
Vol.:(0123456789)

Machine Learning (2021) 110:2469–2499
https://doi.org/10.1007/s10994-021-05982-z

1 3

Grounded action transformation for sim‑to‑real
reinforcement learning

Josiah P. Hanna1 · Siddharth Desai2 · Haresh Karnan2 · Garrett Warnell3 ·
Peter Stone4

Received: 9 March 2020 / Revised: 30 September 2020 / Accepted: 12 April 2021 /
Published online: 13 May 2021
© The Author(s) 2021

Abstract
Reinforcement learning in simulation is a promising alternative to the prohibitive sample
cost of reinforcement learning in the physical world. Unfortunately, policies learned in sim-
ulation often perform worse than hand-coded policies when applied on the target, physi-
cal system. Grounded simulation learning (gsl) is a general framework that promises to
address this issue by altering the simulator to better match the real world (Farchy et al. 2013
in Proceedings of the 12th international conference on autonomous agents and multiagent
systems (AAMAS)). This article introduces a new algorithm for gsl—Grounded Action
Transformation (GAT)—and applies it to learning control policies for a humanoid robot.
We evaluate our algorithm in controlled experiments where we show it to allow policies
learned in simulation to transfer to the real world. We then apply our algorithm to learning
a fast bipedal walk on a humanoid robot and demonstrate a 43.27% improvement in for-
ward walk velocity compared to a state-of-the art hand-coded walk. This striking empiri-
cal success notwithstanding, further empirical analysis shows that gat may struggle when
the real world has stochastic state transitions. To address this limitation we generalize gat
to the stochastic gat (sgat) algorithm and empirically show that sgat leads to success-
ful real world transfer in situations where gat may fail to find a good policy. Our results
contribute to a deeper understanding of grounded simulation learning and demonstrate its
effectiveness for applying reinforcement learning to learn robot control policies entirely in
simulation.

Keywords Reinforcement learning · Robotics · Sim-to-real · Bipedal locomotion

Editors: Yuxi Li, Alborz Geramifard, Lihong Li, Csaba Szepesvari, Tao Wang.

This work contains material that was previously presented at the 31st AAAI Conference on Artificial
Intelligence (AAAI 2017) and the International Conference on Intelligent Robots and Systems (IROS
2020). This article unifies these previous works to comprise a “complete” article. In addition to the
previously published work, we have 1) reformulated the presentation of the algorithm, 2) expanded the
empirical analysis of the GAT algorithm to include two new tasks on the simulated and physical NAO
robot, and 3) conducted a qualitative analysis of the simulator corrections in the two new tasks.

 * Josiah P. Hanna
 josiah.hanna@ed.ac.uk

Extended author information available on the last page of the article

http://orcid.org/0000-0002-7411-0398
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05982-z&domain=pdf

2470 Machine Learning (2021) 110:2469–2499

1 3

1 Introduction

Manually designing control policies for every possible situation a robot could encounter is
impractical. Reinforcement learning (RL) provides a promising alternative to hand-coding
skills. Recent applications of RL to high dimensional control tasks have seen impressive
successes within simulation (Schulman et al., 2015b; Lillicrap et al., 2015). Unfortunately,
a large gap exists between what is possible in simulation and the reality of learning on a
physical system. State-of-the-art learning methods require thousands of episodes of experi-
ence which is impractical for a physical robot. Aside from the time it would take, collect-
ing the required training data may lead to substantial wear on the robot. Furthermore, as
the robot explores different policies it may execute unsafe actions which could damage the
robot.

An alternative to learning directly on the robot is learning in simulation (Cutler & How,
2015; Koos et al., 2010). Simulation is a valuable tool for robotics research as execution of
a robotic skill in simulation is comparatively easier than real world execution. Robots in
simulation can be run unsupervised without fear of them breaking or wearing down. Simu-
lation can often be ran faster than real time or parallelized to increase the speed at which
data for RL can be collected. However, the value of simulation learning is limited by the
inherent inaccuracy of simulators in modeling the dynamics of the physical world (Kober
et al., 2013). As a result, learning that takes place in a simulator is unlikely to improve real
world performance.

Grounded Simulation Learning (gsl) is a framework for learning with a simulator in
which the simulator is modified with data from the physical robot, learning takes place in
simulation, the new policy is evaluated on the robot, and data from the new policy is used
to further modify the simulator (Farchy et al., 2013). The work introducing gsl demon-
strates the effectiveness of the method in a single, limited experiment, by increasing the
forward walking velocity of a slow, stable bipedal walk by 26.7%. This article introduces a
new algorithm—Grounded Action Transformation (gat)—for simulator grounding within
the gsl framework. gat grounds the simulator by modifying the robot’s actions as they
are passed to the simulator to, in effect, create a simulator with different dynamics. The
grounding function is learned with a small amount of real world and simulated data, allow-
ing the simulator to be modified with less reliance on manual system identification. Addi-
tionally, by modifying the simulated robot’s actions we can treat the simulator as a black-
box and do not require access to change internal parameters of the simulator.

As a first step, in order to facilitate extensive evaluations, we fully implement and evalu-
ate gat on two tasks using a high-fidelity simulator as a surrogate for the real world. The
results of this controlled study contribute to a deeper understanding of transfer from simu-
lation methods and the effectiveness of gat. We then present two examples of using gat for
sim-to-real transfer of bipedal locomotion policies learned in simulation to a real humanoid
robot. In contrast to prior work (Farchy et al., 2013), one task in our real-world evaluation
starts from a state-of-the-art walking controller as the initial policy, and nonetheless is able
to improve the walk velocity by over 43%, leading to what may be the fastest known stable
walk on the SoftBank nao robot.

Furthermore, to better understand situations where gat may be successful we consider
real world environments that have a high degree of stochasticity. We show in simulated
environments that gat may fail to find high performing policies when environment state
transitions are noisy. To address this limitation we generalize gat to the stochastic gat
(sgat) algorithm and show in simulated, stochastic environments that sgat finds higher

2471Machine Learning (2021) 110:2469–2499

1 3

performing policies than gat. We implement sgat on the nao robot and show that we can
learn a fast and stable walking policy over a rough surface while gat fails to find a stable
policy.

2 Preliminaries

In this section we formalize the reinforcement learning setting and the problem of sim-to-
real learning.

2.1 Notation

We assume the environment is an episodic Markov decision process with state set S , action
set A , transition function, P ∶ S ×A × S → [0, 1] , reward function r ∶ S ×A → ℝ , dis-
count factor � , and initial state distribution d0 (Puterman, 2014). We assume that S = ℝ

k
and A = ℝ

m for some k,m ∈ ℕ+ . We assume that the transition function, P, is unknown
and the reward function, r, is known. We use P(s�|s, a) ∶= P(s, a, s�) to denote the condi-
tional probability of state s′ given state s and action a. P is also sometimes called the envi-
ronment’s dynamics. A policy, � ∶ S → A , is a function mapping states to actions.

The agent interacts with the environment mdp as follows: The agent begins in initial
state S0 ∼ d0 . At discrete time-step t the agents takes action At = �(St) . The environment
responds with Rt ∶= r(St,At) and St+1 ∼ P(⋅|St,At) according to the reward function and
transition function. After interacting with the environment for at most l steps the agent
returns to a new initial state and the process repeats. For notational convenience, we will
write that all interactions last l steps, though in fact they may end earlier. In the MDP defi-
nition, we also include a terminal state, s∞ , that allows the possibility of episodes ending
before time-step l . If at any time-step, t, St = s∞ , then for all t′ ≥ t , St� = s∞ and Rt� = 0.

Let h ∶= (s0, a0, r0, s1,… , sl−1, al−1, rl−1) be a trajectory. Any policy, � , and MDP, M ,
induce a distribution over trajectories, Pr(H = h|�,M) , where H is a random variable rep-
resenting a trajectory. Let R(h) ∶=

∑l−1

t=0
� trt be the discounted return of h. We define the

value of a policy, v(�,M) ∶= �[R(H)|H ∼ (�,M)] , as the expected discounted return
when sampling a trajectory with policy � in MDP M . We are interested in learning a pol-
icy, � , for an mdp, M , such that v(�,M) is maximized. We wish to minimize the number of
actions that must be taken in M before a good policy is learned, i.e., we desire low sample
complexity for learning.

2.2 Learning in simulation

In this article we study reinforcement learning in a simulated environment with the objec-
tive that learned policies will perform well in the real world. We formalize this setting
as learning a policy, � , in one MDP, M��� , with the objective of maximizing v(�,M) .
The MDP M��� is the simulator and M is the real world. Formally, M and M��� are
identical MDPs except for the transition function P.1 We use P to denote the transition

1 A closely related body of work considers how learning can take place in simulation when the observa-
tions the agent receives are different from the real world (e.g., rendered images vs. natural images). We dis-
cuss this work in our related work section but consider this problem orthogonal to the problem of differing
dynamics.

2472 Machine Learning (2021) 110:2469–2499

1 3

function of the real world and P��� to denote the transition function of the simulator.
We make the assumption that the reward function, r, is user-defined and thus is identi-
cal for M and M��� . However, the different dynamics distribution means that for any
policy, � , v(�,M) ≠ v(�,M���) since � induces a different trajectory distribution in M
than in M��� . Thus, for any �′ with v(𝜋�,M���) > v(𝜋,M���) , it does not follow that
v(𝜋�,M) > v(𝜋,M)—in fact v(��,M) could be much worse than v(�,M) . In practice and
in the literature, learning in simulation often fails to improve expected performance (Far-
chy et al., 2013; Christiano et al., 2016; Rusu et al., 2016b; Tobin et al., 2017).

3 Related work

The challenge of transferring learned policies from simulation to reality has received much
research attention of late. This section surveys this recent work as well as older research
in simulation-transfer methods. We note that our work also relates to model-based rein-
forcement learning (Sutton & Barto, 1998). However, much of model-based reinforcement
learning focuses on learning a simulator for the task mdp (often from scratch) while we
focus on settings where an inaccurate simulator is available a priori.

We divide the sim-to-real literature into four categories: simulator modification, simula-
tor randomization or simulator ensembles, simulators as prior knowledge, and sim-to-real
perception learning.

3.1 Simulator modification

We classify sim-to-real works that attempt to use real world experience to change the simu-
lator as simulator modification approaches. This category of work is the category most
similar to this work.

Abbeel et al. (2006) use real-world experience to modify an inaccurate model of a deter-
ministic mdp. The real-world experience is used to modify P��� so that the policy gradient
in simulation is the same as the policy gradient in the real world. Cutler et al. (2014) use
lower fidelity simulators to narrow the action search space for faster learning in higher
fidelity simulators or the real world. This work also uses experience in higher fidelity simu-
lators to make lower fidelity simulators more realistic. Both these methods assume random
access modification—the ability to arbitrarily and locally modify the simulated dynamics
of any state-action pair. This assumption is restrictive in that it may be false for many simu-
lators especially for real-valued states and actions.

Other work has used real world data to modify simulator parameters (e.g., coefficients
of friction) (Zhu et al., 2018) or combined simulation with Gaussian processes to model
where real world data has not been observed (Lee et al., 2017). Such approaches may
extrapolate well to new parts of the state-space, however, they may fail if no setting of
the physics parameters can capture the complexity of the real world. Golemo et al. (2018)
train recurrent neural networks to predict differences between simulation and reality. Then,
following actions in simulation, the resulting next state is corrected to be closer to what it
would be in the real world. This approach requires the ability to directly set the state of the
simulator which is a requirement we avoid in this work.

Manual parameter tuning is another form of simulator modification that can be done
prior to applying reinforcement learning. Lowrey et al. (2018) manually identify simula-
tion parameters before applying policy gradient reinforcement learning to learn to push an

2473Machine Learning (2021) 110:2469–2499

1 3

object to target positions. Tan et al. (2018) perform similar system identification (including
disassembling the robot and making measurements of each part) and adding action latency
modeling before using deep reinforcement learning to learn quadrapedal walking. In con-
trast to these approaches, the algorithms we introduce take a data-driven approach to modi-
fying the simulator without the need for expert system identification.

Finally, while most approaches to simulator modification involve correcting the sim-
ulator dynamics, other approaches attempt to directly correct v(�,M���) . Assuming
v(�,M) = v(�,M���) + �(�) , Iocchi et al. (2007) attempt to learn �(�) for any � . Then
policy search can be done directly on v(�,M���) + �(�) without needing to evaluate
v(�,M) . Rodriguez et al. (2019) introduce a similar approach except they take into account
uncertainty in extrapolating the estimate of �(�) and use Bayesian optimization for policy
learning. Like this work, both of these works apply their techniques to bipedal locomotion.
Koos et al. (2010) use multi-objective optimization to find policies that trade off between
optimizing v(�,M���) and a measure of how likely � is to transfer to the real world.

3.2 Robustness through simulator variance

Another class of sim-to-real approaches is methods that attempt to cross the reality gap by
learning robust policies that can work in different variants of the simulated environment.
The key idea is that if a learned policy can work in different simulations then it is more
likely to be able to perform well in the real world. The simplest instantiation of this idea is
to inject noise into the robot’s actions or sensors (Jakobi et al., 1995; Miglino et al., 1996)
or to randomize the simulator parameters (Peng et al., 2017; Molchanov et al., 2019; Ope-
nAI et al., 2018). Unlike data driven approaches, such domain randomization approaches
learn policies that are robust enough to cross the reality gap but may give up some ability
to exploit the target real world environment. This problem may be more acute when learn-
ing with simple policy representations, as simpler policies may lack the capacity to per-
form well under a wide range of environment conditions (Mozifian et al., 2019).

A number of works have attempted to combine domain randomization and real world
data to adapt the simulator. Chebotar et al. (2019) randomize simulation parameters and
use real world data to update the distribution over simulation parameters while simulate-
nously learning robotic manipulation tasks. Ramos et al. (2019) take a similar approach.
Muratore et al. (2018) attempt to use real world data to predict transferrability of policies
learned in a randomized simulation. Mozifian et al. (2019) attempt to maintain a wide dis-
tribution over simulator parameters while ensuring the distribution is narrow enough to
allow reinforcement learning to exploit instances that are most similar to the real world.

Domain randomization produces policies that are robust enough to transfer to the
real world. An alternative approach that does not involve randomness is to learn policies
that perform well under an ensemble of different simulators (Boeing & Bräunl, 2012;
Rajeswaran et al., 2017; Lowrey et al., 2018). Pinto et al., (2017b) simultaneously learn
an adversary that can perturb the learning agent’s actions while it learns in simulation. The
learner must learn a policy that is robust to disturbances and then will perform better when
transferred to the real world.

3.3 Simulator as prior knowledge

Another approach to sim-to-real learning is to use experience in simulation to reduce learn-
ing time on the physical robot. Cully et al. (2015) use a simulator to estimate fitness values

2474 Machine Learning (2021) 110:2469–2499

1 3

for low-dimensional robot behaviors which gives the robot prior knowledge of how to adapt
its behavior if it becomes damaged during real world operation. Cutler and How (2015) use
experience in simulation to estimate a prior for a Gaussian process model to be used with
the pilco (Deisenroth & Rasmussen, 2011) learning algorithm. Rusu et al. (2016a, b) intro-
duce progressive neural network policies which are initially trained in simulation before
a final period of learning in the true environment. Christiano et al. (2016) turn simulation
policies into real world policies by transforming policy actions so that they produce the
same effect that they did in simulation. Marco et al. (2017) use simulation to reduce the
number of policy evaluations needed for Bayesian optimization of task performance. In
principle, our work could be used with any of these approaches to correct the simulator
dynamics which would lead to a more accurate prior.

3.4 Reality gap in the observation space

Finally, while we focus on the reality gap due to differences in simulated and real world
dynamics, much recent work has focused on transfer from simulation to reality when the
policy maps images to actions. In this setting, even if P and P��� are identical, policies may
fail when transferred to the real world due to the differences between real and rendered
images. Domain randomization is a popular technique for handling this problem. Unlike
the dynamics randomization techniques discussed above, in this setting domain randomi-
zation means randomizing features of the simulator’s rendered images (Sadeghi & Lev-
ine, 2017; Tobin et al., 2017, 2018; Pinto et al., 2017a). This approach is useful in that it
forces deep reinforcement learning algorithms to learn representations that focus on higher
level properties of a task and not low-level details of image appearance. Computer vision
domain adaptation methods can also be used to overcome the problem of differing obser-
vation spaces (Fang et al., 2018; Tzeng et al., 2016; Bousmalis et al., 2018; James et al.,
2019). A final approach is to learn perception and control separately so that the real world
perception system is only trained with real world images (Zhang et al., 2016; Devin et al.,
2017). The problem of overcoming a reality gap in the agent’s observations of the world is
orthogonal to the problem of differing dynamics that we study.

4 Grounded simulation learning

In this section we introduce the grounded simulation learning (gsl) framework as pre-
sented by Farchy et al. (2013). Our main contribution is a novel algorithm that instanti-
ates this general framework. gsl allows reinforcement learning in simulation to succeed
by using trajectories from M to first modify M��� such that the modified M��� is a higher
fidelity model of M . The process of making the simulator more like the real world is
referred to as grounding.

The gsl framework assumes the following:

1. There is an imperfect simulator mdp, M��� , that models the mdp environment of
interest, M . Furthermore, M��� must be modifiable. In this article, we formalize
modifiable as meaning that the simulator has parameterized transition probabilities
P�(⋅|s, a) ∶= P���(⋅|s, a;�) where the vector � can be changed to produce, in effect, a
different simulator.

2475Machine Learning (2021) 110:2469–2499

1 3

2. There is a policy improvement algorithm, �������� , that searches for � which increase
v(�,M���) . The �������� routine returns a set of candidate policies, � to evaluate in
M.

We formalize the notion of grounding as minimizing a similarity metric between the real
world trajectories and the trajectory distribution of the simulation. Let d(h, Pr���(⋅|�;�)) be
a score for the likelihood of a given trajectory in the simulator parameterized by � . Given a
dataset of trajectories, D���� ∶= {hi}

m
i=1

 , collected by running a policy, � , in M , simulator
grounding of M��� amounts to finding �⋆ such that:

For instance, if d(h, Pr���(⋅|�;�)) ∶= log Pr���(h|�;�) then �⋆ maximizes the negative log-
likelihood or equivalently the empirical Kullback-Leibler divergence between Pr(⋅|�,M)
and Pr���(⋅|𝜋,�⋆).

Intuitively, Eq. (1) is solved by making the real world trajectories under � more likely
when running � in the simulator. Though exactly solving Eq. (1) may be intractable, if we
can make real world trajectories more likely in the simulator then the simulator will be bet-
ter for policy optimization. Assuming a mechanism for optimizing (1), the gsl framework
is as follows:

1. Execute an initial policy, �0 , in the real world to collect a data set of trajectories,
D���� = {hj}

m
j=1

.
2. Optimize (1) to find �⋆ that makes Pr(H = h|�0,M���) closer to Pr(H = h|�0,M) for

all h ∈ D����.
3. Use �������� to find a set of candidate policies � that improve v(⋅,M���) in the modi-

fied simulation.
4. Evaluate each proposed �c ∈ � in M and return the policy:

gsl can be applied iteratively with �1 being used to collect more trajectories to ground
the simulator again before learning �2 . The re-grounding step is necessary since changes
to � result in changes to the distribution of trajectories that the agent observes. When the
distribution changes, a simulator that has been modified with data from the trajectory dis-
tribution of �0 may be a poor model under the trajectory distribution of �1 . The entire gsl
framework is illustrated in Fig. 1.

5 The grounded action transformation algorithm

We now introduce the main contribution of this article—a novel gsl algorithm called
the grounded action transformation (gat) algorithm. gat instantiates the gsl framework
by introducing a specific implementation of the grounding step (Step 2) of the gsl frame-
work. The main idea behind gat is to augment the simulator with a differentiable action
transformation function, g, which transforms the agent’s simulated action into an action
which—when taken in simulation—produces the same transition that would have occurred
in the physical system. The function, g, is represented with a parameterized function

(1)𝜙⋆ = argmax
𝜙

∑

h∈D����

d
(
h, Pr���(⋅|𝜋;𝜙)

)
.

�1 ∶= argmax
�c∈Π

v(�c,M).

2476 Machine Learning (2021) 110:2469–2499

1 3

approximator whose parameters serve as � for the augmented simulator in the gsl frame-
work. We leave open the gat instantiation of the other gsl steps (data collection, policy
optimization, and final policy evaluation). The main contribution of gat is a novel method
to ground the simulator.

The gat algorithm learns two functions: f which predicts the effects of actions in M and
f −1
���

 , which predicts the action needed in simulation to reproduce the desired effects. Let
� be a subset of the components of state � and let X be the set of all possible values for � .
We refer to the components of � as the state variables of interest. We define gat as ground-
ing a subset of the state components to allow users to inject domain knowledge into the
grounding process if they know what components are most important to model correctly;
a user can always opt to include all components of the state as state variables of interest
if they lack such domain knowledge. Formally, the function f ∶ S ×A → X is a forward
model that predicts the effect on the state variables of interest given an action chosen in
a particular state in M . The function f −1

���
∶ S × X → A is an inverse model that predicts

the action that causes a particular effect on the state variables of interest given the current
state in simulation. The overall action transformation function g ∶ S ×A → A is specified
as g(�, �) ∶= f −1

���
(�, f (�, �)) . When the agent is in state �t in the simulator and takes action

�t , the augmented simulator replaces �t with g(�t, �t) and the simulator returns �t+1 where
the �t+1 components of �t+1 are closer in value to what would be observed in M had �t been
taken there. Figure 2 illustrates the augmented simulator.

Fig. 1 Diagram of the grounded
simulation learning framework

Fig. 2 The augmented simulator which can be grounded to the real world with supervised learning. The
policy computes an action that is then passed to the action grounding module. This module first predicts the
values for the state variables of interest if the action had been taken in the real world. The module then uses
an inverse dynamics model, f −1

���
 , to compute the action that produces the same effect in simulation. Finally,

the policy’s action is replaced with the predicted action and this modified action is passed to the simulator

2477Machine Learning (2021) 110:2469–2499

1 3

gat learns the functions f and f −1
���

 with supervised learning. The function f is
learned by collecting a small number of real world trajectories and then constructing a
supervised learning dataset {(�i, �i)} → {��

i
} . Similarly, the function f −1

���
 is learned by

collecting simulated trajectories and then constructing a supervised learning dataset
{(�i, �

�
i
)} → {�i} . This pair of supervised learning problems can be solved by a vari-

ety of techniques. In our experiments we use either neural networks or linear models
trained with gradient descent on a squared error loss. Pseudocode for the full gat algo-
rithm is given in Algorithm 1.

Algorithm 1 Grounded Action Transformation (gat). Input: An initial
policy, π0, the environment, M, a simulator, Msim, and a policy improvement
method, optimize. The function rollout(Env, π, m) executes m trajectories
with π in the provided environment, Env, and returns the observed state
transition data. The functions trainForwardModel and trainInverseModel
estimate models of the forward and inverse dynamics respectively given a
dataset of trajectories. The function optimize takes the simulator, an initial
policy, and the grounding function, g, and runs an RL algorithm that finds
policies that improve on the initial policy in the grounded simulator.
1: i ← 0
2: repeat
3: Dreal ← Rollout(M, πi,m)
4: Dsim ← Rollout(Msim, πi,m)
5: f ← trainForwardModel(Dreal)
6: f−1

sim ← trainInverseModel(Dsim)
7: g(s, a) ← f−1

sim (s, f(s, a))
8: Π ← optimize(Msim, πi, g)
9: i ← i+ 1
10: πi ← argmaxπ∈Π v(π)
11: until v(πi) < v(πi−1) // No improvement in real world performance.
12:
13: Return argmaxi v(πi)

Because we take a data-driven approach to simulator modification, the result is not
necessarily a globally more accurate simulator for the real world. Our only goal is that
the simulator is more realistic for trajectories sampled with the grounding policy. If we
can achieve this goal, then we can locally improve the policy without any additional
real world data. A simulator that is more accurate globally may provide a better start-
ing point for gat, however, by focusing on simulator modification local to the ground-
ing policy we can still obtain policy improvement in low fidelity simulators.

We also note that gat minimizes the error between the immediate state transitions of
M��� and those of M . Another possible objective would be to observe the difference
between trajectories in M and M��� and ground the simulator to minimize the total
error over a trajectory. Such an objective could lead to an action modification function
g that accepts short-term error if it reduces the error over the entire trajectory, how-
ever, it would require the simulator dynamics to be differentiable. As it is unclear how
to select the modified actions that minimize multi-step error, we accept minimizing the
one-step error as a good proxy for minimizing our ultimate objective which is that the
current policy � produces similar trajectories in both M and M��� . The specific choice
of g used by GAT allows GAT to learn the actions that minimize the one-step error in
simulated and real world transitions.

2478 Machine Learning (2021) 110:2469–2499

1 3

5.1 Modifying actions vs. modifying parameters

Before presenting an empirical evaluation of gat, we discuss the motivation for modifying
actions instead of internal simulator parameters. Our main motivation for modifying the
agent’s simulated action is that we can then treat the simulator as a black box. While phys-
ics-based simulators typically have a large number of parameters determining the physics
of the simulated environment (e.g., friction coefficients, gravitational values) these param-
eters are not necessarily amenable to numerical optimization of Eq. (1). First, just because
a simulator has such parameters does not mean that they’re exposed to the user or can be
modified without additional software engineering. On the other hand, when applying RL, it
is reasonable to assume that a user has access to the actions output by the policy and could
thus include an action transformation to ground the simulator. Second, even if changing
physics parameters is straightforward, it may be computationally or manually intensive to
determine how to change a parameter to make the simulator produce trajectories closer to
the ones we observe in the real world. In contrast, action modification with gat allows us to
transform simulator modification into a supervised learning problem.

In this article we focus on the blackbox setting where we are unable to change the simu-
lator’s internal parameters. However, if these parameters are exposed to the user then there
may be settings where correctly identifying the real world parameters may provide more
reliable transfer than action modification. A characterization of the settings where one
approach is preferable to the other is an interesting direction for future research.

6 GAT empirical study

We now present an empirical study of applying the gat algorithm for reinforcement learn-
ing with simulated data. Our experiments are designed to answer the following questions:

1. Does grounding a simulation with gat allow skills learned in simulation to transfer to
the real world?

2. Does gat make the simulated robot’s actions have similar effects to those they would
have in the real world.

To answer these questions we apply gat on three tasks with the simulated and physical
NAO robot. Though our focus is on sim-to-real transfer, we include two experiments in
a sim-to-sim setting where we use one simulator as a surrogate for the real world. These
experiments allow us to run a larger number of experimental trials than would be practical
in the tasks using a physical robot. We first give a general description of the empirical set-
up. We then proceed to describe each task and the empirical results observed.

6.1 General NAO task description

All empirical tasks use either a simulated or physical Softbank nao robot.2 The nao is a
humanoid robot with 25 degrees of freedom (see Fig. 3a). Though the nao has 25 degrees
of freedom, we restrict ourselves to observing and controlling 15 of them (we ignore joints

2 https:// www. ald. softb ankro botics. com/ en.

https://www.ald.softbankrobotics.com/en

2479Machine Learning (2021) 110:2469–2499

1 3

(a) A Softbank nao Robot (b) nao in Gazebo (c) nao in SimSpark

Fig. 3 The three robotic environments used here. The Softbank nao is our target physical robot. The nao
is simulated in the Gazebo and SimSpark simulators. Gazebo is a higher fidelity simulator which we also
use as a surrogate for the real world in an empirical comparison of grounded action transformation (gat) to
baseline methods

Fig. 4 Diagram of the Softbank nao robot with joints (degrees of freedom) labeled. Each joint has a sen-
sor that reads the current angular position of the joint and can be controlled by providing a desired angular
position for the joint. In this work, we ignore the HeadYaw, HeadPitch, left and right ElbowRoll, left and
right ElbowYaw, left and right WristYaw, and left and right Hand joints. There is also no need to control
the right HipYawPitch joint as, in reality, this degree of freedom is controlled by the movement of the left
HipYawPitch Joint. This image was downloaded from: http:// doc. aldeb aran. com/2- 8/ family/ nao_ techn ical/
lola/ actua tor_ sensor_ names. html

http://doc.aldebaran.com/2-8/family/nao_technical/lola/actuator_sensor_names.html
http://doc.aldebaran.com/2-8/family/nao_technical/lola/actuator_sensor_names.html

2480 Machine Learning (2021) 110:2469–2499

1 3

that are less important for our experimental tasks—joints in the head, hands, and elbows).
We will refer to the degrees of freedom as the joints of the robot. Figure 4 shows a diagram
of the nao and its different joints.

We define the state variables of interest to be the angular position of each of the robot’s
joints. In addition to angular position, the robot’s state consists of joint angular veloci-
ties and other task-dependent variables. The robot’s actions are desired joint angular posi-
tions which are implemented at a lower software level using pid control. There is a one-to-
one correspondence between components of the robot’s action and the state variables of
interest.

In all tasks our implementation of gat uses a history of the joint positions and desired
joint positions as an estimate of the nao’s state to input into the forward and inverse mod-
els. Instead of directly predicting �t+1 , the forward model, f, is trained to predict the change
in �t after taking �t . The inverse model f −1

���
 takes the current �t and a desired change at �t+1

and outputs the action needed to cause this change. Since both the state variables of inter-
est and actions have angular units, we train both f and f −1

���
 to output the sine and cosine of

each output angle. From these values we can recover the predicted output with the arctan
function. Since f −1

���
 and f are trained with supervised learning, they may make small errors

when used to change the agent’s actions (Ross et al., 2011). Since small errors may make
the output of g not smooth from timestep to timestep, we sometimes find it useful to use
a smoothing parameter, � , to ensure stable motions. The action transformation function
(Algorithm 1, line 7) is then defined as:

In our experiments involving bipedal walking, we set � as high as possible subject to the
robot remaining stable in simulation when executing �0 . In all other experiments, we use
� = 1.0.

We consider two simulators in this work: the Simspark3 Soccer Simulator used in the
annual RoboCup 3D Simulated Soccer competition and the Gazebo simulator from the
Open Source Robotics Foundation.4 SimSpark enables fast simulation but is a lower fidel-
ity model of the real world. Gazebo enables relatively high fidelity simulation with an addi-
tional computational cost. The nao model in both of these simulations is shown in Fig. 3a.

Across all tasks we use the covariance matrix adaptation evolutionary strategies (cma-
es) algorithm (Hansen et al., 2003) for the policy optimization routine. cma-es is a sto-
chastic search algorithm that updates a population of candidate policies over a set number
of generations. At each generation, cma-es samples a population of policy parameter val-
ues from a Gaussian distribution. It then uses the evaluation of each candidate policy in
simulation to update the sampling distribution for the population at the next generation.
cma-es has been found to be very effective at optimizing robot skills in simulation (Urieli
et al., 2011). In all experiments we use a population size of 150 candidate policies at each
generation as we were able to submit up to 150 parallel policy evaluations at a time on the
University of Texas Computer Science distributed computing cluster.

With the exception of the final experiment in this section, we run a single iteration of
gat per experimental setting. A single iteration allows us to keep the initial policy fixed so
that we have a more controlled measure of the efficacy of simulator grounding. In all cases

g(�, �) ∶= �f −1
���

(�, f (s, �)) + (1 − �)�.

3 http:// simsp ark. sourc eforge. net.
4 http:// gazeb osim. org.

http://simspark.sourceforge.net
http://gazebosim.org

2481Machine Learning (2021) 110:2469–2499

1 3

we select the architectures of the forward and inverse dynamics models via optimizing a
least-squares loss on a held-out set of transitions. These models are trained with stochastic
gradient descent using the Adam optimizer (Kingma & Ba, 2014).

6.2 Learning arm control

Our first task requires the nao to learn to raise its arms from its sides to a goal position, �⋆
which is defined to be halfway to horizontal (lift 45 degrees). We call this task the “Arm
Control” task. In this task, the robot’s policy only controls the two shoulder joints responsi-
ble for raising and lowering the arms. The angular position of these joints are the state vari-
ables of interest, � . The policy is a linear mapping from �t and �t−1 to the action �t:

where � and � are learnable parameters. At time t, the agent receives reward:

and the episode terminates after 200 steps or when either of the robot’s arms raise higher
than 45 degrees. The optimal policy is to move as close as possible to 45 degrees without
lifting higher.

We apply gat for sim-to-sim transfer from Simspark (M���) to Gazebo (M – effectively
treating Gazebo as the real world). We represent f and f −1

���
 with linear functions. To train f,

we collect 50 trajectories in M and train f −1
���

 with 50 trajectories from M���.
On this task our baseline is learning without simulator modification. For each method

(gat and “No Modification”), we run 10 experimental trials where each trial consists of
running 50 generations of cma-es and taking the best performing candidate policy from
each generation and evaluating it in M . Our main point of comparison is which method
finds a policy that allows the robot to move its arms closer to the target position (higher
v(�,M)).

Figure 5 shows the mean distance from the target position for the final policy learned
in simulation either with gat or with “No Modification.” Results show that gat is able to
overcome the reality gap and results in policies that reduce error in final arm position.

�(�t, �t−1) = � ⋅ (�t, �t−1) + �

r(�t) =
1

|�t − �⋆|2
2

Fig. 5 Mean performance of
best policies found on the Arm
Control task. We run 10 experi-
mental trials using gat and 10
experimental trials directly trans-
ferring from M��� to M (“No
Modification”). The vertical axis
gives the average distance to the
target position during a trajectory
(lower is better). Error bars are
for a 95% confidence interval

2482 Machine Learning (2021) 110:2469–2499

1 3

We also visualize the effect of the action modification function, g, in the simulator. Fig-
ure 6 shows how the robot’s LeftShoulderPitch joint moves in M , M��� , and the grounded
M��� when a constant action of −15 degrees is applied. In M��� the position of the Left-
ShoulderPitch responds immediately to the command while in M the position changes
much more slowly. In Simspark, the shoulder joints are more responsive to commands and
thus the robot needs to learn it must take weaker actions to prevent overshooting the target.
In Gazebo, the joints are less responsive to the actions and the same policy fails to get the
arms close to the target. After applying gat, the position changes much slower in simula-
tion as the action modification function reduces the magnitude of the desired change. This
visualization helps answer our second empirical question as to whether or not action modi-
fication makes the simulator behave more like reality.

6.3 Linear walk policy optimization

Our second task is walking forward with a linear control policy on the physical robot. The
state variables of interest are 10 joints in the robot’s legs (ignoring the left HipYawPitch
joint) and the 4 joints controlling its shoulders. The actions are desired angular positions
for all 15 of these joints.

The policy inputs are the gyroscope that measures forward-backward angular velocity,
y, and the gyroscope that measures side-to-side angular velocity, x. We also provide as
input an open-loop sine wave. The sine wave encodes prior knowledge that a successful
walking policy will repeat actions periodically. The final form of the policy is:

�(⟨x, y, sin(c ⋅ t)⟩) = � ⋅ ⟨x, y, sin(c ⋅ t)⟩ + �

Fig. 6 Visualization of the robot’s LeftShoulderPitch joint position in M , M��� , and M��� after apply-
ing gat. The horizontal axis is time in frames (50 frames per second). The vertical axis has units of angles
which is the unit for both the plotted actions and states. Trajectories were generated in each environment
with a policy that sets a constant desired position of −15 degrees (“Action”). “Real State” shows the Left-
ShoulderPitch position in M , “No Grounding State” shows position in M��� , and “Grounded State” shows
position in the grounded M��� . “Grounded Action” shows the action that the gat action modification func-
tion takes in place of “Action”

2483Machine Learning (2021) 110:2469–2499

1 3

where c is a learnable scalar that controls the walking step frequency. The policy outputs
only commands for the left side of the robot’s body and the commands for the right side are
obtained by reflecting these commands around a learned value. That is, for each joint, j, on
the left side of the robot’s body we learn a parameter �j and obtain the action for the right
side of the robot’s body by reflecting the policy’s output for j across �j . This representation
is equivalent to expressing the policy for the right side of the robot’s body as:

In our experiments, instead of optimizing a separate � vector, we clamp � to be equal to
the bias, �.

We define the reward as a function of the distance the robot has travelled at the final
time-step. Let �(st, s0) be the robot’s forward change in position between state st and
state s0 and let �(st) take value 1 if the robot has fallen over in state st and 0 otherwise. In
simulation:

where the penalty of −25 discourages cma-es from proposing policies that obtain high for-
ward displacement through potentially unsafe actions for the physical robot. For example,
cma-es might find a policy that throws itself forward, obtaining high reward but risking
damage on the physical robot. The penalty does not guarantee that the best simulation poli-
cies will be stable in the real world but it at least encourages them to be stable in simula-
tion. On the physical robot we only measure forward distance travelled; if the robot falls we
count the distance travelled as zero:

We apply gat for sim-to-real transfer from Simspark to the physical nao. We learn f and
f −1
���

 with linear regression. To train f we collect 10 trajectories in M and train f −1
���

 with 50
trajectories from M��� . We chose 10 trajectories for M because after 10 the robot’s motors
may begin to heat up which changes the dynamics of the joints.

In the Linear Policy Walking task we measure performance based on how far forward
the robot walks. The initial policy fails to move the robot forward at all—though it is exe-
cuting a walking controller, its feet never break the friction of the carpet and so it remains
at the starting position. We run five trials of learning with simulator modification and five
trials without. On average learning in simulation with gat resulted in the robot moving
4.95 cm forward while without simulator modification the robot only moved 1.3 cm on
average.

Across the five trials without modification, two trials fail to find any improvement. The
remaining three only find improvement in the first generation of cma-es—before cma-es
has been able to begin exploiting inaccuracies in the simulation. In contrast, all trials with
simulator modification find improving policies and improvement comes in later learning
generations (on average generation 3 is the best).

We also plot example trajectories to see how the modified and unmodified simula-
tions compare to reality. Instead of plotting all state and action variables, we only plot the
state variable representing the robot’s right AnklePitch joint and the action that specifies
a desired position for this joint. This joint was chosen because the main failure of policies

�r(⟨x, y, sin(c ⋅ t)⟩) = � − (� ⋅ ⟨x, y, sin(c ⋅ t)⟩ + � −�).

r(st, at) ∶=

{
0 t < l − 1

𝛥(st, s0) − 25 ⋅ �(st) t = l
.

r(st, at) ∶=

{
0 t < l − 1

𝛥(st, s0) ⋅ (1 − �(st)) t = l
.

2484 Machine Learning (2021) 110:2469–2499

1 3

learned without simulator modification is that the robot’s feet never break the friction of
the carpet. We hypothesize that learning to properly move the ankles may be important for
a policy to cross the reality gap and succeed in the real world.

Figure 7a shows the prediction of joint position for the learned forward model, f, as
well as the joint position in the real world and simulation. The “Predicted State” curve is
generated by using f as a simulator of how the joint position changes in response to the
actions.5 Figure 7a shows that in the real world the right AnklePitch joint oscillates around
the desired angular position as given by the robot’s action. The forward model f predicts
this oscillation while the simulator models the joint position as static.

Figure 7b shows the actual real world and simulated trajectories, both for the modi-
fied and unmodified simulators. Though the modified simulator still fails to capture all of
the real world oscillation, it does so more than no modification. Learning in a simulator
that more accurately models this motion leads to policies that are able to lift the robot’s
legs enough to walk. This qualitative results also shows how action modification can be an
effective strategy for simulator grounding.

6.4 Sim‑to‑sim walk engine policy optimization

In this section, we evaluate gat on the task of bipedal robot walking with a state-of-the-art
walk controller for the nao robot. The initial policy is the open source University of New
South Wales (unsw) walk engine developed for RoboCup Standard Platform League (spl)
competitions (Ashar et al., 2015; Hall et al., 2016). This walk engine is a software module
designed for the NAO robot that takes in the robot’s proprioceptive and inertial sensors and
outputs desired positions for the robot’s joints; we refer the reader to Ashar et al. (2015)

Fig. 7 Visualization of the robot’s right AnklePitch joint during the Linear Policy Walking task. Both sub-
figures show the position trajectory for M (denoted “Real State”) and M��� (“No Grounding State”). They
also both show the action though it is covered by the “No Grounding State” curve. a shows the gat forward
model’s prediction of position given the same action sequence. b shows the actual position when acting in
the modified simulation

5 Note that f would not suffice for policy improvement as it only models how the joint positions change and
not the effect of these changes on walk velocity.

2485Machine Learning (2021) 110:2469–2499

1 3

for full details of the initial policy’s implementation. This walk controller has been used by
at least one team in the 2014, 2015, 2016, 2017, 2018, 2019 RoboCup Standard Platform
League (spl) championship games in which teams of five naos compete in soccer matches.
To the best of our knowledge, it is the fastest open source walk available for the nao. We
first present a sim-to-sim evaluation of gat using Gazebo as a surrogate for the real world.
Performing a sim-to-sim evaluation allows us to evaluate gat and baselines with more tri-
als than would be possible to run on the physical robot. In the next section, we apply gat to
optimize the UNSW walk engine the physical robot.

The unsw walk engine has 15 parameters that determine features of the walk (see
Table 1 for a full list of these parameters). The values of the parameters from the open
source release constitute the parameterization of the initial policy �0 . Hengst (2014)
describes the unsw walk controller in more detail. For this task, v(�,M) is the average
forward walk velocity while executing � . In simulation a trajectory terminates after a fixed
time interval (7.5 seconds in SimSpark and 10 seconds in Gazebo) or when the robot falls.
For policy improvement in simulation, we apply cma-es for 10 generations with a popula-
tion size of 150 candidate policies evaluated in each generation.

We implement gat with two two-hidden-layer neural networks—one for f and one for
f −1
���

 . Each function is a neural network with 200 hidden units in the first layer and 180 hid-
den units in the second.

As baselines, we evaluate the effectiveness of gat compared to learning with no ground-
ing and grounding M��� by adding Gaussian noise to the robot’s actions. Adding an “enve-
lope” of noise has been used before to minimize simulation bias by preventing the policy
improvement algorithm from overfitting to the simulator’s dynamics (Jakobi et al., 1995).
We refer to this baseline as ane for Action Noise Envelope. We hypothesize that gat is
modifying simulation in a more effective way than just forcing learning to be robust to per-
turbation and will thus obtain a higher level of performance.

Table 1 The initial parameter
values found in the open source
release of the unsw walk engine

Some of these values were explicit parameters in the open source
release; others were hard-coded constants that we chose to allow cma-
es to modify during policy optimization

Parameter name Parameter value

Center of mass offset 0.01
Base walk period 0.23
Walk hip height 0.23
Max forward 0.3
Max left step 0.2
Max turn 0.87
Max forward change 0.15
Max left change 0.2
Max turn change 0.8
Base leg lift 0.012
Arm swing 6.0
Pendulum height 300.0
Forward extra foot height 0.01
Left extra foot height 0.02
Start lift divisor 3.5

2486 Machine Learning (2021) 110:2469–2499

1 3

For gat we collect 50 trajectories of robot experience to train f and 50 trajectories of
simulated experience to train f −1

���
 . For each method, we run 10 generations of the cma-

es algorithm with population size of 150 and each member of the population evaluated
in simulation with 20 trajectories. Overall, the cma-es optimization requires 30,000 simu-
lated trajectories for each experimental trial. We run 10 total experimental trials for each
method.

Table 2 gives the average improvement in stable walk policies for each method and the
number of trials in which a method failed to produce a stable improvement. Results show
that gat maximizes policy improvement while minimizing failure to transfer when transfer-
ring from a low-fidelity to high-fidelity simulator. ane improves upon no grounding in both
improvement and number of iterations without improvement. Adding noise to the simulator
encourages cma-es to propose robust policies which are more likely to be stable. However,
gat further improves over ane—demonstrating that action transformations are grounding
the simulator in a more effective way than simply injecting noise.

Table 2 also shows that on average, gat finds an improved policy within the first few
generations after grounding. The grounding done by gat is inherently local to the trajec-
tory distribution of ��0 . Thus as �� changes, the action transformation function fails to
produce a more realistic simulator. As policy improvement progresses, the best policies
in each cma-es generation begin to over-fit to the dynamics of M��� . Without grounding
over-fitting happens almost immediately and so when learning with no grounding finds an
improvement it is also usually in an early generation of cma-es. ane can mitigate over-
fitting by emphasizing robust policies although it is limited in the improvement it finds
compared to gat.

6.5 Sim‑to‑real walk engine policy optimization

We now present our main empirical result—an application of gat to optimizing a state-of-
the-art walking controller for the NAO robot. All experimental details are the same as those
used in the sim-to-sim evaluation except for the following changes. On the physical robot, a
trajectory terminates once the robot has walked four meters (≈ 20.5 s with the initial policy)
or falls. The data set D consists of 15 trajectories collected with �0 on the physical nao. To
ensure the robot’s motors stayed cool, we waited five minutes after collecting every five
trajectories. For each iteration of gat, we run 10 generations of the cma-es algorithm with
a population size of 150. For each generation of cma-es we select argmax v(�,M���) and

Table 2 This table compares the
grounded action transformation
algorithm (gat) with baseline
approaches for transferring
learning between SimSpark and
Gazebo

The first column displays the average maximum improvement found
by each method after the first policy update made by cma-es. The sec-
ond column is the number of times a method failed to find a stable
walk. The third column gives the average generation of cma-es when
the best policy was found. No Ground refers to learning done in the
unmodified simulator. Bold values indicate the best performance for
each of the first two columns

Method % Improve Transfer
failures

Best iteration

No Ground 11.094 7 1.33
ane 18.93 5 6.6
gat 22.48 1 2.67

2487Machine Learning (2021) 110:2469–2499

1 3

evaluate it on the physical robot (resulting in 10 policies being evaluated on the physical
robot). We evaluate each policy on the physical robot with five trajectories. If the robot
falls in any trajectory the policy is considered unstable.

Table 3 gives the physical world walk velocity of policies learned in simulation with
gat. The physical robot walks at a velocity of 19.52 cm/s with �0 . gat with SimSpark and
gat with Gazebo both improved walk velocity by over 30% in a single iteration. Policy
improvement with cma-es required 30,000 trajectories per gsl iteration to find the 10 poli-
cies that were evaluated on the robot. In contrast the total number of trajectories executed
on the physical robot is 65 (15 trajectories in D and 5 evaluations per �c ∈ �). This result
demonstrates gat can use sample-intensive simulation learning to optimize real world
skills with a low number of trajectories on the physical robot.

Farchy et al. (2013) demonstrated the benefits of re-grounding (i.e., re-running the gsl
framework from the best policy found) and further optimizing � . We reground the simula-
tor with 15 trajectories collected with the best policy found by gat with SimSpark and
optimize for a further 10 generations of cma-es in the SimSpark simulation. The second
iteration of gat results in a walk, �2 , which averages 27.97 cm/s for a total improvement of
43.27% over �0.6 Overall, improving the unsw walk by over 40% shows that gat can learn
walk policies that outperform the fastest known stable walk for the nao robot.

7 Stochastic GAT (SGAT)

The experiments described in Sect. 6 established that gat can lead to successful sim-to-
real transfer on a challenging task. This success naturally raises the question of under what
conditions gat will succeed, and, on the other hand, when it might fail. Towards answer-
ing this question, we observe that because gat learns a deterministic forward model of the
world, it may be limited when the real world state transitions are stochastic. We then intro-
duce a generalization of gat and demonstrate how it overcomes this limitation.

When the real world has stochastic transitions, gat may be unable to ground the simula-
tor in a way that leads to a good policy. To see this limitation, consider the toy example
shown in Fig. 8. In Fig. 8, the optimal action in the simulator is a3 , and in the real world, it
is a2 ; however, in the gat grounded simulator, the optimal action becomes a1 . Since gat’s
forward model is deterministic, it predicts only the most likely next state, but other, less
likely transitions are also important when computing an action’s value.

To address real world stochasticity, we introduce a generalization of gat—Stochas-
tic Grounded Action Transformation (sgat)—which learns a stochastic model of the

Table 3 This table gives the
maximum learned velocity and
percent improvement for each
method starting from �

0
 (top

row)

Method Velocity (cm/s) % Improve

�
0

19.52 0.0
gat SimSpark �

1
26.27 34.58

gat SimSpark �
2

27.97 43.27
gat Gazebo �

1
26.89 37.76

6 A video of the learned walk policies is available at https:// www. cs. utexas. edu/ users/ Austi nVill a/?p= resea
rch/ real_ and_ sim_ walk_ learn ing.

https://www.cs.utexas.edu/users/AustinVilla/?p=research/real_and_sim_walk_learning
https://www.cs.utexas.edu/users/AustinVilla/?p=research/real_and_sim_walk_learning

2488 Machine Learning (2021) 110:2469–2499

1 3

forward dynamics. In other words, the learned forward model, freal , predicts a distribu-
tion over next states, a potential next state is sampled from this distribution, and then
the sampled state is used with f −1

���
 instead of always taking the most likely next state.

The grounding function learned by sgat is given by:

where f(s, a) now gives a distribution over next states instead of the single most likely next
state. The sampling operation within the action transformer makes the overall action trans-
formation process stochastic. Figure 9 illustrates the simulator from the example in Fig. 8

g(s, a) = f −1
���

(s, S�) S� ∼ f (s, a)

(a) (b)

(c)

Fig. 8 A toy example where gat may fail to ground the simulator for learning. The gray box depicts the
grounding step with blue arrows representing the forward model and red arrows representing the inverse
dynamics model. When the real world has stochastic transitions, the gat forward model only captures the
most likely next state. gat may fail here, since the optimal action in the grounded simulator (a

3
) is sub-

optimal in the real environment

Fig. 9 The sgat algorithm
applied to the toy example in
Fig. 8. In the sgat Grounded
Simulator, the transitions match
the real environment (Fig. 8b)

2489Machine Learning (2021) 110:2469–2499

1 3

now grounded using sgat. Since the forward model accounts for stochasticity in the real
world, the actions in the grounded simulator have the same effect as in the real world.

An implementation of gat can be extended to an implementation of sgat by replacing
the predicted next state output of f with predicted parameters of the next state distribu-
tion. Let p(st+1|st, at) denote the probability of st+1 under the distribution given by f (st, at) .
We can fit the stochastic forward model to the observed real world data by minimizing a
negative log likelihood loss L = − log p(st+1|st, at) on the observed real world transition
(st, at, st+1) . For example, in continuous state and action domains, f could output the mean
and covariance of a Gaussian distribution.

sgat generalizes gat as gat can be seen as a variant of sgat that always samples the
most likely real world state given the current state and action. We next present an empiri-
cal study that shows that this generalization is crucial for real world domains with high
stochasticity.

8 Stochastic GAT empirical study

This section reports on an empirical study of transfer from simulation with sgat compared
to gat. We begin with a toy RL domain and progress to sim-to-real transfer of a bipedal
walking controller for a nao robot on bumpy carpet. This additional empirical study is
designed to answer the questions:

1. Does gat perform worse when real world stochasticticy is increased?
2. Can sgat successfully ground simulation even when the real world is stochastic?

Our empirical results show the benefit of modelling stochasticity when grounding a simu-
lator for transfer to a stochastic real world environment.

8.1 Cliff walking

We first verify the benefit of sgat using a classical reinforcement learning domain, the Cliff
Walking grid world (Sutton & Barto, 1998) shown in Fig. 10. In this domain, an agent
must navigate around a cliff to reach a goal. The agent can move up, down, left, or right. If
it tries to move into a wall, the action has no effect. The episode terminates when the agent

Fig. 10 The agent starts in the bottom left and must reach the goal in the bottom right. Stepping into the red
region penalizes the robot and ends the episode. The purple path is the most direct, but the blue path is safer
when the transitions are stochastic (Color figure online)

2490 Machine Learning (2021) 110:2469–2499

1 3

either reaches the goal (reward of +100) or falls off the cliff (reward of −10). There is also
a small time penalty (−0.1 per time step), so the agent is incentivized to find the shortest
path. There is no discounting, so the agent’s objective is to maximize the sum of rewards
over an episode. We use policy iteration (Sutton & Barto, 1998) for the �������� routine
in simulation.

We make Cliff Walking a sim-to-sim transfer problem by treating a variant of the
domain with deterministic transitions as the simulator and a variant of the domain with
stochastic transitions as a surrogate for the real world. In the stochastic “real” environ-
ment, there is a small chance at every time step that the agent moves in a random direction
instead of the direction it chose. As in the Sect. 6, sim-to-sim experiments allow us to run
more experiments than would be possible on a physical robot.

Figure 11 shows gat and sgat evaluated for different values of the environment noise
parameter. Both the grounding steps and policy improvement steps are repeated until con-
vergence for both algorithms. To evaluate the resulting policy, we estimate the expected
return with 10,000 episodes in the “real” environment. At a value of zero, the “real” envi-
ronment is completely deterministic. At a value of one, every transition is random. Thus, at
both of these endpoints, there is no distinction between the expected return gained by the
two algorithms.

For every intermediate value, sgat outperforms gat. The policy trained using gat is una-
ware of the stochastic transitions, so it always takes the shortest and most dangerous path.
Meanwhile the sgat agent learns as if it were training directly on the real environment
in the presence of stochasticity. Though Cliff Walking is a relatively simple domain, this
experiment demonstrates the importance of modelling the stochasticity in M.

8.2 MuJoCo domains

Having shown the efficacy of sgat in a tabular domain, we now evaluate its performance
in continuous control domains that are closer to real world robotics settings. We perform
experiments on the OpenAI Gym MuJoCo environments to compare the effectiveness of
sgat and gat when there is added noise in the target domain. We consider the case with just

Fig. 11 The y-axis is the average performance of a policy evaluated on the “real” domain. The x-axis is the
chance at each time step for the transition to be random. sgat outperforms gat for any noise value. Error
bars not shown since standard error is smaller than 1 pixel

2491Machine Learning (2021) 110:2469–2499

1 3

added noise and the case with both noise and domain mismatch between the source and
target environments. We call the former Sim-to-NoisySim and the latter Sim-to-NoisyReal.
We use the InvertedPendulum and HalfCheetah domains to test sgat in environments with
both low and high dimensional state and action spaces. For policy improvement, we use an
implementation of Trust Region Policy Optimization (trpo) (Schulman et al., 2015a), from
the stable-baselines repository (Hill et al., 2018) with the default hyperparameters for the
respective domains.

For gat, we use a neural network function approximator with two fully connected hid-
den layers of 64 neurons to represent the forward and inverse models. For sgat, the for-
ward model outputs the parameters of a Gaussian distribution from which we sample the
predicted next state.7 In our implementation, the final dense layer outputs the mean, � , and
the log standard deviation, log(�) , for each element of the state vector. We include all state
variables as state variables of interest.

We also compare against the ane approach from Sect. 6. This baseline is useful in show-
ing that sgat is accomplishing more than simply adding noise to the actions from the pol-
icy. We note the comparison is not a perfectly fair comparison in the sense that robustness
approaches such as ane are sensitive to user-defined hyperparameters that predict the vari-
ation in the environment—in this case, the magnitude of the added noise. sgat automati-
cally learns the right amount of stochasticity from real world data. In these experiments,
we chose the ane hyperparameters (e.g., noise value) with a coarse grid search.

We simulate stochasticity in the target domains by adding Gaussian noise with different
standard deviation values to the actions input into the environment. We omit the results of
Sim-to-NoisySim experiments for InvertedPendulum because both algorithms performed
well on the transfer task. Figure 12 shows the performance on the “real” environment of
policies trained four ways—naively on the ungrounded simulator, with sgat, with gat, and
with ane. In this Sim-to-NoisyReal experiment, sgat performs much better than gat when
the stochasticity in the target domain increases. Figure 13 shows the same experiment on

Fig. 12 Sim-to-NoisyReal experiment on InvertedPendulum. The “real” pendulum is 10 times heavier
than the sim pendulum and has added Gaussian noise of different values. Error bars show standard error
over ten independent training runs. Algorithms with striped bars used no real world data during training.
sgat performs comparatively better in noisier target environments

7 A Mixture Density Network might be more suitable when the environment’s transition dynamics exhibit
multi-modal behavior.

2492 Machine Learning (2021) 110:2469–2499

1 3

HalfCheetah, both with and without domain mismatch. Both these environments have an
action space of [−1, 1].

The red dashed lines show the performance of a policy trained directly on the “real”
environment until convergence, approximately the best possible performance. The axes are
scaled respective to this line. The error bars show the standard error across 10 trials with
different initialization weights. As the stochasticity increases, sgat policies perform better
than those learned using gat. Meanwhile, ane does well only for particular noise values,
depending on its training hyperparameters.

8.3 Nao robot experiments

Until this point in our analysis of sgat, we have used a modified version of the simulator in
place of the “real” world so as to isolate the effect of stochasticity (as opposed to domain
mismatch). However, the true objective of this research is to enable transfer to real robots,
which may exhibit very different noise profiles than the simulated environments. Thus, in
this section, we validate sgat on a real humanoid robot learning to walk on uneven terrain.

Fig. 13 Sim-to-NoisySim and Sim-to-NoisyReal experiments on HalfCheetah. In the NoisyReal environ-
ment, the “real” HalfCheetah’s mass is 43% greater than the sim HalfCheetah. Error bars show show stand-
ard error over ten independent training runs. Algorithms with striped bars used no real world data during
training. When the “real” environment is highly stochastic, sgat performs better than gat. Meanwhile, ane
does poorly on less noisy scenarios

2493Machine Learning (2021) 110:2469–2499

1 3

As before, we use the nao robot. We compared gat and sgat by independently learn-
ing control policies using these algorithms to walk on uneven terrain, as shown in
Fig. 14. To create an uneven surface, we placed foam packing material under the turf
of a robot soccer field. On this uneven ground, the walking dynamics become more
random, since the forces acting on the foot are slightly different every time the robot
takes a step. We use the same initial policy as in Sect. 6.5. This initial unoptimized
policy achieves a speed of 14.66 ± 1.65 cm/s on the uneven terrain. Aside from these
details, the empirical set-up for this task is the same as in Sect. 6.5.

On flat ground, both methods produced very similar policies, but on the uneven
ground, the policy learned using sgat was more successful than a policy learned
using gat. We evaluated the best policy learned using each of sgat and gat after each
grounding step by generating 10 trajectories on the physical robot. The average speed
of the robot on the uneven terrain is shown in Table 4. Qualitatively, we find that the
policy learned using sgat takes shorter steps and stays upright, thereby maintaining its
balance on the uneven terrain, whereas the policy produced using gat learned to lean
forward and walk faster, but fell down more often due to the uneven terrain. Both algo-
rithms produce policies that improve the walking speed across grounding steps. The
gat policy after the second grounding step always falls over, whereas the sgat policy
was more stable and finished the course 9 out of 10 times. Overall, this experiment

Fig. 14 Experiment setup showing a robot walking on the uneven ground. The nao begins walking 40 cms
behind the center of the circle and walks 300 cms. This image shows a successful walk executed by the
robot at 2 sec intervals, learned using the proposed sgat algorithm

Table 4 Speed and stability of nao robot walking on uneven ground. The initial policy �
0
 walks at

14.66 ± 1.65 cm/s and always falls down. Both sgat and gat find policies that are faster, but sgat policies
are more stable than policies learned using gat

Bold values indicate best performance

Grounding Step 1 Grounding Step 2

Speed (cm/s) Falls Speed (cm/s) Falls

gat 15.7 ± 2.98 6/10 18.5 ± 3.63 10/10
sgat 16.9 ± 0.678 0/10 18.0 ± 2.15 1/10

2494 Machine Learning (2021) 110:2469–2499

1 3

demonstrates that sgat allows sim-to-real transfer when the real world is stochastic.
Though gat is able to improve the initial policy’s walking speed it is more unstable
since it ignores stochasticity in the real world.

9 Discussion of limitations

In this section, we discuss limitations of the gat and sgat algorithms and our empirical eval-
uation. gat requires that there exists an action that can be taken in simulation to cause the
simulator to behave as the real world would. Formally, ∃â ∈ A such that f (s, a) = f���(s, â)
for state s and action a. At a minimum this condition should hold for states and actions that
are encountered during policy optimization. This requirement is also problematic for domains
with P that have high variance in the next state variables and maximum likelihood prediction
may be insufficient. However, sgat provides an alternative algorithm for such cases. Further-
more, both algorithms perform similarly on deterministic environments, suggesting that sgat
should be the default option.

We evaluated gat on several robot reinforcement learning tasks in both simulation and the
real world. In these experiments, we varied the task, policy representation, and the simulator
and target MDP (either the real world or another simulator). However, there remain a large
number of experimental knobs that we have not studied the importance of yet. Some of these
include the reward function definitions, the RL algorithm used, and how the state variables of
interest were defined. Further studies of these settings would broaden the breadth of conclu-
sions we can draw about the general applicability of the gat algorithm.

In this work, we have only considered deterministic simulators, but simulators may have
stochastic transitions as well, especially if the simulator was designed to anticipate process
noise. However, when using an action transformer grounding approach, stochastic simulators
make the learning problem more difficult. We can no longer sample from the distribution pro-
vided by the forward model. Instead, the inverse model must take in a distribution over states
and output a distribution over actions.

10 Future work

This article introduced an algorithm, grounded action transformation (gat), that allows a rein-
forcement learning agent to learn with simulated data. In this section, we propose directions
for future research on and application of our new algorithm.

10.1 Sim‑to‑real in non‑robotics domains

We evaluated gat on a physical nao robot. gat is not specific to the nao and could be applied
on other robotics tasks or even non-robotics tasks where a simulator is available a priori. The
latter is of particular interest as the sim-to-real problem has been studied to a much lesser
extent in non-robotics domains. gat is most applicable in tasks where the dynamics have a
basis in physics and actions have a direct effect on some state variables. For example, if a
robot increases the force with which it lifts its arm then it will see its arm lift higher or faster.
In such settings, it is reasonable to assume that an effective action grounding function can be
learned. It may be less applicable where the dynamics are derived from other factors such as
human behavior.

2495Machine Learning (2021) 110:2469–2499

1 3

10.2 Identifying state variables of interest

In our empirical evaluation, we manually chose the state variables of interest and modi-
fied actions to make the transitions of these variables more realistic. For instance, in
Sec. 6.5, we knew it was important to model the effect of actions on the joint positions
of the physical robot. Thus, we set the joint positions of the physical robot as the vari-
ables of interest. Automatically identifying these variables is an interesting direction for
future work.

The state variables of interest should be variables that affect task reward and the goal
is to identify them through the data collected for grounding. It may be difficult to iden-
tify these variables by simply running an initial policy; more exploratory actions may
need to be taken during data collection. Another objective when identifying these varia-
bles is that the set of target variables should have minimal size while being large enough
for the simulator to be sufficiently grounded for learning to progress. Clearly, setting all
state variables to be target variables accomplishes the latter but the grounding problem
may become more difficult. Thus methods for automatically identifying the variables
should attempt to find the minimal set that still allows learning in the grounded simula-
tion to transfer to the real world.

10.3 Grounded action transformation for deep reinforcement learning

Finally, our empirical evaluation considered relatively low dimensional policy repre-
sentations: neural networks with a couple of hidden layers, linear functions, or exist-
ing parameterized controllers. Some of the most impressive, recent RL success stories
have been accomplished with high dimensional neural network policy representations
taking pixels as inputs. Applying gat and sgat to learn pixel-to-control policies is an
interesting and challenging direction for future work. With more complex policy repre-
sentations there is more chance that the RL algorithm will overfit to the simulator and
thus high fidelity grounding is essential. Thus, more complex policy representations and
deep RL algorithms are an important test of gat’s ability to ground a simulator.

11 Conclusion

We have introduced an algorithm which allows a robot to learn a policy in a simulated
environment and the resulting policy transfer to the physical robot. This algorithm,
called the grounded action transformation (gat) algorithm, makes a contribution towards
allowing reinforcement learning agents to leverage simulated data to learn policies that
are effective in the real world. We empirically evaluated gat on three robot learning
tasks using the simulated or physical nao robot. In all cases, gat leads to higher task
performance compared to no grounding. We also compared gat to a simulator randomi-
zation baseline and found that using real world data to modify the simulation was more
effective than simply adding noise to the robot’s actions during learning. We applied gat
to optimizing the parameters of an existing walk controller and learned the fastest stable
walk that we know of for the nao robot. Finally we also developed a generalization of
gat, sgat, that improves upon gat when the real world is highly stochastic.

2496 Machine Learning (2021) 110:2469–2499

1 3

Acknowledgements We would like to thank Matthew Hausknecht and Patrick MacAlpine for insightful dis-
cussions and the anonymous AAAI, IROS, and MLJ reviewers for helpful comments.

Funding This work has taken place in the Learning Agents Research Group (LARG) at the Artificial Intel-
ligence Laboratory, The University of Texas at Austin. LARG research is supported in part by grants from
the National Science Foundation (CPS-1739964, IIS-1724157, NRI-1925082), the Office of Naval Research
(N00014-18-2243), Future of Life Institute (RFP2-000), Army Research Office (W911NF-19-2-0333),
DARPA, Lockheed Martin, General Motors, and Bosch. The views and conclusions contained in this docu-
ment are those of the authors alone.

Declaration

Conflict of interest Peter Stone serves as the Executive Director of Sony AI America and receives financial
compensation for this work. The terms of this arrangement have been reviewed and approved by the Univer-
sity of Texas at Austin in accordance with its policy on objectivity in research.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abbeel, P., Quigley, M., & Ng, A. Y. (2006). Using inaccurate models in reinforcement learning. In Pro-
ceedings of the 23rd international conference on machine learning (ICML). http:// dl. acm. org/ citat ion.
cfm? id= 11438 45.

Ashar, J., Ashmore, J., Hall, B., Harris, S., Hengst, B., Liu, R., Mei, Z., Pagnucco, M., Roy, R., Sammut,
C., Sushkov, O., Teh, B., & Tsekouras, L. (2015). RoboCup SPL 2014 champion team paper. In R. A.
C. Bianchi, H. L. Akin, S. Ramamoorthy, K. Sugiura (Eds.) RoboCup 2014: Robot World Cup XVIII,
lecture notes in artificial intelligence (Vol. 8992, pp. 70–81). Springer International Publishing.

Boeing, A., & Bräunl, T. (2012). Leveraging multiple simulators for crossing the reality gap. In Proceedings
of the 12th international conference on control automation robotics & vision (ICARCV) (pp. 1113–
1119). IEEE.

Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., Downs, L., Ibarz, J., Pas-
tor, P., Konolige, K., Levine, S., & Vanhoucke, V. (2018). Using simulation and domain adaptation to
improve efficiency of deep robotic grasping. In Proceedings of the IEEE international conference on
robotics and automation (ICRA).

Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N., & Fox, D. (2019). Closing the
sim-to-real loop: Adapting simulation randomization with real world experience. In Proceedings of the
IEEE international conference on robotics and automation (ICRA).

Christiano, P., Shah, Z., Mordatch, I., Schneider, J., Blackwell, T., Tobin, J., Abbeel, P., & Zaremba, W.
(2016). Transfer from simulation to real world through learning deep inverse dynamics model. arXiv
preprint arXiv: 16100 3518.

Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that can adapt like animals. Nature,
521(7553), 503.

Cutler, M., & How, J. P. (2015). Efficient reinforcement learnng for robots using informative simulated pri-
ors. In Proceedings of the IEEE international conference on robotics and automation (ICRA).

Cutler, M., Walsh, T. J., & How, J. P. (2014). Reinforcement learning with multi-fidelity simulators. In Pro-
ceedings of the IEEE conference on robotics and automation (ICRA). http:// www. resea rch. rutge rs. edu/
~thoma swa/ pub/ icra2 014Car. pdf.

Deisenroth, M. P., & Rasmussen, C. E. (2011). PILCO: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th international conference on machine learning (ICML).

http://creativecommons.org/licenses/by/4.0/
http://dl.acm.org/citation.cfm?id=1143845
http://dl.acm.org/citation.cfm?id=1143845
http://arxiv.org/abs/161003518
http://www.research.rutgers.edu/%7ethomaswa/pub/icra2014Car.pdf
http://www.research.rutgers.edu/%7ethomaswa/pub/icra2014Car.pdf

2497Machine Learning (2021) 110:2469–2499

1 3

Devin, C., Gupta, A., Darrell, T., Abbeel, P., & Levine, S. (2017). Learning modular neural network policies
for multi-task and multi-robot transfer. In Proceedings of the IEEE international conference on robot-
ics and automation (ICRA) (pp. 2169–2176). IEEE.

Fang, K., Bai, Y., Hinterstoisser, S., & Kalakrishnan, M. (2018). Multi-task domain adaptation for deep
learning of instance grasping from simulation. In Proceedings of the IEEE international conference on
robotics and automation (ICRA).

Farchy, A., Barrett, S., MacAlpine, P., & Stone, P. (2013). Humanoid robots learning to walk faster: From
the real world to simulation and back. In Proceedings of the 12th international conference on auton-
omous agents and multiagent systems (AAMAS). http:// www. cs. utexas. edu/ users/ ai- lab/? AAMAS
13- Farchy.

Golemo, F., Taiga, A. A., Courville, A., & Oudeyer, P. Y. (2018). Sim-to-real transfer with neural-
augmented robot simulation. In Proceedings of the 2nd conference on robot learning (CORL) (pp.
817–828).

Hall, B., Harris, S., Hengst, B., Liu, R., Ng, K., Pagnucco, M., Pearson, L., Sammut, C., & Schmidt, P.
(2016). RoboCup SPL 2015 champion team paper. In RoboCup 2015: Robot World Cup XIX, lec-
ture notes in artificial intelligence (Vol. 9513, pp. 72–82). Springer International Publishing.

Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003). Reducing the time complexity of the derand-
omized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary Computation,
11(1), 1–18.

Hengst, B. (2014). rUNSWift walk2014 report robocup standard platform league. Technical report. The
University of New South Wales.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C., Kli-
mov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., & Wu, Y. (2018). Stable
baselines. https:// github. com/ hill-a/ stable- basel ines.

Iocchi, L., Libera, F. D., & Menegatti, E. (2007). Learning humanoid soccer actions interleaving simu-
lated and real data. In Proceedings of the 2nd workshop on humanoid soccer robots. http:// cites
eerx. ist. psu. edu/ viewd oc/ summa ry? doi= 10.1. 1. 139. 4931.

Jakobi, N., Husbands, P., Harvey, I. (1995). Noise and the reality gap: The use of simulation in evo-
lutionary robotics. In Proceedings of the European conference on artificial life (pp. 704–720).
Springer.

James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D., Irpan, A., Ibarz, J., Levine, S., Hadsell,
R., & Bousmalis, K. (2019). Sim-to-real via sim-to-sim: Data-efficient robotic grasping via rand-
omized-to-canonical adaptation networks. In Proceedings of the IEEE international conference on
computer vision and pattern recognition (CVPR) (pp. 12627–12637).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:
14126 980.

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The Interna-
tional Journal of Robotics Research. http:// ijr. sagep ub. com/ conte nt/ early/ 2013/ 08/ 22/ 02783 64913
495721. abstr act.

Koos, S., Mouret, J. B., & Doncieux, S. (2010). Crossing the reality gap in evolutionary robotics by pro-
moting transferable controllers. In Proceedings of the 12th annual conference on genetic and evo-
lutionary computation (GECCO) (pp. 119–126). ACM. http:// dl. acm. org/ citat ion. cfm? id= 18305 05.

Lee, G., Srinivasa, S. S., & Mason, M. T. (2017) GP-ILQG: Data-driven robust optimal control for
uncertain nonlinear dynamical systems. arXiv preprint arXiv: 17050 5344.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv: 15090 2971.

Lowrey, K., Kolev, S., Dao, J., Rajeswaran, A., & Todorov, E. (2018). Reinforcement learning for non-
prehensile manipulation: Transfer from simulation to physical system. In PProceedings of the IEEE
international conference on simulation, modeling, and programming for autonomous robots (SIM-
PAR) (pp. 35–42). IEEE.

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., & Trimpe, S. (2017).
Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with
bayesian optimization. In Proceedings of the IEEE international conference on robotics and auto-
mation (ICRA) (pp. 1557–1563). IEEE.

Miglino, O., Lund, H. H., & Nolfi, S. (1996). Evolving mobile robots in simulated and real environ-
ments. Artificial Life, 2(4), 417–434.

Molchanov, A., Chen, T., Hönig, W., Preiss, J. A., Ayanian, N., & Sukhatme, G. S. (2019). Sim-to-
(multi)-real: Transfer of low-level robust control policies to multiple quadrotors. arXiv preprint
arXiv: 19030 4628.

http://www.cs.utexas.edu/users/ai-lab/?AAMAS13-Farchy
http://www.cs.utexas.edu/users/ai-lab/?AAMAS13-Farchy
https://github.com/hill-a/stable-baselines
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.4931
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.4931
http://arxiv.org/abs/14126980
http://arxiv.org/abs/14126980
http://ijr.sagepub.com/content/early/2013/08/22/0278364913495721.abstract
http://ijr.sagepub.com/content/early/2013/08/22/0278364913495721.abstract
http://dl.acm.org/citation.cfm?id=1830505
http://arxiv.org/abs/170505344
http://arxiv.org/abs/150902971
http://arxiv.org/abs/190304628

2498 Machine Learning (2021) 110:2469–2499

1 3

Mozifian, M., Higuera, J.C.G., Meger, D., & Dudek, G. (2019). Learning domain randomization distri-
butions for transfer of locomotion policies. arXiv preprint arXiv: 19060 0410.

Muratore, F., Treede, F., Gienger, & M., Peters, J. (2018). Domain randomization for simulation-based
policy optimization with transferability assessment. In Proceedings of the 2nd conference on robot
learning (CORL) (pp. 700–713).

OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J., Petron,
A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin, J., Welinder, P., Weng, L., &
Zaremba, W. (2018). Learning dexterous in-hand manipulation. arXiv preprint arXiv: 18080 0177.

Peng, X. B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2017). Sim-to-real transfer of robotic con-
trol with dynamics randomization. In Proceedings of the IEEE international conference on robotics
and automation (ICRA).

Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W., & Abbeel, P. (2017a). Asymmetric actor critic for
image-based robot learning. In Proceedings of the robotics: Science and systems Conference (RSS).

Pinto, L., Davidson, J., Sukthankar, R., Gupta, A. (2017b). Robust adversarial reinforcement learning. In
Proceedings of the 34th international conference on machine learning (ICML).

Puterman, M. L. (2014). Markov decision processes: Discrete stochastic dynamic programming. John Wiley
& Sons

Rajeswaran, A., Ghotra, S., Levine, S., & Ravindran, B. (2017). EPOpt: Learning robust neural network
policies using model ensembles. In Proceedings of the international conference on learning represen-
tations (ICLR).

Ramos, F., Possas, R. C., & Fox, D. (2019). Bayessim: Adaptive domain randomization via probabilistic
inference for robotics simulators. arXiv preprint arXiv: 19060 1728.

Rodriguez, D., Brandenburger, A., & Behnke, S. (2019). Combining simulations and real-robot experiments
for bayesian optimization of bipedal gait stabilization. In RoboCup 2018: Robot World Cup XXII, lec-
ture notes in artificial intelligence (Vol. 11374). Springer International Publishing.

Ross, S., Gordon, G. J., & Bagnell, D. (2011). A reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the international conference on artificial intelligence and
statistics (AISTATS) (pp. 627–635).

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., &
Hadsell, R. (2016a). Progressive neural networks. arXiv preprint arXiv: 16060 4671.

Rusu, A. A., Vecerik, M., Rothörl, T., Heess, N., Pascanu, R., & Hadsell, R. (2016b). Sim-to-real robot
learning from pixels with progressive nets. In Proceedings of the 1st conference on robot learning
(CORL).

Sadeghi, F., & Levine, S. (2017). (CAD)2 RL: Real single-image flight without a single real image. In Pro-
ceedings of the robotics: Science and systems conference (RSS).

Schulman, J., Levine, S., Moritz, P., Jordan, M., & Abbeel, P. (2015a). Trust region policy optimization. In
Proceedings of the 32nd international conference on machine learning (ICML). http:// jmlr. csail. mit.
edu/ proce edings/ papers/ v37/ schul man15. html.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., & Abbeel, P. (2015b). High-dimensional continuous con-
trol using generalized advantage estimation. In Proceedings of the international conference on learn-
ing representations (ICLR).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT Press.
Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., Bohez, S., & Vanhoucke, V. (2018). Sim-

to-real: Learning agile locomotion for quadruped robots. In Proceedings of the robotics: Science and
systems conference (RSS).

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain randomization for
transferring deep neural networks from simulation to the real world. In Proceedings of the 30th IEEE/
RSJ international conference on intelligent robots and systems (IROS).

Tobin, J., Zaremba, W., & Abbeel, P. (2018). Domain randomization and generative models for robotic
grasping. In Proceedings of the 31st IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS).

Tzeng, E., Coline, D., Hoffman, J., Finn, C., Xingchao, P., Levine, S., Saenko, K., & Darrell, T. (2016).
Towards adapting deep visuomotor representations from simulated to real environments. In Proceed-
ings of the workshop on algorithmic foundations of robotics (WAFR).

Urieli, D., MacAlpine, P., Kalyanakrishnan, S., Bentor, Y., & Stone, P. (2011). On optimizing interdepend-
ent skills: A case study in simulated 3D humanoid robot soccer. In Proceedings of the 10th interna-
tional conference on autonomous agents and multiagent systems (AAMAS) (pp. 769–776).

Zhang, F., Leitner, J., Upcroft, B., & Corke, P. (2016). Vision-based reaching using modular deep networks:
From simulation to the real world. arXiv preprint arXiv: 16100 6781.

http://arxiv.org/abs/190600410
http://arxiv.org/abs/180800177
http://arxiv.org/abs/190601728
http://arxiv.org/abs/160604671
http://jmlr.csail.mit.edu/proceedings/papers/v37/schulman15.html
http://jmlr.csail.mit.edu/proceedings/papers/v37/schulman15.html
http://arxiv.org/abs/161006781

2499Machine Learning (2021) 110:2469–2499

1 3

Zhu, S., Kimmel, A., E Bekris, K., & Boularias, A. (2018). Fast model identification via physics engines
for data-efficient policy search. In Proceedings of the 27th international joint conference on artificial
intelligence (IJCAI) (pp. 3249–3256). https:// doi. org/ 10. 24963/ ijcai. 2018/ 451.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Josiah P. Hanna1 · Siddharth Desai2 · Haresh Karnan2 · Garrett Warnell3 ·
Peter Stone4

1 School of Informatics, The University of Edinburgh, Edinburgh, UK
2 Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
3 Army Research Laboratory and the Department of Computer Science, The University of Texas

at Austin, Austin, TX, USA
4 Department of Computer Science, The University of Texas at Austin and Sony AI, Austin, TX,

USA

https://doi.org/10.24963/ijcai.2018/451
http://orcid.org/0000-0002-7411-0398

	Grounded action transformation for sim-to-real reinforcement learning
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Learning in simulation

	3 Related work
	3.1 Simulator modification
	3.2 Robustness through simulator variance
	3.3 Simulator as prior knowledge
	3.4 Reality gap in the observation space

	4 Grounded simulation learning
	5 The grounded action transformation algorithm
	5.1 Modifying actions vs. modifying parameters

	6 GAT empirical study
	6.1 General NAO task description
	6.2 Learning arm control
	6.3 Linear walk policy optimization
	6.4 Sim-to-sim walk engine policy optimization
	6.5 Sim-to-real walk engine policy optimization

	7 Stochastic GAT (SGAT​)
	8 Stochastic GAT empirical study
	8.1 Cliff walking
	8.2 MuJoCo domains
	8.3 Nao robot experiments

	9 Discussion of limitations
	10 Future work
	10.1 Sim-to-real in non-robotics domains
	10.2 Identifying state variables of interest
	10.3 Grounded action transformation for deep reinforcement learning

	11 Conclusion
	Acknowledgements
	References

