from proposing policies that obtain high for-
ward displacement through potentially unsafe actions for the physical robot. For example, 
cma-es might find a policy that throws itself forward, obtaining high reward but risking 
damage on the physical robot. The penalty does not guarantee that the best simulation poli-
cies will be stable in the real world but it at least encourages them to be stable in simula-
tion. On the physical robot we only measure forward distance travelled; if the robot falls we 
count the distance travelled as zero:

We apply gat for sim-to-real transfer from Simspark to the physical nao. We learn f and 
f −1
���

 with linear regression. To train f we collect 10 trajectories in M and train f −1
���

 with 50 
trajectories from M��� . We chose 10 trajectories for M because after 10 the robot’s motors 
may begin to heat up which changes the dynamics of the joints.

In the Linear Policy Walking task we measure performance based on how far forward 
the robot walks. The initial policy fails to move the robot forward at all—though it is exe-
cuting a walking controller, its feet never break the friction of the carpet and so it remains 
at the starting position. We run five trials of learning with simulator modification and five 
trials without. On average learning in simulation with gat resulted in the robot moving 
4.95 cm forward while without simulator modification the robot only moved 1.3 cm on 
average.

Across the five trials without modification, two trials fail to find any improvement. The 
remaining three only find improvement in the first generation of cma-es—before cma-es 
has been able to begin exploiting inaccuracies in the simulation. In contrast, all trials with 
simulator modification find improving policies and improvement comes in later learning 
generations (on average generation 3 is the best).

We also plot example trajectories to see how the modified and unmodified simula-
tions compare to reality. Instead of plotting all state and action variables, we only plot the 
state variable representing the robot’s right AnklePitch joint and the action that specifies 
a desired position for this joint. This joint was chosen because the main failure of policies 

�r(⟨x, y, sin(c ⋅ t)⟩) = � − (� ⋅ ⟨x, y, sin(c ⋅ t)⟩ + � −�).

r(st, at) ∶=

{
0 t < l − 1

𝛥(st, s0) − 25 ⋅ �(st) t = l
.

r(st, at) ∶=

{
0 t < l − 1

𝛥(st, s0) ⋅ (1 − �(st)) t = l
.
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learned without simulator modification is that the robot’s feet never break the friction of 
the carpet. We hypothesize that learning to properly move the ankles may be important for 
a policy to cross the reality gap and succeed in the real world.

Figure  7a shows the prediction of joint position for the learned forward model, f, as 
well as the joint position in the real world and simulation. The “Predicted State” curve is 
generated by using f as a simulator of how the joint position changes in response to the 
actions.5 Figure 7a shows that in the real world the right AnklePitch joint oscillates around 
the desired angular position as given by the robot’s action. The forward model f predicts 
this oscillation while the simulator models the joint position as static.

Figure  7b shows the actual real world and simulated trajectories, both for the modi-
fied and unmodified simulators. Though the modified simulator still fails to capture all of 
the real world oscillation, it does so more than no modification. Learning in a simulator 
that more accurately models this motion leads to policies that are able to lift the robot’s 
legs enough to walk. This qualitative results also shows how action modification can be an 
effective strategy for simulator grounding.

6.4  Sim‑to‑sim walk engine policy optimization

In this section, we evaluate gat on the task of bipedal robot walking with a state-of-the-art 
walk controller for the nao robot. The initial policy is the open source University of New 
South Wales (unsw) walk engine developed for RoboCup Standard Platform League (spl) 
competitions (Ashar et al., 2015; Hall et al., 2016). This walk engine is a software module 
designed for the NAO robot that takes in the robot’s proprioceptive and inertial sensors and 
outputs desired positions for the robot’s joints; we refer the reader to Ashar et al. (2015) 

Fig. 7  Visualization of the robot’s right AnklePitch joint during the Linear Policy Walking task. Both sub-
figures show the position trajectory for M (denoted “Real State”) and M��� (“No Grounding State”). They 
also both show the action though it is covered by the “No Grounding State” curve. a shows the gat forward 
model’s prediction of position given the same action sequence. b shows the actual position when acting in 
the modified simulation

5 Note that f would not suffice for policy improvement as it only models how the joint positions change and 
not the effect of these changes on walk velocity.
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for full details of the initial policy’s implementation. This walk controller has been used by 
at least one team in the 2014, 2015, 2016, 2017, 2018, 2019 RoboCup Standard Platform 
League (spl) championship games in which teams of five naos compete in soccer matches. 
To the best of our knowledge, it is the fastest open source walk available for the nao. We 
first present a sim-to-sim evaluation of gat using Gazebo as a surrogate for the real world. 
Performing a sim-to-sim evaluation allows us to evaluate gat and baselines with more tri-
als than would be possible to run on the physical robot. In the next section, we apply gat to 
optimize the UNSW walk engine the physical robot.

The unsw walk engine has 15 parameters that determine features of the walk (see 
Table 1 for a full list of these parameters). The values of the parameters from the open 
source release constitute the parameterization of the initial policy �0 . Hengst (2014) 
describes the unsw walk controller in more detail. For this task, v(�,M) is the average 
forward walk velocity while executing � . In simulation a trajectory terminates after a fixed 
time interval (7.5 seconds in SimSpark and 10 seconds in Gazebo) or when the robot falls. 
For policy improvement in simulation, we apply cma-es for 10 generations with a popula-
tion size of 150 candidate policies evaluated in each generation.

We implement gat with two two-hidden-layer neural networks—one for f and one for 
f −1
���

 . Each function is a neural network with 200 hidden units in the first layer and 180 hid-
den units in the second.

As baselines, we evaluate the effectiveness of gat compared to learning with no ground-
ing and grounding M��� by adding Gaussian noise to the robot’s actions. Adding an “enve-
lope” of noise has been used before to minimize simulation bias by preventing the policy 
improvement algorithm from overfitting to the simulator’s dynamics (Jakobi et al., 1995). 
We refer to this baseline as ane for Action Noise Envelope. We hypothesize that gat is 
modifying simulation in a more effective way than just forcing learning to be robust to per-
turbation and will thus obtain a higher level of performance.

Table 1  The initial parameter 
values found in the open source 
release of the unsw walk engine

Some of these values were explicit parameters in the open source 
release; others were hard-coded constants that we chose to allow cma-
es to modify during policy optimization

Parameter name Parameter value

Center of mass offset 0.01
Base walk period 0.23
Walk hip height 0.23
Max forward 0.3
Max left step 0.2
Max turn 0.87
Max forward change 0.15
Max left change 0.2
Max turn change 0.8
Base leg lift 0.012
Arm swing 6.0
Pendulum height 300.0
Forward extra foot height 0.01
Left extra foot height 0.02
Start lift divisor 3.5
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For gat we collect 50 trajectories of robot experience to train f and 50 trajectories of 
simulated experience to train f −1

���
 . For each method, we run 10 generations of the cma-

es algorithm with population size of 150 and each member of the population evaluated 
in simulation with 20 trajectories. Overall, the cma-es optimization requires 30,000 simu-
lated trajectories for each experimental trial. We run 10 total experimental trials for each 
method.

Table 2 gives the average improvement in stable walk policies for each method and the 
number of trials in which a method failed to produce a stable improvement. Results show 
that gat maximizes policy improvement while minimizing failure to transfer when transfer-
ring from a low-fidelity to high-fidelity simulator. ane improves upon no grounding in both 
improvement and number of iterations without improvement. Adding noise to the simulator 
encourages cma-es to propose robust policies which are more likely to be stable. However, 
gat further improves over ane—demonstrating that action transformations are grounding 
the simulator in a more effective way than simply injecting noise.

Table 2 also shows that on average, gat finds an improved policy within the first few 
generations after grounding. The grounding done by gat is inherently local to the trajec-
tory distribution of ��0 . Thus as �� changes, the action transformation function fails to 
produce a more realistic simulator. As policy improvement progresses, the best policies 
in each cma-es generation begin to over-fit to the dynamics of M��� . Without grounding 
over-fitting happens almost immediately and so when learning with no grounding finds an 
improvement it is also usually in an early generation of cma-es. ane can mitigate over-
fitting by emphasizing robust policies although it is limited in the improvement it finds 
compared to gat.

6.5  Sim‑to‑real walk engine policy optimization

We now present our main empirical result—an application of gat to optimizing a state-of-
the-art walking controller for the NAO robot. All experimental details are the same as those 
used in the sim-to-sim evaluation except for the following changes. On the physical robot, a 
trajectory terminates once the robot has walked four meters ( ≈ 20.5 s with the initial policy) 
or falls. The data set D consists of 15 trajectories collected with �0 on the physical nao. To 
ensure the robot’s motors stayed cool, we waited five minutes after collecting every five 
trajectories. For each iteration of gat, we run 10 generations of the cma-es algorithm with 
a population size of 150. For each generation of cma-es we select argmax v(�,M���) and 

Table 2  This table compares the 
grounded action transformation 
algorithm (gat) with baseline 
approaches for transferring 
learning between SimSpark and 
Gazebo

The first column displays the average maximum improvement found 
by each method after the first policy update made by cma-es. The sec-
ond column is the number of times a method failed to find a stable 
walk. The third column gives the average generation of cma-es when 
the best policy was found. No Ground refers to learning done in the 
unmodified simulator. Bold values indicate the best performance for 
each of the first two columns

Method % Improve Transfer 
failures

Best iteration

No Ground 11.094 7 1.33
ane 18.93 5 6.6
gat 22.48 1 2.67
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evaluate it on the physical robot (resulting in 10 policies being evaluated on the physical 
robot). We evaluate each policy on the physical robot with five trajectories. If the robot 
falls in any trajectory the policy is considered unstable.

Table 3 gives the physical world walk velocity of policies learned in simulation with 
gat. The physical robot walks at a velocity of 19.52 cm/s with �0 . gat with SimSpark and 
gat with Gazebo both improved walk velocity by over 30% in a single iteration. Policy 
improvement with cma-es required 30,000 trajectories per gsl iteration to find the 10 poli-
cies that were evaluated on the robot. In contrast the total number of trajectories executed 
on the physical robot is 65 (15 trajectories in D and 5 evaluations per �c ∈ � ). This result 
demonstrates gat can use sample-intensive simulation learning to optimize real world 
skills with a low number of trajectories on the physical robot.

Farchy et al. (2013) demonstrated the benefits of re-grounding (i.e., re-running the gsl 
framework from the best policy found) and further optimizing � . We reground the simula-
tor with 15 trajectories collected with the best policy found by gat with SimSpark and 
optimize for a further 10 generations of cma-es in the SimSpark simulation. The second 
iteration of gat results in a walk, �2 , which averages 27.97 cm/s for a total improvement of 
43.27% over �0.6 Overall, improving the unsw walk by over 40% shows that gat can learn 
walk policies that outperform the fastest known stable walk for the nao robot.

7  Stochastic GAT (SGAT )

The experiments described in Sect. 6 established that gat can lead to successful sim-to-
real transfer on a challenging task. This success naturally raises the question of under what 
conditions gat will succeed, and, on the other hand, when it might fail. Towards answer-
ing this question, we observe that because gat learns a deterministic forward model of the 
world, it may be limited when the real world state transitions are stochastic. We then intro-
duce a generalization of gat and demonstrate how it overcomes this limitation.

When the real world has stochastic transitions, gat may be unable to ground the simula-
tor in a way that leads to a good policy. To see this limitation, consider the toy example 
shown in Fig. 8. In Fig. 8, the optimal action in the simulator is a3 , and in the real world, it 
is a2 ; however, in the gat grounded simulator, the optimal action becomes a1 . Since gat’s 
forward model is deterministic, it predicts only the most likely next state, but other, less 
likely transitions are also important when computing an action’s value.

To address real world stochasticity, we introduce a generalization of gat—Stochas-
tic Grounded Action Transformation (sgat)—which learns a stochastic model of the 

Table 3  This table gives the 
maximum learned velocity and 
percent improvement for each 
method starting from �

0
 (top 

row)

Method Velocity (cm/s) % Improve

�
0

19.52 0.0
gat SimSpark �

1
26.27 34.58

gat SimSpark �
2

27.97 43.27
gat Gazebo �

1
26.89 37.76

6 A video of the learned walk policies is available at https:// www. cs. utexas. edu/ users/ Austi nVill a/?p= resea 
rch/ real_ and_ sim_ walk_ learn ing.

https://www.cs.utexas.edu/users/AustinVilla/?p=research/real_and_sim_walk_learning
https://www.cs.utexas.edu/users/AustinVilla/?p=research/real_and_sim_walk_learning
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forward dynamics. In other words, the learned forward model, freal , predicts a distribu-
tion over next states, a potential next state is sampled from this distribution, and then 
the sampled state is used with f −1

���
 instead of always taking the most likely next state. 

The grounding function learned by sgat is given by:

where f(s, a) now gives a distribution over next states instead of the single most likely next 
state. The sampling operation within the action transformer makes the overall action trans-
formation process stochastic. Figure 9 illustrates the simulator from the example in Fig. 8 

g(s, a) = f −1
���

(s, S�) S� ∼ f (s, a)

(a) (b)

(c)

Fig. 8  A toy example where gat may fail to ground the simulator for learning. The gray box depicts the 
grounding step with blue arrows representing the forward model and red arrows representing the inverse 
dynamics model. When the real world has stochastic transitions, the gat forward model only captures the 
most likely next state. gat may fail here, since the optimal action in the grounded simulator ( a

3
 ) is sub-

optimal in the real environment

Fig. 9  The sgat algorithm 
applied to the toy example in 
Fig. 8. In the sgat Grounded 
Simulator, the transitions match 
the real environment (Fig. 8b)
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now grounded using sgat. Since the forward model accounts for stochasticity in the real 
world, the actions in the grounded simulator have the same effect as in the real world.

An implementation of gat can be extended to an implementation of sgat by replacing 
the predicted next state output of f with predicted parameters of the next state distribu-
tion. Let p(st+1|st, at) denote the probability of st+1 under the distribution given by f (st, at) . 
We can fit the stochastic forward model to the observed real world data by minimizing a 
negative log likelihood loss L = − log p(st+1|st, at) on the observed real world transition 
(st, at, st+1) . For example, in continuous state and action domains, f could output the mean 
and covariance of a Gaussian distribution.

sgat generalizes gat as gat can be seen as a variant of sgat that always samples the 
most likely real world state given the current state and action. We next present an empiri-
cal study that shows that this generalization is crucial for real world domains with high 
stochasticity.

8  Stochastic GAT empirical study

This section reports on an empirical study of transfer from simulation with sgat compared 
to gat. We begin with a toy RL domain and progress to sim-to-real transfer of a bipedal 
walking controller for a nao robot on bumpy carpet. This additional empirical study is 
designed to answer the questions: 

1. Does gat perform worse when real world stochasticticy is increased?
2. Can sgat successfully ground simulation even when the real world is stochastic?

Our empirical results show the benefit of modelling stochasticity when grounding a simu-
lator for transfer to a stochastic real world environment.

8.1  Cliff walking

We first verify the benefit of sgat using a classical reinforcement learning domain, the Cliff 
Walking grid world (Sutton & Barto, 1998) shown in Fig.  10. In this domain, an agent 
must navigate around a cliff to reach a goal. The agent can move up, down, left, or right. If 
it tries to move into a wall, the action has no effect. The episode terminates when the agent 

Fig. 10  The agent starts in the bottom left and must reach the goal in the bottom right. Stepping into the red 
region penalizes the robot and ends the episode. The purple path is the most direct, but the blue path is safer 
when the transitions are stochastic (Color figure online)
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either reaches the goal (reward of +100 ) or falls off the cliff (reward of −10 ). There is also 
a small time penalty ( −0.1 per time step), so the agent is incentivized to find the shortest 
path. There is no discounting, so the agent’s objective is to maximize the sum of rewards 
over an episode. We use policy iteration (Sutton & Barto, 1998) for the �������� routine 
in simulation.

We make Cliff Walking a sim-to-sim transfer problem by treating a variant of the 
domain with deterministic transitions as the simulator and a variant of the domain with 
stochastic transitions as a surrogate for the real world. In the stochastic “real” environ-
ment, there is a small chance at every time step that the agent moves in a random direction 
instead of the direction it chose. As in the Sect. 6, sim-to-sim experiments allow us to run 
more experiments than would be possible on a physical robot.

Figure 11 shows gat and sgat evaluated for different values of the environment noise 
parameter. Both the grounding steps and policy improvement steps are repeated until con-
vergence for both algorithms. To evaluate the resulting policy, we estimate the expected 
return with 10,000 episodes in the “real” environment. At a value of zero, the “real” envi-
ronment is completely deterministic. At a value of one, every transition is random. Thus, at 
both of these endpoints, there is no distinction between the expected return gained by the 
two algorithms.

For every intermediate value, sgat outperforms gat. The policy trained using gat is una-
ware of the stochastic transitions, so it always takes the shortest and most dangerous path. 
Meanwhile the sgat agent learns as if it were training directly on the real environment 
in the presence of stochasticity. Though Cliff Walking is a relatively simple domain, this 
experiment demonstrates the importance of modelling the stochasticity in M.

8.2  MuJoCo domains

Having shown the efficacy of sgat in a tabular domain, we now evaluate its performance 
in continuous control domains that are closer to real world robotics settings. We perform 
experiments on the OpenAI Gym MuJoCo environments to compare the effectiveness of 
sgat and gat when there is added noise in the target domain. We consider the case with just 

Fig. 11  The y-axis is the average performance of a policy evaluated on the “real” domain. The x-axis is the 
chance at each time step for the transition to be random. sgat outperforms gat for any noise value. Error 
bars not shown since standard error is smaller than 1 pixel
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added noise and the case with both noise and domain mismatch between the source and 
target environments. We call the former Sim-to-NoisySim and the latter Sim-to-NoisyReal. 
We use the InvertedPendulum and HalfCheetah domains to test sgat in environments with 
both low and high dimensional state and action spaces. For policy improvement, we use an 
implementation of Trust Region Policy Optimization (trpo) (Schulman et al., 2015a), from 
the stable-baselines repository (Hill et al., 2018) with the default hyperparameters for the 
respective domains.

For gat, we use a neural network function approximator with two fully connected hid-
den layers of 64 neurons to represent the forward and inverse models. For sgat, the for-
ward model outputs the parameters of a Gaussian distribution from which we sample the 
predicted next state.7 In our implementation, the final dense layer outputs the mean, � , and 
the log standard deviation, log(�) , for each element of the state vector. We include all state 
variables as state variables of interest.

We also compare against the ane approach from Sect. 6. This baseline is useful in show-
ing that sgat is accomplishing more than simply adding noise to the actions from the pol-
icy. We note the comparison is not a perfectly fair comparison in the sense that robustness 
approaches such as ane are sensitive to user-defined hyperparameters that predict the vari-
ation in the environment—in this case, the magnitude of the added noise. sgat automati-
cally learns the right amount of stochasticity from real world data. In these experiments, 
we chose the ane hyperparameters (e.g., noise value) with a coarse grid search.

We simulate stochasticity in the target domains by adding Gaussian noise with different 
standard deviation values to the actions input into the environment. We omit the results of 
Sim-to-NoisySim experiments for InvertedPendulum because both algorithms performed 
well on the transfer task. Figure 12 shows the performance on the “real” environment of 
policies trained four ways—naively on the ungrounded simulator, with sgat, with gat, and 
with ane. In this Sim-to-NoisyReal experiment, sgat performs much better than gat when 
the stochasticity in the target domain increases. Figure 13 shows the same experiment on 

Fig. 12  Sim-to-NoisyReal experiment on InvertedPendulum. The “real” pendulum is 10 times heavier 
than the sim pendulum and has added Gaussian noise of different values. Error bars show standard error 
over ten independent training runs. Algorithms with striped bars used no real world data during training. 
sgat performs comparatively better in noisier target environments

7 A Mixture Density Network might be more suitable when the environment’s transition dynamics exhibit 
multi-modal behavior.
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HalfCheetah, both with and without domain mismatch. Both these environments have an 
action space of [−1, 1].

The red dashed lines show the performance of a policy trained directly on the “real” 
environment until convergence, approximately the best possible performance. The axes are 
scaled respective to this line. The error bars show the standard error across 10 trials with 
different initialization weights. As the stochasticity increases, sgat policies perform better 
than those learned using gat. Meanwhile, ane does well only for particular noise values, 
depending on its training hyperparameters.

8.3  Nao robot experiments

Until this point in our analysis of sgat, we have used a modified version of the simulator in 
place of the “real” world so as to isolate the effect of stochasticity (as opposed to domain 
mismatch). However, the true objective of this research is to enable transfer to real robots, 
which may exhibit very different noise profiles than the simulated environments. Thus, in 
this section, we validate sgat on a real humanoid robot learning to walk on uneven terrain.

Fig. 13  Sim-to-NoisySim and Sim-to-NoisyReal experiments on HalfCheetah. In the NoisyReal environ-
ment, the “real” HalfCheetah’s mass is 43% greater than the sim HalfCheetah. Error bars show show stand-
ard error over ten independent training runs. Algorithms with striped bars used no real world data during 
training. When the “real” environment is highly stochastic, sgat performs better than gat. Meanwhile, ane 
does poorly on less noisy scenarios
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As before, we use the nao robot. We compared gat and sgat by independently learn-
ing control policies using these algorithms to walk on uneven terrain, as shown in 
Fig. 14. To create an uneven surface, we placed foam packing material under the turf 
of a robot soccer field. On this uneven ground, the walking dynamics become more 
random, since the forces acting on the foot are slightly different every time the robot 
takes a step. We use the same initial policy as in Sect.  6.5. This initial unoptimized 
policy achieves a speed of 14.66 ± 1.65 cm/s on the uneven terrain. Aside from these 
details, the empirical set-up for this task is the same as in Sect. 6.5.

On flat ground, both methods produced very similar policies, but on the uneven 
ground, the policy learned using sgat was more successful than a policy learned 
using gat. We evaluated the best policy learned using each of sgat and gat after each 
grounding step by generating 10 trajectories on the physical robot. The average speed 
of the robot on the uneven terrain is shown in Table 4. Qualitatively, we find that the 
policy learned using sgat takes shorter steps and stays upright, thereby maintaining its 
balance on the uneven terrain, whereas the policy produced using gat learned to lean 
forward and walk faster, but fell down more often due to the uneven terrain. Both algo-
rithms produce policies that improve the walking speed across grounding steps. The 
gat policy after the second grounding step always falls over, whereas the sgat policy 
was more stable and finished the course 9 out of 10 times. Overall, this experiment 

Fig. 14  Experiment setup showing a robot walking on the uneven ground. The nao begins walking 40 cms 
behind the center of the circle and walks 300 cms. This image shows a successful walk executed by the 
robot at 2 sec intervals, learned using the proposed sgat algorithm

Table 4  Speed and stability of nao robot walking on uneven ground. The initial policy �
0
 walks at 

14.66 ± 1.65 cm/s and always falls down. Both sgat and gat find policies that are faster, but sgat policies 
are more stable than policies learned using gat 

Bold values indicate best performance

Grounding Step 1 Grounding Step 2

Speed (cm/s) Falls Speed (cm/s) Falls

gat 15.7 ± 2.98 6/10 18.5 ± 3.63 10/10
sgat 16.9 ± 0.678 0/10 18.0 ± 2.15 1/10
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demonstrates that sgat allows sim-to-real transfer when the real world is stochastic. 
Though gat is able to improve the initial policy’s walking speed it is more unstable 
since it ignores stochasticity in the real world.

9  Discussion of limitations

In this section, we discuss limitations of the gat and sgat algorithms and our empirical eval-
uation. gat requires that there exists an action that can be taken in simulation to cause the 
simulator to behave as the real world would. Formally, ∃â ∈ A such that f (s, a) = f���(s, â) 
for state s and action a. At a minimum this condition should hold for states and actions that 
are encountered during policy optimization. This requirement is also problematic for domains 
with P that have high variance in the next state variables and maximum likelihood prediction 
may be insufficient. However, sgat provides an alternative algorithm for such cases. Further-
more, both algorithms perform similarly on deterministic environments, suggesting that sgat 
should be the default option.

We evaluated gat on several robot reinforcement learning tasks in both simulation and the 
real world. In these experiments, we varied the task, policy representation, and the simulator 
and target MDP (either the real world or another simulator). However, there remain a large 
number of experimental knobs that we have not studied the importance of yet. Some of these 
include the reward function definitions, the RL algorithm used, and how the state variables of 
interest were defined. Further studies of these settings would broaden the breadth of conclu-
sions we can draw about the general applicability of the gat algorithm.

In this work, we have only considered deterministic simulators, but simulators may have 
stochastic transitions as well, especially if the simulator was designed to anticipate process 
noise. However, when using an action transformer grounding approach, stochastic simulators 
make the learning problem more difficult. We can no longer sample from the distribution pro-
vided by the forward model. Instead, the inverse model must take in a distribution over states 
and output a distribution over actions.

10  Future work

This article introduced an algorithm, grounded action transformation (gat), that allows a rein-
forcement learning agent to learn with simulated data. In this section, we propose directions 
for future research on and application of our new algorithm.

10.1  Sim‑to‑real in non‑robotics domains

We evaluated gat on a physical nao robot. gat is not specific to the nao and could be applied 
on other robotics tasks or even non-robotics tasks where a simulator is available a priori. The 
latter is of particular interest as the sim-to-real problem has been studied to a much lesser 
extent in non-robotics domains. gat is most applicable in tasks where the dynamics have a 
basis in physics and actions have a direct effect on some state variables. For example, if a 
robot increases the force with which it lifts its arm then it will see its arm lift higher or faster. 
In such settings, it is reasonable to assume that an effective action grounding function can be 
learned. It may be less applicable where the dynamics are derived from other factors such as 
human behavior.
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10.2  Identifying state variables of interest

In our empirical evaluation, we manually chose the state variables of interest and modi-
fied actions to make the transitions of these variables more realistic. For instance, in 
Sec. 6.5, we knew it was important to model the effect of actions on the joint positions 
of the physical robot. Thus, we set the joint positions of the physical robot as the vari-
ables of interest. Automatically identifying these variables is an interesting direction for 
future work.

The state variables of interest should be variables that affect task reward and the goal 
is to identify them through the data collected for grounding. It may be difficult to iden-
tify these variables by simply running an initial policy; more exploratory actions may 
need to be taken during data collection. Another objective when identifying these varia-
bles is that the set of target variables should have minimal size while being large enough 
for the simulator to be sufficiently grounded for learning to progress. Clearly, setting all 
state variables to be target variables accomplishes the latter but the grounding problem 
may become more difficult. Thus methods for automatically identifying the variables 
should attempt to find the minimal set that still allows learning in the grounded simula-
tion to transfer to the real world.

10.3  Grounded action transformation for deep reinforcement learning

Finally, our empirical evaluation considered relatively low dimensional policy repre-
sentations: neural networks with a couple of hidden layers, linear functions, or exist-
ing parameterized controllers. Some of the most impressive, recent RL success stories 
have been accomplished with high dimensional neural network policy representations 
taking pixels as inputs. Applying gat and sgat to learn pixel-to-control policies is an 
interesting and challenging direction for future work. With more complex policy repre-
sentations there is more chance that the RL algorithm will overfit to the simulator and 
thus high fidelity grounding is essential. Thus, more complex policy representations and 
deep RL algorithms are an important test of gat’s ability to ground a simulator.

11  Conclusion

We have introduced an algorithm which allows a robot to learn a policy in a simulated 
environment and the resulting policy transfer to the physical robot. This algorithm, 
called the grounded action transformation (gat) algorithm, makes a contribution towards 
allowing reinforcement learning agents to leverage simulated data to learn policies that 
are effective in the real world. We empirically evaluated gat on three robot learning 
tasks using the simulated or physical nao robot. In all cases, gat leads to higher task 
performance compared to no grounding. We also compared gat to a simulator randomi-
zation baseline and found that using real world data to modify the simulation was more 
effective than simply adding noise to the robot’s actions during learning. We applied gat 
to optimizing the parameters of an existing walk controller and learned the fastest stable 
walk that we know of for the nao robot. Finally we also developed a generalization of 
gat, sgat, that improves upon gat when the real world is highly stochastic.
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