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Abstract

Distributed Artificial Intelligence (DAI) has existed as a subfield of AI for less than two decades.
DAI is concerned with systems that consist of multiple independent entities that interact in a domain.
Traditionally, DAI has been divided into two sub-disciplines: Distributed Problem Solving (DPS) focuses
on the information management aspects of systems with several components working together towards
a common goal; Multiagent Systems (MAS) deals with behavior management in collections of several
independent entities, or agents. This survey of MAS is intended to serve as an introduction to the field
and as an organizational framework. A series of general multiagent scenarios are presented. For each
scenario, the issues that arise are described along with a sampling of the techniques that exist to deal with
them. The presented techniques are not exhaustive, but they highlight how multiagent systems can be
and have been used to build complex systems. When options exist, the techniques presented are biased
towards machine learning approaches. Additional opportunities for applying machine learning to MAS
are highlighted and robotic soccer is presented as an appropriate test bed for MAS. This survey does not
focus exclusively on robotic systems. However, we believe that much of the prior research in non-robotic
MAS is relevant to robotic MAS, and we explicitly discuss several robotic MAS, including all of those
presented in this issue.

1 Introduction

Extending the realm of the social world to include autonomous computer systems has always been an awe-

some, if not frightening, prospect. However it is now becoming both possible and necessary through ad-

vances in the field of Artificial Intelligence (AI). In the past several years, AI techniques have become more

and more robust and complex. To mention just one of the many exciting successes, a car steered itself more

than 95% of the way across the United States using the ALVINN system [Pormerleau, 1993]. By meeting

this and other such daunting challenges, AI researchers have earned the right to start examining the im-

plications of multiple autonomous “agents” interacting in the real world. In fact, they have rendered this
�This work was carried out while a member of the Computer Science Department at Carnegie Mellon University.
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examination indispensable. If there is one self-steering car, there will surely be more. And although each

may be able to drive individually, if several autonomous vehicles meet on the highway, we must know how

their behaviors interact.

Multiagent Systems (MAS) is the subfield of AI that aims to provide both principles for construction

of complex systems involving multiple agents and mechanisms for coordination of independent agents’

behaviors. While there is no generally accepted definition of “agent” in AI [Russell and Norvig, 1995], for

the purposes of this article, we consider an agent to be an entity, such as a robot, with goals, actions, and

domain knowledge, situated in an environment. The way it acts is called its “behavior.” (This is not intended

as a general theory of agency.) Although the ability to consider coordinating behaviors of autonomous agents

is a new one, the field is advancing quickly by building upon pre-existing work in the field of Distributed

Artificial Intelligence (DAI).

DAI has existed as a subfield of AI for less than two decades. Traditionally, DAI is broken into two

sub-disciplines: Distributed Problem Solving (DPS) and MAS [Bond and Gasser, 1988]. The main topics

considered in DPS are information management issues such as task decomposition and solution synthesis.

For example, a constraint satisfaction problem can often be decomposed into several not entirely independent

subproblems that can be solved on different processors. Then these solutions can be synthesized into a

solution of the original problem.

MAS allows the subproblems of a constraint satisfaction problem to be subcontracted to different prob-

lem solvingagentswith their own interests and goals. Furthermore, domains with multiple agents of any

type, including autonomous vehicles and even some human agents, are beginning to be studied.

This survey of MAS is intended as an introduction to the field. The reader should come away with an

appreciation for the types of systems that are possible to build using MAS as well as a conceptual framework

with which to organize the different types of possible systems.

The article is organized as a series of general multiagent scenarios. For each scenario, the issues that

arise are described along with a sampling of the techniques that exist to deal with them. The techniques

presented are not exhaustive, but they highlight how multiagent systems can be and have been used to build

complex systems.

Because of the inherent complexity of MAS, there is much interest in using machine learning techniques

to help deal with this complexity [Weiß and Sen, 1996; Sen, 1996]. When several different systems exist

that could illustrate the same or similar MAS techniques, the systems presented here are biased towards

those that use machine learning (ML) approaches. Furthermore, every effort is made to highlight additional

opportunities for applying ML to MAS. This survey does not focus exclusively on robotic systems. However,

we believe that much of the prior research in non-robotic MAS is relevant to robotic MAS, and we explicitly

discuss several robotic MAS (referred to asmulti-robot systems), including all of those presented in this

issue.

Although there are many possible ways to divide MAS, the survey is organized along two main di-
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mensions: agent heterogeneity and amount of communication among agents. Beginning with the simplest

multiagent scenario, homogeneous non-communicating agents, the full range of possible multiagent sys-

tems, through highly heterogeneous communicating agents, is considered.

For each multiagent scenario presented, a single example domain is presented in an appropriate instan-

tiation for the purpose of illustration. In this extensively-studied domain, the Predator/Prey or “Pursuit”

domain [Bendaet al., 1986], many MAS issues arise. Nevertheless, it is a “toy” domain. At the end of the

article, a much more complex domain—robotic soccer—is presented in order to illustrate the full power of

MAS.

The article is organized as follows. Section 2 introduces the field of MAS, listing several of its strong

points and presenting a taxonomy. The body of the article, Sections 3 – 7, presents the various multiagent

scenarios, illustrates them using the pursuit domain, and describes existing work in the field. A domain

that facilitates the study of most multiagent issues, robotic soccer, is advocated as a test bed in Section 8.

Section 9 concludes.

2 Multiagent Systems

Two obvious questions about any type of technology are:

� What advantages does it offer over the alternatives?
� In what circumstances is it useful?

It would be foolish to claim that MAS should be used when designing all complex systems. Like any useful

approach, there are some situations for which it is particularly appropriate, and others for which it is not.

The goal of this section is to underscore the need for and usefulness of MAS while giving characteristics of

typical domains that can benefit from it. For a more extensive discussion, see [Bond and Gasser, 1988].

Some domains require MAS. In particular, if there are different people or organizations with different

(possibly conflicting) goals and proprietary information, then a multiagent system is needed to handle their

interactions. Even if each organization wants to model its internal affairs with a single system, the organi-

zations will not give authority to any single person to build a system that represents them all: the different

organizations will need their own systems that reflect their capabilities and priorities.

For example, consider a manufacturing scenario in which company X produces tires, but subcontracts

the production of lug-nuts to company Y. In order to build a single system to automate (certain aspects

of) the production process, the internals of both companies X and Y must be modeled. However, neither

company is likely to want to relinquish information and/or control to a system designer representing the

other company. Perhaps with just two companies involved, an agreement could be reached, but with several

companies involved, MAS is necessary. The only feasible solution is to allow the various companies to

create their own agents that accurately represent their goals and interests. They must then be combined into

a multiagent system with the aid of some of the techniques described in this article.
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Another example of a domain that requires MAS is hospital scheduling as presented in [Decker, 1996c].

This domain from an actual case study requires different agents to represent the interests of different people

within the hospital. Hospital employees have different interests, from nurses who may want to minimize

the patient’s time in the hospital, to x-ray operators who may want to maximize the throughput on their ma-

chines. Since different people evaluate candidate schedules with different criteria, they must be represented

by separate agents if their interests are to be justly considered.

Even in domains that could conceivably use systems that are not distributed, there are several possible

reasons to use MAS. Having multiple agents could speed up a system’s operation by providing a method for

parallel computation. For instance, a domain that is easily broken into components—several independent

tasks that can be handled by separate agents—could benefit from MAS. Furthermore, the parallelism of

MAS can help deal with limitations imposed by time-bounded or space-bounded reasoning requirements.

While parallelism is achieved by assigning different tasks or abilities to different agents, robustness is

a benefit of multiagent systems that have redundant agents. If control and responsibilities are sufficiently

shared among different agents, the system can tolerate failures by one or more of the agents. Domains

that must degrade gracefully are in particular need of this feature of MAS: if a single entity—processor

or agent—controls everything, then the entire system could crash if there is a single failure. Although

a multiagent system need not be implemented on multiple processors, to provide full robustness against

failure, its agents should be distributed across several machines.

Another benefit of multiagent systems is their scalability. Since they are inherently modular, it should

be easier to add new agents to a multiagent system than it is to add new capabilities to a monolithic system.

Systems whose capabilities and parameters are likely to need to change over time or across agents can also

benefit from this advantage of MAS.

From a programmer’s perspective the modularity of multiagent systems can lead to simpler program-

ming. Rather than tackling the whole task with a centralized agent, programmers can identify subtasks and

assign control of those subtasks to different agents. The difficult problem of splitting a single agent’s time

among different parts of a task solves itself. Thus, when the choice is between using a multiagent system

or a single-agent system, MAS may be the simpler option. Of course there are some domains that are more

naturally approached from an omniscient perspective—because a global view is given—or with central-

ized control—because no parallel actions are possible and there is no action uncertainty [Decker, 1996b].

Single-agent systems should be used in such cases.

Multiagent systems can also be useful for their illucidation of fundamental problems in the social sci-

ences and life sciences [Caoet al., 1997], including intelligence itself [Decker, 1987],. As Weiß put it: “In-

telligence is deeply and inevitably coupled with interaction” [Weiß, 1996]. In fact, it has been proposed that

the best way to develop intelligent machines at all might be to start by creating “social” machines [Daut-

enhahn, 1995]. This theory is based on the socio-biological theory that primate intelligence first evolved

because of the need to deal with social interactions [Minsky, 1988].
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While all of the above reasons to use MAS apply generally, there are also some arguments in favor

of multi-robot systems in particular. In tasks that require robots to be in particular places, such as robot

scouting, a team of robots has an advantage over a single robot in that it can take advantage of geographic

distribution. While a single robot could only sense the world from a single vantage point, a multi-robot

system can observe and act from several locations simultaneously.

Finally, as argued in [Jung and Zelinsky, 2000], multi-robot systems can exhibit benefits over single-

robot systems in terms of the “performance/cost ratio.” By using heterogeneous robots each with a subset

of the capabilities necessary to accomplish a given task, one can use simpler robots that are presumably less

expensive to engineer than a single monolithic robot with all of the capabilities bundled together. Reasons

presented above to use MAS are summarized in Table 1.

Table 1: Reasons to use Multiagent Systems

� Some domains require it
� Parallelism
� Robustness
� Scalability

� Simpler programming
� To study intelligence
� Geographic distribution
� Cost effectiveness

2.1 Taxonomy

Several taxonomies have been presented previously for the related field of Distributed Artificial Intelligence

(DAI). For example, Decker presents four dimensions of DAI [Decker, 1987]:

1. Agent granularity (coarse vs. fine);
2. Heterogeneity of agent knowledge (redundant vs. specialized);
3. Methods of distributing control (benevolent vs. competitive, team vs. hierarchical, static vs. shifting
roles);
4. and Communication possibilities (blackboard vs. messages, low-level vs. high-level, content).

Along dimensions 1 and 4, multiagent systems have coarse agent granularity and high-level communication.

Along the other dimensions, they can vary across the whole ranges. In fact, the remaining dimensions are

very prominent in this article: degree of heterogeneity is a major MAS dimension and all the methods of

distributing control appear here as major issues.

More recently, Parunak [1996] has presented a taxonomy of MAS from an application perspective. From

this perspective, the important characteristics of MAS are:

� System function;
� Agent architecture (degree of heterogeneity, reactive vs. deliberative);
� System architecture (communication, protocols, human involvement).

A useful contribution is that the dimensions are divided into agent and system characteristics. Other

overviews of DAI and/or MAS include [Lesser, 1995; Durfee, 1992; Durfeeet al., 1989; Bond and Gasser,

1988].
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There are also some existing surveys that are specific to multi-robot systems. Dudek et al. [1996]

presented a detailed taxonomy of multiagent robotics along seven dimensions, including robot size, various

communication parameters, reconfigurability, and unit processing. Cao et al. [1997] presented a “taxonomy

based on problems and solutions,” using the following five axes: group architecture, resource conflicts,

origins of cooperation, learning, and geometric problems. It specifically does not consider competitive

multi-robot scenarios. This article contributes a taxonomy that encompasses MAS along with a detailed

chronicle of existing systems as they fit in to this taxonomy.

The taxonomy presented in this article is organized along what we believe to be the most important

aspects of agents (as opposed to domains): degree of heterogeneity and degree of communication. Com-

munication is presented as an agent aspect because it is the degree to which the agents communicate (or

whetherthey communicate), not the communication protocols that are available to them, that is considered.

Other aspects of agents in MAS are touched upon within the heterogeneity/communication framework. For

example, the degree to which different agents play different roles is certainly an important MAS issue, but

here it is framed within the scenario of heterogeneous non-communicating agents (it arises in the other three

scenarios as well).

All four combinations of heterogeneity and communication—homogeneous non-communicating agents;

heterogeneous non-communicating agents; homogeneous communicating agents; and heterogeneous com-

municating agents—are considered in this article. Our approach throughout the article is to categorize the

issues as they are reflected in the literature. Many of the issues could apply in earlier scenarios, but do not in

the articles that we have come across. On the other hand, many of the issues that arise in the earlier scenarios

also apply in the later scenarios. Nevertheless, they are only mentioned again in the later scenarios to the

degree that they differ or become more complex.

The primary purpose of this taxonomy is as a framework for considering and analyzing the challenges

that arise in MAS. This survey is designed to be useful to researchers as a way of separating out the issues

that arise as a result of their decisions to use homogeneous versus heterogeneous agents and communicating

versus non-communicating agents.

The multiagent scenarios along with the issues that arise therein and the techniques that currently exist

to address these issues are described in detail in Sections 4 – 7. Table 2 gives a preview of these scenarios

and associated issues as presented in this article.

2.2 Single-Agent vs. Multiagent Systems

Before studying and categorizing MAS, we must first consider their most obvious alternative: centralized,

single-agent systems. Centralized systems have a single agent which makes all the decisions, while the

others act as remote slaves. For the purposes of this survey, a “single-agent system” should be thought of as

a centralized system in a domain which also allows for a multiagent approach.

A single-agent system might still have multiple entities — several actuators, or even several physically
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Homogeneous Non-communicating Agents

� Reactive vs. deliberative agents
� Local or global perspective
� Modeling of other agents’ states
� How to affect others

Heterogeneous Non-communicating Agents

� Benevolence vs. competitiveness
� Fixed vs. learning agents (arms race, credit-

assignment)
� Modeling of others’ goals, actions, and knowledge
� Resource management (interdependent actions)
� Social conventions
� Roles

Homogeneous Communicating Agents

� Distributed sensing
� Communication content

Heterogeneous Communicating Agents

� Understanding each other
� Planning communicative acts
� Benevolence vs. competitiveness
� Negotiation
� Resource management (schedule coordination)
� Commitment/decommitment
� Collaborative localization
� Changing shape and size

Table 2: Issues arising in the various scenarios as reflected in the literature.

separated components. However, if each entity sends its perceptions to and receives its actions from a single

central process, then there is only a single agent: the central process. The central agent models all of the

entities as a single “self.” This section compares the single-agent and multiagent approaches.

2.2.1 Single-Agent Systems

In general, the agent in a single-agent system models itself, the environment, and their interactions. Of

course the agent is itself part of the environment, but for the purposes of this article, agents are considered to

have extra-environmental components as well. They are independent entities with their own goals, actions,

and knowledge. In a single-agent system, no other such entities are recognized by the agent. Thus, even

if there are indeed other agents in the world, they are not modeled as having goals, etc.: they are just

considered part of the environment. The point being emphasized is that although agents arealso a part of

the environment, they are explicitly modeled as having their own goals, actions, and domain knowledge (see

Figure 1).

2.2.2 Multiagent Systems

Multiagent systems differ from single-agent systems in that several agents exist which model each other’s

goals and actions. In the fully general multiagent scenario, there may be direct interaction among agents

(communication). Although this interaction could be viewed as environmental stimuli, we present inter-

agent communication as being separate from the environment.

From an individual agent’s perspective, multiagent systems differ from single-agent systems most sig-

nificantly in that the environment’s dynamics can be affected by other agents. In addition to the uncertainty
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Environment

knowledge
Domain
Actions
Goals

Agent
effectors

sensors

Figure 1: A general single-agent framework. The agent models itself, the environment, and their interac-
tions. If other agents exist, they are considered part of the environment.

that may be inherent in the domain, other agents intentionally affect the environment in unpredictable ways.

Thus, all multiagent systems can be viewed as having dynamic environments.

Figure 2 illustrates the view that each agent is both part of the environment and modeled as a separate

entity. There may be any number of agents, with different degrees of heterogeneity and with or without the

ability to communicate directly. From the fully general case depicted here, we begin by eliminating both

the communication and the heterogeneity to present homogeneous non-communicating MAS (Section 4).

Then, the possibilities of agent heterogeneity and inter-agent communication are considered one at a time

(Sections 5 and 6). Finally, in Section 7, we arrive back at the fully general case by considering agents that

can interact directly.

Environment

effectors

sensors

knowledge
Domain

Agent
Goals

Goals

Agent

Actions

Actions

Domain
knowledge

Figure 2: The fully general multiagent scenario. Agents model each other’s goals, actions, and domain
knowledge, which may differ as indicated by the different fonts. They may also interact directly (communi-
cate) as indicated by the arrows between the agents.
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3 Organization of Existing Work

The following sections present many different MAS techniques that have been previously published. They

present an extensive, but not exhaustive, list of work in the field. Space does not permit exhaustive coverage.

Instead, the work mentioned is intended to illustrate the techniques that exist to deal with the issues that arise

in the various multiagent scenarios. When possible, ML approaches are emphasized.

All four multiagent scenarios are considered in the following order: homogeneous non-communicating

agents, heterogeneous non-communicating agents, homogeneous communicating agents, and heterogeneous

communicating agents. For each of these scenarios, the research issues that arise, the techniques that deal

with them, and additional ML opportunities are presented. The issues may appear across scenarios, but they

are presented and discussed in the first scenario to which they apply.

In addition to the existing learning approaches described in the sections entitled “Issues and Techniques”,

there are several previously unexplored learning opportunities that apply in each of the multiagent scenarios.

For each scenario, a few promising opportunities for ML researchers are presented.

Many existing ML techniques can be directly applied in multiagent scenarios by delimiting a part of the

domain that only involves a single agent. Howevermultiagent learningis more concerned with learning

issues that arise because of the multiagent aspect of a given domain. As described by Weiß, multiagent

learning is “learning that is done by several agents and that becomes possible only because several agents

are present” [Weiß, 1995]. This type of learning is emphasized in the sections entitled “Further Learning

Opportunities.”

For the purpose of illustration, each scenario is accompanied by a suitable instantiation of the Preda-

tor/Prey or “Pursuit” domain.

3.1 The Predator/Prey (“Pursuit”) Domain

The Predator/Prey, or “Pursuit” domain (hereafter referred to as the “pursuit domain”), is an appropriate one

for illustration of MAS because it has been studied using a wide variety of approaches and because it has

many different instantiations that can be used to illustrate different multiagent scenarios. Since it involves

agents moving around in a world, it is particularly appropriate as an abstraction of robotic MAS. The pursuit

domain is not presented as a complex real-world domain, but rather as a toy domain that helps concretize

many concepts. For discussion of a domain that has the full range of complexities characteristic of more

real-world domains, see Section 8.

The pursuit domain was introduced by Benda et al. [1986]. Over the years, researchers have studied

several variations of its original formulation. In this section, a single instantiation of the domain is presented.

However, care is taken to point out the parameters that can be varied.

The pursuit domain is usually studied with fourpredatorsand oneprey. Traditionally, the predators

are blue and the prey is red (black and grey respectively in Figure 3). The domain can be varied by using
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different numbers of predators and prey.

Predators see each other

Prey stays put 10% of time

Prey moves randomly
Predators can communicate

Simultaneous movements

Orthogonal Game in a Toroidal World

Capture

Figure 3: A particular instantiation of the pursuit domain. Predators are black and the prey is grey. The
arrows on top of two of the predators indicate possible moves.

The goal of the predators is to “capture” the prey, or surround it so that it cannot move to an unoccupied

position. A capture position is shown in Figure 3. If the world has boundaries, fewer than four predators can

capture the prey by trapping it against an edge or in a corner. Another possible criterion for capture is that a

predator occupies the same position as the prey. Typically, however, no two players are allowed to occupy

the same position.

As depicted in Figure 3, the predators and prey move around in a discrete, grid-like world with square

spaces. They can move to any adjacent square on a given turn. Possible variations include grids with other

shapes as spaces (for instance hexagons) or continuous worlds. Within the square game, players may be

allowed to move diagonally instead of just horizontally and vertically. The size of the world may also vary

from an infinite plane to a small, finite board with edges. The world pictured in Figure 3 is a toroidal world:

the predators and prey can move off one end of the board and come back on the other end. Other parameters

of the game that must be specified are whether the players move simultaneously or in turns; how much of

the world the predators can see; and whether and how the predators can communicate.

Finally, in the original formulation of the domain, and in most subsequent studies, the prey moves

randomly: on each turn it moves in a random direction, staying still with a certain probability in order to

simulate being slower than the predators. However, it is also possible to allow the prey to actively try to

escape capture. As is discussed in Section 5, there has been some research done to this effect, but there is

still much room for improvement. The parameters that can be varied in the pursuit domain are summarized

in Table 3.

The pursuit domain is a good one for the purposes of illustration because it is simple to understand and

because it is flexible enough to illustrate a variety of scenarios. The possible actions of the predators and
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Table 3: Variable parameters in the pursuit domain

� Definition of capture
� Size and shape of the world
� Predators’ legal moves
� Simultaneous or sequential movement

� Visible objects and range
� Predator communication
� Prey movement

prey are limited and the goal is well-defined. In terms of the reasons to use MAS as presented in Table 1,

the pursuit domain does not necessarily require MAS. But in certain instantiations it can make use of the

parallelism, robustness, and simpler programming offered by MAS.

In the pursuit domain, a single-agent approach is possible: the agent can observe the positions of all

four predators and decide how each of them should move. Since the prey moves randomly rather than

intentionally, it is not associated with any agent. Instead it is considered part of the environment as shown

in Figure 4. It is also possible to consider DPS approaches to the pursuit domain by breaking the task into

subproblems to be solved by each predator. However, most of the approaches described here model the

predators as independent agents with a common goal. Thus, they comprise a multiagent system.

Agent

Environment

Figure 4: The pursuit domain with just a single agent. One agent controls all predators and the prey is
considered part of the environment.

For each of the multiagent scenarios presented below, a new instantiation of the pursuit domain is de-

fined. Their purpose is to illustrate the different scenarios within a concrete framework.

3.2 Domain Issues

Throughout this survey, the focus is upon agent capabilities. However, from the point of view of the system

designer, the characteristics of the domain are at least as important. Before moving on to the agent-based

categorization of the field in Sections 4 – 7, a range of domain characteristics is considered.

Relevant domain characteristics include: the number of agents; the amount of time pressure for gen-

erating actions (is it a real-time domain?); whether or not new goals arrive dynamically; the cost of com-

munication; the cost of failure; user involvement; and environmental uncertainty. The first four of these

characteristics are self-explanatory and do not need further mention.

11



With respect to cost of failure, an example of a domain with high cost of failure is air-traffic control [Rao

and Georgeff, 1995]. On the other hand, the directed improvisation domain considered by Hayes-Roth et

al. [1995] has a very low cost of failure. In this domain, entertainment agents accept all improvisation

suggestions from each other. The idea is that the agents should not be afraid to make mistakes, but rather

should “just let the words flow” [Hayes-Rothet al., 1995].

Several multiagent systems include humans as one or more of the agents. In this case, the issue of

communication between the human and computer agents must be considered [Sanchezet al., 1995]. Another

example of user involvement is user feedback in an information filtering domain [Ferguson and Karakoulas,

1996].

Decker [1995] distinguishes three different sources of uncertainty in a domain. The state transitions

in the domain itself might be non-deterministic; agents might not know the actions of other agents; and

agents might not know the outcomes of their own actions. This and the other domain characteristics are

summarized in Table 4.

Table 4: Domain characteristics that are important when designing MAS

� Number of agents
� Amount of time pressure (real time?)
� Dynamically arriving goals?
� Cost of communication
� Cost of failure

� User involvement
� Environmental uncertainty: [Decker, 1995]

� a priori in the domain
� in the actions of other agents
� in outcomes of an agent’s own actions

4 Homogeneous Non-Communicating Multiagent Systems

In homogeneous, non-communicating multiagent systems, all of the agents have the same internal structure

including goals, domain knowledge, andpossibleactions. They also have the same procedure for selecting

among their actions. The only differences among agents are their sensory inputs and the actual actions they

take: they are situated differently in the world.

4.1 Homogeneous Non-Communicating Multiagent Pursuit

In the homogeneous non-communicating version of the pursuit domain, rather than having one agent con-

trolling all four predators, there is oneidenticalagent per predator. Although the agents have identical capa-

bilities and decision procedures, they have limited information about each other’s internal state and sensory

inputs. Thus they are not be able to predict each other’s actions. The pursuit domain with homogeneous

agents is illustrated in Figure 5.

Within this framework, Stephens and Merx [1990] propose a simple heuristic behavior for each agent

that is based on local information. They definecapture positionsas the four positions adjacent to the prey.

They then propose a “local” strategy whereby each predator agent determines the capture position to which
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Agent

Agent

Agent

Agent

Figure 5: The pursuit domain with homogeneous agents. There is one identical agent per predator. Agents
may have (the same amount of) limited information about other agents’ internal states.

it is closest and moves towards that position. The predators cannot see each other, so they cannot aim at

different capture positions. Of course a problem with this heuristic is that two or more predators may move

towards the same capture position, blocking each other as they approach. This strategy is not very successful,

but it serves as a basis for comparison with two other control strategies—“distributed” and “central”—that

are discussed in Sections 6 and 7.

Since the predators are identical, they can easily predict each other’s actions given knowledge of each

other’s sensory input. Such prediction can be useful when the agents move simultaneously and would like to

base their actions on where the other predators will be at the next time step. Vidal and Durfee [1995] analyze

such a situation using the Recursive Modeling Method (RMM). RMM is discussed in more detail below,

but the basic idea is that predator A bases its move on the predicted move of predator B and vice versa.

Since the resulting reasoning can recurse indefinitely, it is important for the agents to bound the amount

of reasoning they use either in terms of time or in terms of levels of recursion. Vidal and Durfee’s [1995]

Limited Rationality RMM algorithm is designed to take such considerations into account.

Levy and Rosenschein [1992] use a game theoretical approach to the pursuit domain. They use a payoff

function that allows selfish agents to cooperate. A requirement for their model is that each predator has full

information about the location of other predators. Their game model mixes game-theoretical cooperative

and non-cooperative games.

Korf [1992] also takes the approach that each agent should try to greedily maximize its own local utility.

He introduces a policy for each predator based on an attractive force to the prey and a repulsive force from

the other predators. Thus the predators tend to approach the prey from different sides. This policy is very

successful, especially in the diagonal (agents can move diagonally as well as orthogonally) and hexagonal

(hexagonal grid) games. Korf draws the conclusion that explicit cooperation is rarely necessary or useful, at

least in the pursuit domain and perhaps more broadly:

We view this work as additional support for the theory that much coordination and cooperation
in both natural and man-made systems can be viewed as an emergent property of the interaction
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of greedy agents maximizing their particular utility functions in the presence of environmental
constraints. [Korf, 1992]

However, whether or not altruism occurs in nature, there is certainly some use for benevolent agents in

MAS, as shown below. More pressingly, if Korf’s claim that the pursuit domain is easily solved with local

greedy heuristics were true, there would be no point in studying the pursuit domain any further. Fortunately,

Haynes and Sen [1998] show that Korf’s heuristics do not work for certain instantiations of the domain (see

Section 5).

4.2 General Homogeneous Non-Communicating MAS

In the general multiagent scenario with homogeneous agents, there are several different agents with identi-

cal structure (sensors, effectors, domain knowledge, and decision functions), but they have different sensor

input and effector output. That is to say, they are situated differently in the environment and they make their

own decisions regarding which actions to take. Having different effector output is a necessary condition for

MAS: if the agents all act as a unit, then they are essentially a single agent. In order to realize this difference

in output, homogeneous agents must have different sensor input as well. Otherwise they will act identically.

For this scenario, in which we consider non-communicating agents, assume that the agents cannot commu-

nicate directly. Figure 6 illustrates the homogeneous, non-communicating multiagent scenario, indicating

that the agents’ goals, actions, and domain knowledge are the same by representing them with identical

fonts.

knowledge
Domain
Actions
Goals

Goals
Actions
Domain
knowledge

knowledge
Domain
Actions
Goals

Figure 6: MAS with homogeneous agents. Only the sensor input and effector output of agents differ, as
represented by the different arrow styles. The agents’ goals, actions, and/or domain knowledge are all
identical as indicated by the identical fonts.

4.3 Issues and Techniques

Even in this most restrictive of multiagent scenarios, there are several issues with which to deal. The

techniques provided here are representative examples of ways to deal with the presented issues. The issues

and techniques, as well as the learning opportunities discussed later, are summarized in Table 5.
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Homogeneous Non-Communicating
Issues

� Reactive vs. deliberative agents
� Local or global perspective
� Modeling of other agents’ states
� How to affect others

Techniques

� Reactive behaviors for formation maintenance. [Balch and Arkin, 1995]
� Deliberative behaviors for pursuit. [Levy and Rosenschein, 1992]
� Mixed reactive and deliberative behaviors. [Sahota, 1994; Rao and Georgeff, 1995]
� Local knowledge sometimes better. [Senet al., 1998]
� (limited) Recursive Modeling Method (RMM). [Durfee, 1995]
� Don’t model others–just pay attention to reward. [Schmidhuber, 1996]
� Stigmergy. [Goldman and Rosenschein, 1994; Holland, 1996]
� Q-learning for behaviors like foraging, homing, etc. [Mataric, 1994a]

Learning opportunities

� Enable others’ actions
� Sensor data! Other agent’s sensor data

Table 5: The issues, techniques, and learning opportunities for homogeneous MAS as reflected in the liter-
ature.

4.3.1 Reactive vs. Deliberative agents

When designing any agent-based system, it is important to determine how sophisticated the agents’ rea-

soning will be. Reactive agents simply retrieve pre-set behaviors similar to reflexes without maintaining

any internal state. On the other hand, deliberative agents behave more like they are thinking, by searching

through a space of behaviors, maintaining internal state, and predicting the effects of actions. Although the

line between reactive and deliberative agents can be somewhat blurry, an agent with no internal state is cer-

tainly reactive, and one which bases its actions on the predicted actions of other agents is deliberative. Here

we describe one system at each extreme as well as two others that mix reactive and deliberative reasoning.

Balch and Arkin [1995] use homogeneous, reactive, non-communicating agents to study formation

maintenance in autonomous robots. The robots’ goal is to move together in a military formation such

as a diamond, column, or wedge. They periodically come across obstacles which prevent one or more of the

robots from moving in a straight line. After passing the obstacle, all robots must adjust in order to regain

their formation. The agents reactively convert their sensory data (which includes the positions of the other

robots) to motion vectors for avoiding obstacles, avoiding robots, moving to a goal location, and formation

maintenance. The actual robot motion is a simple weighted sum of these vectors.

At the deliberative end of the spectrum is the pursuit domain work by Levy and Rosenschein [1992]

that is mentioned above. Their agents assume that each will act in service of its own goals. They use

game theoretic techniques to find equilibrium points and thus to decide how to act. These agents are clearly

deliberative, considering that they search for actions rather than simply retrieving them.

There are also several existing systems and techniques that mix reactive and deliberative behaviors. One
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example is the OASIS system which reasons about when to be reactive and when to follow goal-directed

plans [Rao and Georgeff, 1995]. Another example isreactive deliberation[Sahota, 1994]. As the name

implies, it mixes reactive and deliberative behavior: an agent reasons about which reactive behavior to follow

under the constraint that it must choose actions at a rate of 60 Hz. Reactive deliberation was developed on

the first robotic soccer platform [Barmanet al., 1993]. Reactive deliberation was not explicitly designed for

MAS, but because it was designed for real-time control in dynamic environments, it is likely to be extendible

to multiagent scenarios.

4.3.2 Local or global perspective

Another issue to consider when building a multiagent system is how much sensor information should be

available to the agents. Even if it is feasible within the domain to give the agents a global perspectives of

the world, it may be more effective to limit them to local views.

Sen et al. consider a case of multiple agents sharing a set of identical resources in which they have

to learn (adapt) their resource usage policies [Senet al., 1998]. Since the agents are identical and do not

communicate, if they all have a global view of the current resource usage, they will all move simultaneously

to the most under-used resource. However, if they each see a partial picture of the world, then different

agents gravitate towards different resources: a preferable effect. Better performance by agents with less

knowledge is occasionally summarized by the cliche “Ignorance is Bliss.”

4.3.3 Modeling of other agents’ states

Durfee [1995] provides another example of “Blissful Ignorance,” mentioning it explicitly in the title of

his paper: “Blissful Ignorance: Knowing Just Enough to Coordinate Well.” Now rather than referring to

resource usage, the saying applies to the limited recursive modeling method (RMM). When using RMM,

agents explicitly model the belief states of other agents, including what they know about each other’s beliefs.

If agents have too much knowledge, RMM could recurse indefinitely. Even if further information can be

obtained by reasoning about what agent A thinks agent B thinks agent A thinks. . . , endless reasoning can

lead to inaction. Durfee contends that for coordination to be possible, some potential knowledge must be

ignored. As well as illustrating this concept in the pursuit domain [Vidal and Durfee, 1995], Durfee goes

into more detail and offers more generally applicable methodology in [Durfee, 1995].

The point of the RMM is to model the internal state of another agent in order to predict its actions. Even

though the agents know each other’s goals and structure (they are homogeneous), they may not know each

other’s future actions. The missing pieces of information are the internal states (for deliberative agents) and

sensory inputs of the other agents. How and whether to model other agents is a ubiquitous issue in MAS. In

the more complex multiagent scenarios presented in the next sections, agents may have to model not only

the internal states of other agents, but also their goals, actions, and abilities.

Although it may be useful to build models of other agents in the environment, agent modeling is not done
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universally. A form of multiagent RL is defined in which agents do not model each other as agents [Schmid-

huber, 1996]. Instead they consider each other as parts of the environment and affect each other’s policies

only as sensed objects. The agents pay attention to the reward they receive using a given policy and check-

point their policies so they can return to successful ones. Schmidhuber shows that the agents can learn to

cooperate without modeling each other.

4.3.4 How to affect others

When no communication is possible, agents cannot interact with each other directly. However, since they

exist in the same environment, the agents can affect each other indirectly in several ways. They can be

sensed by other agents, or they may be able to change the state of another agent by, for example, pushing

it. Agents can also affect each other by one of two types ofstigmergy[Beckerset al., 1994]. First,active

stigmergyoccurs when an agent alters the environment so as to affect the sensory input of another agent.

For example, a robotic agent might leave a marker behind it for other agents to observe. Goldman and

Rosenschein [1994] demonstrate an effective form of active stigmergy in which agents heuristically alter the

environment in order to facilitate future unknown plans of other agents. Second,passive stigmergyinvolves

altering the environment so that the effects of another agent’s actions change. For example, if one agent

turns off the main water valve to a building, the effect of another agent subsequently turning on the kitchen

faucet is altered.

Holland [1996] illustrates the concept of passive stigmergy with a robotic system designed to model the

behavior of an ant colony confronted with many dead ants around its nest. An ant from such a colony tends

to periodically pick up a dead ant, carry it for a short distance, and then drop it. Although the behavior

appears to be random, after several hours, the dead ants are clustered in a small number of heaps. Over time,

there are fewer and fewer large piles until all the dead ants end up in one pile. Although the ants behave

homogeneously and, at least in this case, we have no evidence that they communicate explicitly, the ants

manage to cooperate in achieving a task.

Holland [1996] models this situation with a number of identical robots in a small area in which many

pucks are scattered around. The robots are programmed reactively to move straight (turning at walls) until

they are pushing three or more pucks. At that point, the robots back up and turn away, leaving the three

pucks in a cluster. Although the robots do not communicate at all, they are able to collect the pucks into a

single pile over time. This effect occurs because when a robot approaches an existing pile directly, it adds

the pucks it was already carrying to the pile and turns away. A robot approaching an existing pile obliquely

might take a puck away from the pile, but over time the desired result is accomplished. Like the ants, the

robots use passive stigmergy to affect each other’s behavior.

A similar scenario with more deliberative robots is explored by Mataric. In this case, the robots use Q-

learning to learn behaviors including foraging for pucks as well as homing and following [Mataric, 1994a].

The robots learn independent policies, dealing with the high-dimensional state space with the aid ofprogress
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estimatorsthat give intermediate rewards, and with the aid of boolean value predicates that condense many

states into one. Mataric’s robots actively affect each other through observation: a robot learning to follow

another robot can base its action on the relative location of the other robot.

4.4 Further Learning Opportunities

In addition to the existing learning approaches described above, there are several unexplored learning op-

portunities that apply to homogeneous non-communicating systems (see Table 5).

One unexplored learning opportunity that could apply in domains with homogeneous non-communicating

agents is learning to enable others’ actions. Inspired by the concept of stigmergy, an agent may try to learn

to take actions that will not directly help it in its current situation, but that may allow other similar agents

to be more effective in the future. Typical RL situations with delayed reward encourage agents to learn to

achieve their goals directly by propagating local reinforcement back to past states and actions [Kaelbling

et al., 1996]. However if an action leads to a reward by another agent, the acting agent may have no way

of reinforcing that action. Techniques to deal with such a problem would be useful for building multiagent

systems.

In terms of modeling other agents, there is much room for improvement in the situation that a given agent

does not know the internal state or sensory inputs of another agent (recall that in this homogeneous scenario,

everything else about the other agent is known, being identical across agents). When such information is

known, RMM can be used to determine future actions of agents. However, if the information is not directly

available, it would be useful for an agent to learn it. Thus, the function mapping agent X’s sensor data

(which might include a restricted view of agent Y) to agent Y’s current sensor data is a useful function to

learn. If effectively learned, agent X can then use (limited) RMM to predict agent Y’s future actions.

5 Heterogeneous Non-Communicating Multiagent Systems

To this point, we have only considered agents that are homogeneous. Adding the possibility of heteroge-

neous agents in a multiagent domain adds a great deal of potential power at the price of added complexity.

Agents might be heterogeneous in any of a number of ways, from having different goals to having different

domain models and actions. An important subdimension of heterogeneous agent systems is whether agents

are benevolent or competitive. Even if they have different goals, they may be friendly to each other’s goals

or they may actively try to inhibit each other. The degree of heterogeneity within a MAS can be measured

in an information-theoretic way using Balch’ssocial entropy[2000].

5.1 Heterogeneous Non-Communicating Multiagent Pursuit

Before exploring the general multiagent scenario involving heterogeneous non-communicating agents, con-

sider how this scenario can be instantiated in the pursuit domain. As in the previous scenario, the predators
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are controlled by separate agents. But they are no longer necessarily identical agents: their goals, actions

and domain knowledge may differ. In addition, the prey, which inherently has goals different from those of

the predators, can now be modeled as an agent. The pursuit domain with heterogeneous agents is illustrated

in Figure 7.

Agent

Agent

Agent

Agent

Agent

Figure 7: The pursuit domain with heterogeneous agents. Goals and actions may differ among agents. Now
the prey may also be modeled as an agent.

Haynes and colleagues have done various studies with heterogeneous agents in the pursuit domain [1995;

1998; 1996]. They have evolved teams of predators, equipped predators with case bases, and competitively

evolved the predators and the prey.

First, Haynes et al. use genetic programming (GP) to evolve teams of four predators [1995]. Rather

than evolving predator agents in a single evolutionary pool and then combining them into teams to test

performance, each individual in the population is actually a team of four agents already specifically assigned

to different predators. Thus the predators can evolve to cooperate. This co-evolution of teammates is one

possible way around the absence of communication in a domain. In place of communicating planned actions

to each other, the predators can evolve toknow, or at least act as if knowing, each other’s future actions.

In a separate study, Haynes and Send use case-based reasoning to allow predators to learn to cooper-

ate [1998]. They begin with identical agents controlling each of the predators. The predators move simul-

taneously to their closest capture positions. But because predators that try to occupy the same position all

remain stationary, cases of deadlock arise. When deadlock occurs, the agents store the negative case so as

to avoid it in the future, and they try different actions. Keeping track of which agents act in which way

for given deadlock situations, the predators build up different case bases and thus become heterogeneous

agents. Over time, the predators learn to stay out of each other’s way while approaching the prey.

Finally, Haynes and Sen [1996] explore the possibility of evolving both the predators and the prey so that

they all try to improve their behaviors. Working in a toroidal world and starting with predator behaviors such

as Korf’s greedy heuristic [Korf, 1992] and their own evolved GP predators, they then evolve the prey to

behave more effectively than randomly. Although one might think that continuing this process would lead to

repeated improvement of the predator and prey behaviors with no convergence, a prey behavior emerges that
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always succeeds: the prey simply moves in a constant straight line. Even when allowed to re-adjust to the

“linear” prey behavior, the predators are unable to reliably capture the prey. Haynes and Sen conclude that

Korf’s greedy solution to the pursuit domain relies on random prey movement which guarantees locality of

movement. Although there may yet be greedy solutions that can deal with different types of prey behavior,

they have not yet been discovered. Thus the predator domain retains value for researchers in MAS.

Although Haynes and Sen [1996] show that the pursuit domain is still worth studying, the co-evolutionary

results are less than satisfying. As mentioned above, one would intuitively expect the predators to be able

to adapt to the linearly moving prey. For example, since they operate in a toroidal world, a single preda-

tor could place itself in the prey’s line of movement and remain still. Then the remaining predators could

surround the prey at their leisure. The fact that the predators are unable to re-evolve to find such a solution

suggests that either the predator evolution is not performed optimally, or slightly more “capable” agents (e.g.

agents able to reason more about past world states) would lead to a more interesting study. Nevertheless,

the study of competitive co-evolution in the pursuit domain started by Haynes and Sen is an intriguing open

issue.

5.2 General Heterogeneous Non-Communicating MAS

The general multiagent scenario with heterogeneous non-communicating agents is depicted in Figure 8.

As in the homogeneous case (see Figure 6), the agents are situated differently in the environment which

causes them to have different sensory inputs and necessitates their taking different actions. However in this

scenario, the agents have much more significant differences. They may have different goals, actions, and/or

domain knowledge as indicated by the different fonts in Figure 8. In order to focus on the benefits (and

complexity) of heterogeneity, the assumption of no communication is retained for this section.

Goals
Actions
Domain
knowledge

knowledge
Domain

Goals
Actions

Actions
Domain
knowledge

Goals

Figure 8: The general heterogeneous MAS scenario. Now agents’ goals, actions, and/or domain knowledge
may differ as indicated by the different fonts. The assumption of no direct interaction remains.

5.3 Issues and Techniques

Even without communication, numerous issues that were not present in the homogeneous agent scenario

(Section 4) arise in this scenario. Some have already been touched upon above in the context of the pursuit
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domain. These issues and existing techniques to deal with them, along with further learning opportunities,

are described below and summarized in Table 6.

Heterogeneous Non-Communicating
Issues

� Benevolence vs. competitiveness
� Fixed vs. learning agents (arms race, credit-assignment)
� Modeling of others’ goals, actions, and knowledge
� Resource management (interdependent actions)
� Social conventions
� Roles

Techniques

� Game theory, iterative play. [Mor and Rosenschein, 1995; Sandholm and Crites, 1996]
� Minimax-Q. [Littman, 1994]
� Competitive co-evolution. [Rosin and Belew, 1995; Haynes and Sen, 1996; Grefenstette and Daley,

1996; Stone, 2000]
� Deduce intentions, abilities through observation. [Huber and Durfee, 1995; Wang, 1996]
� Autoepistemic reasoning (ignorance). [Permpoontanalarp, 1995]
� Model as a team (individual! role). [Tambe, 1995, 1996]
� Social reasoning: depend on others for goal (6= game theory). [Sichman and Demazeau, 1995]
� GAs to deal with Braes’ paradox (more resource! worse). [Glance and Hogg, 1995; Arora and Sen,

1996]
� Multiagent RL for adaptive load balancing. [Schaerfet al., 1995]
� Focal points/emergent conventions. [Fensteret al., 1995; Walker and Wooldridge, 1995]
� Locker-room agreements. [Stone and Veloso, 1999]
� Agents filling different roles. [Prasadet al., 1998; Tambe, 1997; Balch, 1998]

Learning opportunities

� Credit-assignment in competitive scenarios
� Behaviors that blend well with team
� Prediction of others’ actions
� Dynamic role assumption

Table 6: The issues, techniques, and learning opportunities for heterogeneous MAS as reflected in the
literature.

5.3.1 Benevolence vs. competitiveness

One of the most important issues to consider in a multiagent system is whether the different agents are

benevolent or competitive. Even if they have different goals, the agents can be benevolent if they are willing

to help each other achieve their respective goals [Goldman and Rosenschein, 1994]. On the other hand, the

agents may be selfish and only consider their own goals when acting. In the extreme, the agents may be

involved in a zero-sum situation so that they must actively oppose other agents’ goals in order to achieve

their own. This last case describes competitive agents.

Some people only consider using selfish agents, claiming that they are both more effective when building

real systems and more biologically plausible. Of course if agents have the same goals, they will help each

other, but people rarely consider agents that help each other achieve different goals for no apparent reason:

when agents cooperate, they usually do so because it is in their own best interest. As we have already

seen in the pursuit domain, Korf [1992] advocates using greedy agents that minimize their own distance
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to the prey, and similarly, Levy and Rosenschein [1992] use Game Theory to study how the predators can

cooperate despite maximizing their own utilities. Some advocates of selfish agents point to nature for their

justification, claiming that animals are not altruistic, but rather act always in their own self-interest [Korf,

1992]. On the other hand, Ridley [1997] provides a detailed chronicle and explanation of apparent altruism

in nature (usually explainable as kin selection) and cooperation in human societies.

Whether or not altruism exists, in some situations it may be in an animal’s (or agent’s) interest to cooper-

ate with other agents. Mor and Rosenschein [1995] illustrate this possibility in the context of the prisoner’s

dilemma, a standard problem in game theory. In the prisoner’s dilemma, two agents try to act so as to max-

imize their own individual rewards. They are not actively out to thwart each other since it is not a zero-sum

game, yet they place no inherent value on the other receiving reward. The prisoner’s dilemma is constructed

so that each agent is given two choices: defect or cooperate. No matter what the other agent does, a given

agent receives a greater reward if it defects. Yet if both agents cooperate, they receive a greater reward than

if they both defect. In any given play, an agent is better off defecting. Nevertheless, Mor and Rosenschein

show that if the same agents come up against each other repeatedly (iterated prisoner’s dilemma), cooper-

ative behavior can emerge. In effect, an agent can serve its own self-interest by establishing areputation

for being cooperative. Then when coming up against another cooperative agent, the two can benefit from a

sense of trust for each other: they both cooperate rather than both defecting. Only with repeated play can

cooperation emerge among the selfish agents in the prisoner’s dilemma.

In the prisoner’s dilemma, the agents are selfish but not inherently competitive: in specific circum-

stances, they are willing to act benevolently. However, when the agents are actually competitive (such as

in zero-sum games), cooperation is no longer sensible. For instance, Littman considers a zero-sum game in

which two players try to reach opposite ends of a small discrete world. The players can block each other

by trying to move to the same space. Littman [1994] introduces a variant of Q-learning called Minimax-Q

which is designed to work on Markov games as opposed to Markov Decision Processes. The competitive

agents learn probabilistic policies since any deterministic policy can be completely counteracted by the

opponent.

The issue of benevolence (willingness to cooperate) vs. competitiveness comes up repeatedly in the

systems described below. Were a third dimension to be added to the categorization of MAS (in addition to

degrees of heterogeneity and communication), this issue would be it.

5.3.2 Fixed vs. learning agents

Another important characteristic of multiagent systems is whether the agents’ behaviors are fixed or whether

they can learn from experience. Learning agents can be desirable in dynamic environments. But particularly

when using competitive agents, allowing them to alter their behavior can lead to complications. We refer to

such agents ascompetitive learningagents. Systems benevolent learning agents are said to usecooperative

learning. The evolution of both predator and prey agents by Haynes and Sen [1996] qualifies as competitive
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learning.

The robotic soccer domain also presents an opportunity for both cooperative and competitive learning.

Team-Partitioned, Opaque-Transition Reinforcement Learning (TPOT-RL) [Stone, 2000] implements co-

operative learning. Individual soccer-playing agents learn ball-passing policies simultaneously, eventually

creating a compatible set of policies. Using a learned feature space that aggressively compacts a very large

state space, agents are able to learn to alter their behaviors based on the opponents’ perceived strategy.

Grefenstette and Daley [1996] conduct a preliminary study of competitive and cooperative learning in a

domain that is loosely related to the pursuit domain. Their domain has two robots that can move continuously

and one morsel of (stationary) food that appears randomly in the world. In the cooperative task, both robots

must be at the food in order to “capture” it. In a competitive task in the same domain, agents try to be the

first to reach the food [Grefenstette and Daley, 1996].

One problem to contend with in competitive rather than cooperative learning is the possibility of an

escalating “arms race” with no end. Competing agents might continually adapt to each other in more and

more specialized ways, never stabilizing at a good behavior. Of course in a dynamic environment, it may

not be feasible or even desirable to learn a stable behavior. Applying RL to the iterated prisoner’s dilemma,

Sandholm and Crites [1996] find that a learning agent is able to perform optimally against a fixed opponent.

But when both agents are learning, there is no stable solution.

Another issue in competitive learning is the credit-assignment problem. When performance of an agent

improves, it is not necessarily clear whether the improvement is due to an improvement in that agent’s

behavior or a negative change in the opponent’s behavior. Similarly, if an agent’s performance gets worse,

the blame or credit could belong to that agent or to the opponent.

One way to deal with the credit-assignment problem is to fix one agent while allowing the other to

learn and then to switch. This method encourages the arms race more than ever. Nevertheless, Rosin

and Belew [1995] use this technique, along with an interesting method for maintaining diversity in genetic

populations, to evolve agents that can play TicTacToe, Nim, and a simple version of Go. When it is a

given agent’s turn to evolve, it executes a standard genetic algorithm (GA) generation. Individuals are tested

against individuals from the competing population, but a technique called “competitive fitness sharing” is

used to maintain diversity. When using this technique, individuals from agent X’s population are given more

credit for beating opponents (individuals from agent Y’s population) that are not beaten by other individuals

from agent X’s population. More specifically, the reward to an individual for beating individualy is divided

by the number of other individuals in agent X’s population that also beat individualy. Competitive fitness

sharing shows much promise for competitive learning.

5.3.3 Modeling of others’ goals, actions, and knowledge

For the case of homogeneous agents, it was useful for agents to model the internal states of other agents

in order to predict their actions. With heterogeneous agents, the problem of modeling others is much more

23



complex. Now the goals, actions, and domain knowledge of the other agents may also be unknown and thus

need modeling.

Without communication, agents are forced to model each other strictly through observation. Huber

and Durfee [1995] consider a case of coordinated motion control among multiple mobile robots under the

assumption that communication is prohibitively expensive. Thus the agents try to deduce each other’s plans

by observing their actions. In particular, each robot tries to figure out the destinations of the other robots by

watching how they move. Plan recognition of this type is also useful in competitive domains, since knowing

an opponent’s goals or intentions can make it significantly easier to defeat.

In addition to modeling agents’ goals through observation, it is also possible to learn their actions. The

OBSERVER system [Wang, 1996] allows an agent to incrementally learn the preconditions and effects of

planning actions by observing domain experts. After observing for a time, the agent can then experimentally

refine its model by practicing the actions itself.

When modeling other agents, it may be useful to reason not only about what is true and what is

false, but also about what is not known. Such reasoning about ignorances is calledautoepistemic rea-

soning[Permpoontanalarp, 1995].

Just as RMM is useful for modeling the states of homogeneous agents, it can be used in the heteroge-

neous scenario as well. Tambe [1995] takes it one step further, studying how agents canlearn models of

teams of agents. In an air combat domain, agents can use RMM to try to deduce an opponents’ plan based on

its observable actions. For example, a fired missile may not be visible, but the observation of a preparatory

maneuver commonly used before firing could indicate that a missile has been launched.

When teams of agents are involved, the situation becomes more complicated. In this case, an opponent’s

actions may not make sense except in the context of a team maneuver. Then the agent’srole within the team

must be modeled [Tambe, 1996].

One reason that modeling other agents might be useful is that agents sometimes depend on each other

for achieving their goals. Unlike in the prisoner’s dilemma where agents can cooperate or not depending on

their utility estimation, there may be actions thatrequirecooperation for successful execution. For example,

two robots may be needed to successfully push a box, or, as in the pursuit domain, several agents may be

needed to capture an opponent. Sichman and Demazeau [1995] analyze how the case of conflicting mutual

models of different co-dependent agents can arise and be dealt with.

5.3.4 Resource management

Heterogeneous agents may have interdependent actions due to limited resources needed by several of the

agents. Example domains include network traffic problems in which several different agents must send

information through the same network; and load balancing in which several computer processes or users

have a limited amount of computing power to share among them.

One interesting network traffic problem called Braess’ paradox has been studied from a multiagent per-
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spective using GAs [Glance and Hogg, 1995]. Braess’ paradox is the phenomenon of adding more resources

to a network but getting worse performance. When using a particular GA representation to represent differ-

ent parts of a sample network that has usage-dependent resource costs, agents that are sharing the network

and reasoning separately about which path of the network to use cannot achieve global optimal perfor-

mance [Glance and Hogg, 1995]. When the GA representation is improved, the system is able to find the

globally optimal traffic flow [Arora and Sen, 1996]. TPOT-RL, mentioned above as having been applied in

a robotic soccer domain, has also been applied in a network traffic flow scenario [Stone, 2000].

Adaptive load balancing has been studied as a multiagent problem by allowing different agents to decide

which processor to use at a given time. Using RL, heterogeneous agents can achieve reasonable load balance

without any central control and without communication among agents [Schaerfet al., 1995]. The agents

keep track of how long a job takes when it is scheduled on a given resource, and they are given some

incentive to explore untried processors or processors that did poorly in the past.

5.3.5 Social conventions

Although the current multiagent scenario does not allow for communication, there has been some very

interesting work done on how heterogeneous agents can nonetheless reach “agreements,” or make coinciding

choices, if necessary. Humans are able to reach tacit agreements as illustrated by the following scenario:

Imagine that you and a friend need to meet today. You both arrived in Paris yesterday, but you
were unable to get in touch to set a time and place. Nevertheless, it is essential that you meet
today. Where will you go, and when?

Vohra posed this question to an audience of roughly 40 people at the AAAI-95 Fall Symposium on Active

Learning: roughly 75% of the people wrote down (with no prior communication) that they would go to the

Eifel tower at noon. Thus even without communicating, people are sometimes able to coordinate actions.

Apparently features that have been seen or used often present themselves as obvious choices.

In the context of MAS, Fenster et al. [1995] define the Focal Point method. They discuss the phe-

nomenon of cultural (or programmed) preferences allowing agents to “meet” without communicating. They

propose that, all else being equal, agents who need to meet should choose rare or extreme options.

Rather than coming from pre-analysis of the options as in the focal point method, conventions can

emerge over time if agents are biased towards options that have been chosen, for example, most recently or

most frequently in the past [Walker and Wooldridge, 1995].

Locker-room agreements [Stone and Veloso, 1999] are another convention-based mechanism for agents

to coordinate without communication. Protocols and task decompositions are pre-defined. Agents rely

on each other to follow the protocols so that they can anticipate each other’s actions and resolve conflicts

without communication. Locker-room agreements have been used in the robotic soccer domain, both in

simulation [Stoneet al., 1999] and on real robots [Velosoet al., 1998b].
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5.3.6 Roles

When agents have similar goals, they can be organized into a team. Each agent then plays a separaterole

within the team. With such a benevolent team of agents, one must provide some method for assigning

different agents to different roles. This assignment might be obvious if the agents are very specific and can

each only do one thing. However in some domains, the agents are flexible enough to interchange roles.

Prasad et al. [1998] study design agents that can either initiate or extend a design of a steam pump.

In different situations, different agents are more effective at initiation and at extension. Thus a supervised

learning technique is used to help agents learn what roles they should fill in different situations.

STEAM [Tambe, 1997] allows a team of agents to fill and switch roles dynamically. Particularly if a

critical agent fails, another agent is able to replace it in its role so that the team can carry on with its mission.

Similarly, Stone and Veloso’s [1999] flexible teamwork structure allows agents to seamlessly switch roles

based upon globally sensed trigger conditions.

If allowed to learn independently, a group of agents might end up filling different roles in the domain or

all end up with the same behavior. Balch [1998] investigates methods of encouraging behavioral diversity

in a team of agents.

5.4 Further Learning Opportunities

Throughout the above investigation of issues and techniques in the heterogeneous non-communicating mul-

tiagent scenario, many learning approaches are described. A few of the other most obvious future ML

applications to this scenario are described here and summarized in Table 6.

One challenge when using learning agents is dealing with the credit-assignment problem. When several

different agents are learning at the same time, changes in an agent’s fitness could be due to its own behavior

or due to the behavior of others. Yet if agents are to learn effectively, they must have a reasonable idea of

whether a given change in behavior is beneficial or detrimental. Methods of objective fitness measurement

are also needed for testing various evolution techniques. In competitive (especially zero-sum) situations, it is

difficult to provide adequate performance measurements over time. Even if all agents improve drastically (as

measured by testing against common fixed agents), if they all improve the same amount, the actual results

when interacting with each other could remain the same. One possible way around this problem is to test

agents against past agents in order to measure improvement. However this solution is not ideal: the current

agent may have adapted to the current opponent rather than past opponents. A reliable measurement method

would be a valuable contribution to ML in MAS.

In cooperative situations, agents ideally learn to behave in such a way that they can help each other.

Unfortunately, most existing ML techniques focus on exploring behaviors that are likely to help an agent

with its own “personal” deficiencies. An interesting contribution would be a method for introducing into

the learning space a bias towards behaviors that are likely to interact favorably with the behaviors of other

agents.
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Many of the techniques described for heterogeneous non-communicating agents pertained to modeling

other agents. However the true end is not just knowledge of another agent’s current situation, but rather the

ability to predict its future actions. For example, the reason it is useful to deduce another mobile robot’s goal

location is that its path to the goal may then be predicted and collision avoided. There is still much room for

improvement of existing techniques and for new techniques that allow agents to predict each other’s future

actions.

In the context of teams of agents, it has been mentioned that agents might be suited to different roles in

different situations. In a dynamic environment, these flexible agents are more effective if they can switch

roles dynamically. For example, if an agent finds itself in a position to easily perform a useful action that

is not usually considered a part of its current role, it may switch roles and leave its old role available for

another agent. A challenging possible approach to this problem is to enable the agents to learn which roles

they should assume in what situations. Dynamic role assumption is a particularly good opportunity for ML

researchers in MAS.

6 Homogeneous Communicating Multiagent Systems

To this point, we have not considered MAS in which agents can communicate with each other directly.

Admittedly, communication could be viewed as simply part of an agent’s interaction with the environment.

However just as agents are considered special parts of the environment for the purposes of this survey, so is

communication among agents considered extra-environmental. With the aid of communication, agents can

coordinate much more effectively than they have been able to up to this point. However, communication

also introduces several challenges. In this scenario, we consider homogeneous agents that can communicate

with one another.

6.1 Homogeneous Communicating Multiagent Pursuit

In the pursuit domain, communication creates new possibilities for predator behavior. Since the prey acts on

its own in the pursuit domain, it has no other agents with which to communicate. However the predators can

freely exchange information in order to help them capture the prey more effectively. The current situation is

illustrated in Figure 9.

Recall the “local” strategy defined by Stephens and Merx in which each predator simply moved to its

closest “capture position” (see Sections 4). In their instantiation of the domain, the predators can see the

prey, but not each other. With communication possible, they define another possible strategy for the preda-

tors [Stephens and Merx, 1990]. When using a “distributed” strategy, the agents are still homogeneous, but

they communicate to insure that each moves toward a different capture position. In particular, the predator

farthest from the prey chooses the capture position closest to it, and announces that it will approach that po-

sition. Then the next farthest predator chooses the closest capture position from the remaining three, and so
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Figure 9: The pursuit domain with homogeneous communicating agents. Now the predators can communi-
cate with one another.

on. This simple protocol encourages the predators to close in on the prey from different sides. A distributed

strategy, it is much more effective than the local policy and does not require very much communication.

However there are situations in which it does not succeed.

6.2 General Homogeneous Communicating MAS

The multiagent scenario with homogeneous, communicating agents is depicted in Figure 10. As in the

homogeneous, non-communicating case (Figure 6), the agents are identical except that they are situated

differently in the environment. However in this scenario, the agents can communicate directly as indicated

by the arrows connecting the agents in Figure 10. From a practical point of view, the communication might

be broadcast or posted on a “blackboard” for all to interpret, or it might be targeted point-to-point from an

agent to another specific agent.

Goals
Actions
Domain
knowledge

Goals

Actions

Actions
Domain
knowledge

knowledge
Domain

Goals

Figure 10: MAS with homogeneous, communicating agents. Only the sensor input and effector output of
agents differ. Information can be transmitted directly among agents as indicated by the arrows between
agents. Communication can either be broadcast or transmitted point-to-point.
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6.3 Issues and Techniques

Communication raises several issues to be addressed in multiagent systems. However, in most cases, the is-

sues are addressed in the literature with heterogeneous, communicating agents. In this section, we consider

a limited number of issues which are addressed with homogeneous, communicating agents as indicated in

Table 7. Many more communication-related issues are addressed in Section 7, which is devoted tohetero-

geneous, communicating multiagent systems.

Homogeneous, Communicating MAS
Issues

� Distributed sensing
� Communication content

Techniques

� Active sensing [Matsuyama, 1997]
� Query propagation for distributed traffic mapping [Moukas and Maes, 1997]
� State vs. goal communication [Balch and Arkin, 1994; Stone and Veloso, 1999]

Learning opportunities

� What and when to communicate

Table 7: The issues and techniques for homogeneous, communicating multiagent systems as reflected in the
literature.

6.3.1 Distributed Sensing

The cooperative distributed vision project [Matsuyama, 1997] aims to construct and monitor a broad visual

scene for dynamic three dimensional scene understanding by using multiple cameras, either stationary or

on mobile robots. For example, consider the problem of tracking an individual car using cameras mounted

at urban intersections. When the car leaves one camera’s range and enters another’s, there needs to be a

way of identifying the two images as representing the same car, even though it probably looks different in

the two cases (i.e. it is driving away from one camera and towards the other). The project combines active

sensing—the ability to shift attention towards an area of higher uncertainty or interest—and communication

among multiple sensing agents.

Another distributed sensing project is the trafficopter system [Moukas and Maes, 1997]. In trafficopter,

cars themselves collect and propagate traffic information to help each other decide on the best route to a

given location. For example, a car driving in one direction might query an oncoming vehicle about traffic

conditions up the road. By propagating such queries among vehicles, the original car can build a map of

traffic conditions along different routes to its goal.

6.3.2 Communication Content

One important issue for communicating agents iswhatthey should communicate. In the distributed sensing

applications mentioned above, agents communicated with each other regarding their sensed states of the
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world. However, it is also possible for agents to share information regarding their individual goals.

In three multi-robot applications, Balch and Arkin [1994] study the effects of allowing agents to com-

municate their states and their goals with one another. They found that agents that communicated goal

information performed slightly better than those that communicated state information. Both conditions

exhibited far superior behavior when compared with non-communicating agents.

It has also been observed that allowing agents to communicate internal state information can be very

effective in the robotic soccer domain [Stone and Veloso, 1999]. In this application, opponent and ball

locations are communicated among agents that can therefore increase their knowledge via communication.

6.4 Further Learning Opportunities

While it has been demonstrated that communicating state information can be advantageous in MAS, in many

domains, bandwidth considerations do not allow for constant, complete exchange of such information. In

addition, if communications are delayed, as opposed to being instantaneous, they may become obsolete

before arriving at their intended destinations. In such cases, it may be possible for agents to learn what and

when to communicate with other agents based on observed affects of utterances on group performance.

7 Heterogeneous Communicating Multiagent Systems

The scenario examined in Section 5 included agents that differ in any number of ways, including their

sensory data, their goals, their actions, and their domain knowledge. Such heterogeneous multiagent systems

can be very complex and powerful. However the full power of MAS can be realized when adding the

ability for heterogeneous agents to communicate with one another. In fact, combining communication and

heterogeneity introduces the possibility of having a multiagent system operate similarly to a single-agent

system in terms of control. By sending their sensor inputs to and receiving their commands from one agent,

all the other agents can surrender control to that single agent. In this case, control is no longer distributed.

7.1 Heterogeneous Communicating Multiagent Pursuit

Allowing for both heterogeneity and communication in the pursuit domain opens up new control possibili-

ties. The current situation is illustrated in Figure 11.

Tan [1993] uses communicating agents in the pursuit domain to conduct some interesting multiagent

Q-learning experiments. In his instantiation of the domain, there are several prey agents and the predators

have limited vision so that they may not always know where the prey are. Thus the predators can help each

other by informing each other of their sensory input. Tan shows that they might also help each other by

exchanging reinforcement episodes and/or control policies.

Stephens and Merx [1990] present one more strategy that always succeeds but requires much more

communication than the distributed approach presented in Section 6.1: the “central” strategy. The central
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Figure 11: The pursuit domain with heterogeneous communicating agents. Agents can be fully heteroge-
neous as well as being able to communicate with one another.

strategy is effectively a single control agent with distributed actuators. Three predators transmit all of their

sensory inputs to one central agent which then decides where all the predators should move and transmits its

decision back to them. In this case, there is really only one intelligent controlling agent and three executors.

Benda et al. [1986], in the original presentation of the pursuit domain, also consider the full range of

communication possibilities. They consider the possible organizations of the four predators when any pair

can either exchange data, exchange data and goals, or have one make the decisions of the other. The tradeoff

between lower communication costs and better decisions is described. Communication costs might come in

the form of limited bandwidth or consumption of reasoning time.

Another way to frame this tradeoff is as one between cost and freedom: as communication cost (time)

increases, freedom decreases. Osawa suggests that the predators should move through four phases. In

increasing order of cost (decreasing freedom), they are: autonomy, communication, negotiation, and con-

trol [Osawa, 1995]. When the predators stop making sufficient progress toward the prey using one strategy,

they should move to the next most expensive strategy. Thus they can close in on the prey efficiently and

effectively.

7.2 General Heterogeneous Communicating MAS

The fully general multiagent scenario appears in Figure 12. In this scenario, we allow the agents to be

heterogeneous to any degree from homogeneity to full heterogeneity.

7.3 Issues and Techniques

Since heterogeneous communicating agents can choose not to communicate, and in some cases can also

choose to be homogeneous or at least to minimize their heterogeneity, most of the issues discussed in the pre-

vious three scenarios apply in this one as well. Two of the most studied issues are communication protocols

and theories of commitment. Already discussed in the context of the heterogeneous, non-communicating

MAS scenario, the issue of benevolence vs. competitiveness becomes more complicated in the current con-
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Figure 12: The general communicating MAS scenario. Agents can be heterogeneous to any degree. Infor-
mation can be transmitted directly among agents as indicated by the arrows between agents. Communication
can either be broadcast or transmitted point-to-point.

text. These issues and others along with some of the existing techniques to deal with them are described

below and summarized in Table 8.

7.3.1 Understanding each other

In all communicating multiagent systems, and particularly in domains with agents built by different de-

signers, there must be some set language and protocol for the agents to use when interacting. Independent

aspects of protocols are information content, message format, and coordination conventions. Among others,

existing protocols for these three levels are: KIF for content [Genesereth and Fikes, 1992], KQML for mes-

sage format [Fininet al., 1994], and COOL for coordination [Barbuceanu and Fox, 1995]. There has been a

lot of research done on refining these and other communication protocols.

One challenge that arises in using symbolic communication among agents is making sure that the sym-

bols are grounded similarly in the internal representations of the different agents. In an approach related

to the social conventions discussed in Section 5, it is possible to use shared past experiences to ground a

symbolic representation. This technique has been used in a heterogeneous multi-robot vacuum cleaning

task [Jung and Zelinsky, 2000].

One of the first industrial multiagent systems, ARCHON [Jennings and Wittig, 1992] successfully in-

tegrated several legacy systems. Applied in five different industrial settings, ARCHON successfully allows

independently developed, heterogeneous computer systems to communicate in order to create collaborative,

process control systems.

Creatures [Grand and Cliff, 1998] is a multiagent computer game based on sophisticated biological

models, such as genetic codes, hormones, and energy systems. Agents have the ability to grow and learn,

including a simple verb-object language, based on interactions with a human user or other agents in the

environment.
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Heterogeneous Communicating
Issues

� Understanding each other
� Planning communicative acts
� Benevolence vs. competitiveness
� Negotiation
� Resource management (schedule coordination)
� Commitment/decommitment
� Collaborative localization
� Changing shape and size

Techniques

� Language protocols: KIF [Genesereth and Fikes, 1992], KQML [Fininet al., 1994], COOL. [Bar-
buceanu and Fox, 1995]

� Grounding meaning via shared experience. [Jung and Zelinsky, 2000]
� Legacy systems integration. [Jennings and Wittig, 1992]
� Language learning. [Grand and Cliff, 1998]
� Speech acts. [Cohen and Levesque, 1995; Lux and Steiner, 1995]
� Learning social behaviors. [Mataric, 1994b]
� Reasoning about truthfulness. [Rosenschein and Zlotkin, 1994; Sandholm and Lesser, 1996]
� Multiagent Q-learning. [Tan, 1993; Weiß, 1995]
� Training other agents’ Q-functions (track driving). [Clouse, 1996]
� Minimize the need for training. [Potteret al., 1995]
� Cooperative co-evolution. [Bullet al., 1995]
� Contract nets for electronic commerce. [Sandholm and Lesser, 1995b]
� Market-based systems. [Huberman and Clearwater, 1995]
� Bayesian learning in negotiation: model others. [Zeng and Sycara, 1998]
� Market-based methods for distributed constraints. [Parunaket al., 1998]
� Generalized partial global planning (GPGP). [Decker and Lesser, 1995; Lesser, 1998]
� Learning to choose among coordination methods. [Sugawara and Lesser, 1995]
� Query response in information networks. [Sycaraet al., 1996]
� Division of independent tasks. [Parker, 1994, 2000]
� Internal, social, and collective (role) commitments. [Castelfranchi, 1995]
� Commitment states (potential, pre, and actual) as planning states. [Haddadi, 1995]
� Belief/desire/intention (BDI) model: OASIS. [Rao and Georgeff, 1995]
� BDI commitments only over intentions. [Rao and Georgeff, 1995]
� Coalitions. [Zlotkin and Rosenschein, 1994; Shehory and Kraus, 1995; Sandholm and Lesser, 1995a]
� Fusing uncertain sensor data. [Foxet al., 2000; Grabowskiet al., 2000]
� Inter-component communication in metamorphic robots. [noet al., 2000]

Learning opportunities

� Evolving language
� Effects of speech acts on global dynamics
� Communication utility and truthfulness
� Commitment utility

Table 8: The issues, techniques, and learning opportunities for heterogeneous, communicating multiagent
systems as reflected in the literature.

7.3.2 Planning communicative acts

When an agent transmits information to another agent, it has an effect just like any other action would

have. Thus within a planning framework, one can define preconditions and effects for communicative acts.

When combined with a model of other agents, the effect of a communication act might be to alter an agent’s

belief about the state of another agent or agents. The theory of communication as action is calledspeech
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acts[Cohen and Levesque, 1995; Lux and Steiner, 1995].

Mataric adds a learning dimension to the idea of speech acts. Starting with the foraging behavior men-

tioned above [Mataric, 1994a], the agents can then learn to choose from among a set of social behaviors that

includes broadcasting and listening [Mataric, 1994b]. Q-learning is extended so that reinforcement can be

received for direct rewards obtained by the agent itself or for rewards obtained by other agents.

When using communication as a planning action, the possibility arises of communicating misinforma-

tion in order to satisfy a particular goal. For instance, an agent may want another agent to believe that

something is true. Rather than actually making it true, the agent might justsay that it is true. For exam-

ple, Sandholm and Lesser [1996] analyze a framework in which agents are allowed to “decommit” from

agreements with other agents by paying a penalty to these other agents. They consider the case in which an

agent might not be truthful in its decommitment, hoping that the other agent will decommit first. In such

situations, agents must also consider what communications to believe [Rosenschein and Zlotkin, 1994].

7.3.3 Benevolence vs. competitiveness

Some studies involving competitive agents were described in the heterogeneous non-communicating sce-

nario (see Section 5). In the current scenario, there are many more examples of competitive agents.

Similar to Tan’s work on multiagent RL in the pursuit domain [Tan, 1993] is Weiß’s work with competing

Q-learners. The agents compete with each other to earn the right to control a single system [Weiß, 1995].

The highest bidder pays a certain amount to be allowed to act, then receives any reward that results from the

action.

Another Q-learning approach, this time with benevolent agents, has been to explore the interesting idea

of having one agent teach another agent through communication [Clouse, 1996]. Starting with atrainer

that has moderate expertise in a task, a learner can be rewarded for mimicking the trainer. Furthermore,

the trainer can recommend to the learner what action to take in a given situation so as to direct the learner

towards a reward state. Eventually, the learner is able to perform the task without any guidance.

While training is a useful concept, some research is driven by the goal of reducing the role of the human

trainer. As opposed to the process ofshaping, in which the system designer develops simple behaviors and

slowly builds them into more complex ones, populations appropriately seeded for competitive co-evolution

can reduce the amount of designer effort. Potter and Grefenstette [1995] illustrate this effect in their domain

described above in which two robots compete for a stationary pellet of food. Subpopulations of rules used

by GAs are seeded to be more effective in different situations. Thus specialized subpopulations of rules

corresponding to shaped behaviors tend to emerge.

GAs have also been used to evolve separate communicating agents to control different legs of a quadrapedal

robot using cooperative co-evolution [Bullet al., 1995].
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7.3.4 Negotiation

Drawing inspiration from competition in human societies, several researchers have designed negotiating

multiagent systems based on the law of supply and demand. In thecontract netsframework [Smith, 1980],

agents all have their own goals, are self-interested, and have limited reasoning resources. They bid to

accept tasks from other agents and then can either perform the tasks (if they have the proper resources) or

subcontract them to other agents. Agents must pay to contract their tasks out and thus shop around for the

lowest bidder. Many multiagent issues arise when using contract nets [Sandholm and Lesser, 1995b].

In a similar spirit is an implemented multiagent system that controls air temperature in different rooms

of a building [Huberman and Clearwater, 1995]. A person can set one’s thermostat to any temperature. Then

depending on the actual air temperature, the agent for that room tries to “buy” either hot or cold air from

another room that has an excess. At the same time, the agent can sell the excess air at the current temperature

to other rooms. Modeling the loss of heat in the transfer from one room to another, the agents try to buy and

sell at the best possible prices. The market regulates itself to provide equitable usage of a shared resource.

Zeng and Sycara [1998] study a competitive negotiation scenario in which agents use Bayesian Learning

techniques to update models of each other based on bids and counter bids in a negotiation process.

The MarCon system [Parunaket al., 1998] uses market-based methods for distributed constraint prob-

lems. Designers at different points along a supply chain negotiate the characteristics of the overall design

by buying and selling characteristics and propagating the resulting constraints.

7.3.5 Resource management

MarCon is an example of multiagent resource management: the design characteristics desired by one agent

may consume the resources of another.

Similarly, generalized partial global planning (GPGP) allows several heterogeneous agents to post con-

straints, or commitments to do a task by some time, to each other’s local schedulers and thus coordinate

without the aid of any centralized agent [Decker and Lesser, 1995]. A proposed general multiagent ar-

chitecture based on GPGP contains five components: “local agent scheduling, multiagent coordination,

organizational design, detection, and diagnosis [Lesser, 1998].”

In a heterogeneous, communicating multiagent system applied to diagnosis of a local area network,

agents learn to choose among different coordination strategies based on the current situation [Sugawara and

Lesser, 1993, 1995]. Less sophisticated coordination methods require fewer network and time resources,

but may lead to tasks failing to be executed or to redundant actions by multiple agents.

RETSINA [Sycaraet al., 1996] uses three classes of heterogeneous, communicating agents to deliver

information in response to specific user queries in information networks. RETSINA is able to satisfy the

information requests of multiple users by searching multiple information sources, while considering network

constraints and resource limitations of information agents. RETSINA has been used to implement several

distributed network applications including a financial portfolio manager, a personal information manager
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and meeting scheduler, and a satellite visibility forecaster.

ALLIANCE and its learning variant L-ALLIANCE [Parker, 1994, 2000] use communication among

heterogeneous robots to help divide independent tasks among the robots. With an emphasis on fault toler-

ance, agents only broadcast the task that they are currently working on. If the communication fails, multiple

robots might temporarily try to do the same task, but they will eventually realize the conflict by observation

and one will move on to a different task. In L-ALLIANCE, robots learn to evaluate each other’s abilities

with respect to specific tasks in order to more efficiently divide their tasks among the team.

7.3.6 Commitment/decommitment

When agents communicate, they may decide to cooperate on a given task or for a given amount of time. In

so doing, they makecommitmentsto each other. Committing to another agent involves agreeing to pursue a

given goal, possibly in a given manner, regardless of how much it serves one’s own interests. Commitments

can make systems run much more smoothly by providing a way for agents to “trust” each other, yet it is not

obvious how to get self-interested agents to commit to others in a reasonable way. The theory of commitment

and decommitment (when the commitment terminates) has consequently drawn considerable attention.

Castelfranchi [1995] defines three types of commitment: internal commitment—an agent binds itself

to do something; social commitment—an agent commits to another agent; and collective commitment—an

agent agrees to fill a certain role. Setting an alarm clock is an example of internal commitment to wake up

at a certain time.

Commitment states have been used as planning states: potential cooperation, pre-commitment, and

commitment [Haddadi, 1995]. Agents can then use means-ends analysis to plan for goals in terms of com-

mitment opportunities. This work is conducted within a model called belief/desire/intention, or BDI.

BDI is a popular technique for modeling other agents. Other agents’ domain knowledge (beliefs) and

goals (desires) are modeled as well as their “intentions,” or goals they are currently trying to achieve and

the methods by which they are trying to achieve them. The BDI model is used to build a system for air-

traffic control, OASIS [Rao and Georgeff, 1995], which has been implemented for testing (in parallel with

human operators who retain full control) at the airport in Sydney, Australia. Each aircraft is represented

by a controlling agent which deals with a global sequencing agent. OASIS mixes reactive and deliberative

actions in the agents: they can break out of planned sequences when coming across situations that demand

immediate reaction. Since agents cannot control their beliefs or desires, they can only make commitments

to each other regarding their intentions.

Finally, groups of agents may decide to commit to each other. Rather than the more usual two-agent

or all-agent commitment scenarios, there are certain situations in which agents may want to form coali-

tions [Zlotkin and Rosenschein, 1994]. Since this work is conducted in a game theory framework, agents

consider the utility of joining a coalition in which they are bound to try to advance the utility of other mem-

bers in exchange for reciprocal consideration. Shehory and Kraus [1995] present a distributed algorithm
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for task allocation when coalitions are either needed to perform tasks or more efficient that single agents.

Sandholm and Lesser [1995a] use a vehicle routing domain to illustrate a method by which agents can form

valuable coalitions when it is intractable to discover the optimal coalitions.

7.3.7 Collaborative localization

Localization is a common challenge for autonomous robots. For most robotic tasks, a robot must know

where it is situated in the world before it can act effectively. One common approach to localization is

Markov localization, in which a robot maintains a probabilistic belief over its current position based on its

observations and a map of the environment. Recent work has extended this approach to multiple robots [Fox

et al., 2000]. When a robotR1 detects another robotR2, it can useR2’s current belief aboutR2’s position

along with the detected relative position ofR2 to increase the data available forR1’s own effort to localize.

This approach was successfully implemented both on homogeneous robots and on robots with different

sensors.

Millibots [Grabowskiet al., 2000] are the smallest-scale components of another heterogeneous, commu-

nicating, multi-robot system that is able to perform collaborative localization and mapping. Each millibot (a

robot with dimensions roughly6cm3) is specialized with a subset of sensors that can collect data from the

environment. In order to maintain localization, three millibots from the group stay still so that they can be

used as reference points for the other robots. Periodically, one of the three can move to a new location (or be

replaced by another robot) so that the group as a whole can move. Meanwhile, the sensing robots broadcast

their sensory data to a larger robot, which acts as a team leader. The team leader can then fuse the data from

the exploring robots and send back tasks for them to accomplish.

7.3.8 Changing shape and size

CONRO, a “deployable robot with inter-robot metamorphic capabilities,” [noet al., 2000] is a particularly

ambitious project involving heterogeneous, communicating robots. The goal is to create a robot that can

change shape and size by reconfiguring its components, splitting into parts, or joining back together again.

While the project has thus far focussed on the considerable challenge of creating the necessary hardware

components, Casta˜no et al. discuss the need for wireless inter-component communication to support docking

and remote sensing.

7.4 Further Learning Opportunities

Once again, there are many possible ways in the current scenario to enhance MAS with ML techniques.

Within this heterogeneous communicating multiagent scenario there is a clear need to pre-define a language

and communication protocol for use by the agents. However, an interesting alternative would be to allow the

agents to learn for themselves what to communicate and how to interpret it. For example, an agent might be

given a small language of utterances and a small set of meanings, but no mapping between the two. Agents
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would then have to learn both what to say and how to interpret what they hear. A possible result would

be more efficient communications: they would need to be understandable only by the agents rather than by

both agents and humans.

When considering communications as speech acts, agents could be allowed to learn the effects of speech

on the global dynamics of the system. In domains with low bandwidth or large time delays associated

with communication, the utility of communicating at a given moment might be learned. In addition, if

allowed to learn to communicate, agents are more likely to avoid being reliably conned by untruthfulness in

communication: when another agent says something that turns out not to be true, it will not be believed so

readily in the future.

Finally, commitment—the act of taking on another agent’s goals—has both benefits and disadvantages.

System builders may want to allow their agents to learn when to commit to others. The learning opportunities

in this scenario are summarized in Table 8.

8 Robotic Soccer

Several multiagent domains have been mentioned throughout the course of this survey, including design,

planning, entertainment, games, air-traffic control, air combat, personal assistants, load-balancing, network

routing, and robotic leg control. In this section a single domain which embodies most multiagent issues is

presented.

Robotic soccer is a particularly good domain for studying MAS. Originated by Mackworth [1993], it

has been gaining popularity in recent years, with several international competitions taking place [Kitano,

1996; Kim, 1996; Kitano, 1998; Asada and Kitano, 1999; Velosoet al., 2000]. It is also the subject of an

official IJCAI-97 Challenge [Kitanoet al., 1997b]. It can be used to evaluate different MAS techniques in a

direct manner: teams implemented with different techniques can play against each other.

Although the pursuit domain serves us well for purposes of illustration, robotic soccer is much more

complex and interesting as a general test bed for MAS. Even with many predators and several prey, the

pursuit domain is not complex enough to simulate the real world. Although robotic soccer is a game, most

real-world complexities are retained. A key aspect of soccer’s complexity is the need for agents not only to

control themselves, but also to control the ball which is a passive part of the environment.

8.1 Overview

Robotic soccer can be played either with real robots or in a simulator. The first robotic soccer system was

the Dynamo system [Barmanet al., 1993]. Barman et al. built a 1 vs. 1 version of the game.

Some robotic issues can only be studied in the real-world instantiation, but there are also many issues

that can be studied in simulation. A particularly good simulator for this purpose is the “soccer server”

developed by Noda [1998] and pictured in Figure 13. This simulator is realistic in many ways: the players’
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Figure 13: The soccer server system

vision is limited; the players can communicate by posting to a blackboard that is visible to all players; all

players are controlled by separate processes; each team has 11 players; each player has limited stamina;

actions and sensors are noisy; and play occurs in real time. The simulator provides a domain and supports

users who wish to build their own agents. Furthermore, teams of agents can be evaluated by playing against

each other, or perhaps against standard teams. The simulator was first used for a competition among twenty-

nine teams from around the world in 1997 [Kitanoet al., 1997a] and continues to be used for this purpose

currently. Thus robotic soccer satisfies Decker’s criteria for DAI test beds [Decker, 1996a]. The advantages

of robotic soccer as a test bed for MAS are summarized in Table 9.

Table 9: Advantages of (simulated) robotic soccer as a MAS test bed

� Complex enough to be realistic
� Easily accessible
� Embodies most MAS issues

� Direct comparisons possible
� Good multiagent ML opportunities

8.2 MAS in Robotic Soccer

The main goal of any test bed is to facilitate the trial and evaluation of ideas that have promise in the real

world. A wide variety of MAS issues can be studied in simulated robotic soccer. In fact, most of the MAS

issues listed in Table 2 can be feasibly studied in the soccer simulator.

Homogeneous, non-communicating MAScan be studied in robotic soccer by fixing the behavior of the

opposing team and populating the team being studied with identical, mute players. To keep within the

homogeneous agent scenario, the opponents must not be modeled as agents.
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� In this context, the players can bereactive or deliberativeto any degree. The extremely reactive

agent might simply look for the ball and move straight at it, shooting whenever possible. At this

extreme, the players may or may not have any knowledge that they are part of a team.

� On the other hand, players mightmodel each other, thus enabling deliberative reasoning about

whether to approach the ball or whether to move to a different part of the field in order to defend

or to receive a pass.

� With players modeling each other, they may also reason about how toaffect each other’s behav-

iors in this inherently dynamic environment.

� It is possible to study the relative merits oflocal and global perspectiveson the world. Robots

can be given global views with the help of an overhead camera, and the soccer server comes

equipped with an omniscient mode that permits global views. Simulated robotic soccer is usually

approached as a problem requiring local sensing.

Heterogeneous, non-communicating MAScan also be studied in the robotic soccer domain.

� Since each player has several teammates with the same global goal and several opponents with

the opposite goal, each player is bothbenevolent and competitiveat the same time. This possibil-

ity for combination of collaborative and adversarial reasoning is a major feature of the domain.

� If the teams are learning during the course of a single game or over several games, all the issues

of learning agents, including the “arms race” and the credit-assignment problem, arise.

� In the soccer server, stamina is a resource assigned to each individual agent. At the team level,

stamina is important forresource management: if too many agents are tired, the team as a whole

will be ineffective. Therefore, it is to the team’s advantage to distribute the running among the

different agents.

� When trying to collaborate, players’ actions are usually interdependent: to execute a successful

pass, both the passer and the receiver must execute the appropriate actions. Thusmodeling

each otherfor the purpose of coordination is helpful. In addition, if opponents’ actions can be

predicted, then proactive measures might be taken to render them ineffective.

� Social conventions, such as programmed notions of when a given agent will pass or which agents

should play defense, can also help coordination. The locker-room agreement is an example of

social conventions within a team.

� Since communication is still not allowed, the players must have a reliable method for filling the

different teamrolesneeded on a soccer team (e.g. defender, forward, goaltender) which can be

achieved via a flexible teamwork structure.

Homogeneous, communicating MAScan be studied by again fixing the behavior of the opposing team

and allowing teammates to communicate.
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� Distributed sensingcan be studied in this context due to the large amount of hidden state inherent

in the soccer server. At any given moment, a particular agent can see only a small portion of the

world. Only by communicating with teammates can it get a more complete picture of the world.

� It is particularly important in the soccer server to choosecommunication contentcarefully. Since

players have only a limited hearing frequency, a frivolous utterance can cause subsequent more

important information to go unheard.

Heterogeneous, communicating MASis perhaps the most appropriate scenario to study within the context

of robotic soccer. Since the agents indeed are heterogeneous and can communicate, the full potential

of the domain is realized in this scenario.

� With players sending messages to each other, they must have a language in order tounderstand

each other.

� Especially in the single-channel, low-bandwidth communication environment modeled by the

soccer server, agents mustplan their communicative acts. If the opponents can understand the

same language, a planned utterance can affect the knowledge of both teammates and opponents.

The utility of communication must be carefully considered and the possibility of lying in order

to fool the opponent arises. In addition, the low-bandwidth creates the condition that sending a

message may prevent other messages from getting through.

� Like in the heterogeneous, non-communicating scenario, since agents have both teammates and

adversaries, they must reason about being bothbenevolent and competitive.

� Negotiationprotocols may be useful in the robotic soccer domain if different agents, based on

their different sensory perspectives, have different opinions about what course of action would

be best for the team.

� In a real-time environment, timing is very important for any team play, including a simple pass.

Thus,resource managementin terms of timing, or action coordination, is crucial.

� Protocols are also needed forcommitmentto team plays: the passer and receiver in a pass play

must both agree to execute the pass. For more complex team plays, such as our set-plays, several

players may need to commit to participate. But then the issue arises of how single-mindedly they

must adhere to the committed play: when may they react to more pressing situations and ignore

the commitment?

� When an agent is unsure of its position in the environment, it can take cues from other agents,

via either observation or communication, thus exhibitingcollaborative localization.

In terms of the reasons to use MAS presented in Table 1, robotic soccer systems usually require separate

agents for controlling the separate players, and they can benefit from the parallelism, robustness, and simpler
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programming of MAS. Systems whose players have onboard sensors are necessarily multiagent, since no

single agent has access to all of the players’ sensory inputs. Some competitions also stipulate in their rules

that the robots must be controlled by separate agents. At the very least, the two teams must be controlled by

separate agents. Even teams that could theoretically be controlled by a single agent stand to gain by using

MAS. By processing the sensory inputs of the different players separately, multiple agents can control their

players in parallel, perhaps contending with different tasks on the field. One player might be in position

to defend its goal, while another is preparing an offensive attack. These players need not be controlled by

the same agent: they can go about their tasks in parallel. Furthermore, if any of the agents fails for some

reason (as often happens in real robotic systems), the other agents can attempt to compensate and continue

playing. Finally, it is empirically easier to program a single agent per player than it is to control an entire

team centrally.

As demonstrated above, most of the MAS issues summarized in Table 2 can be studied in robotic soccer.

We now review the research that has been conducted in this domain. First, we describe research conducted in

the “early years”, before organized robotic soccer workshops, that served as the foundations for the recent

popularity of the domain. Second, we review some of the research presented at dedicated robotic soccer

workshops held in conjunction with the international competitions, as well as other contemporary robotic

soccer-related research.

8.3 Foundations

Producing natural language commentary from real-time input, the SOCCER system [Andreet al., 1988]

was the first AI research related to soccer. SOCCER analyzedhumansoccer games. By looking for triggers

and terminations of events such as a player running or the ball being passed, SOCCER aims to announce

important events without redundancy.

Roboticsoccer was introduced as an interesting and promising domain for AI research at the Vision

Interface conference in June, 1992 [Mackworth, 1993]. The first working robotic soccer systems [Barman

et al., 1993; Sahotaet al., 1995] were also described at that time. A ground-breaking system for robotic

soccer, and the one that served as the inspiration and basis for the authors’ own research in the robotic soccer

domain, the Dynamite test bed was designed to be capable of supporting several robots per team, but most

work has been done in a 1 vs. 1 scenario. It uses an overhead camera and color-based detection to provide

global sensory information to the robots. Dynamite was used to introduce a decision making strategy called

reactive deliberation which was used to choose from among seven hard-wired behaviors [Sahota, 1994].

Subsequently, an RL approach based on high-level sensory predicates was used to choose from among the

same hard-wired behaviors [Fordet al., 1994].

Asada et al. [1994a] developed the first robots equipped with on-board sensing capabilities. These robots

use learning from easy missions, an RL training technique, to learn to hit a stationary ball into the goal. One

contribution of this work is the construction of state and action spaces that reduce the complexity of the
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learning task [Asadaet al., 1996]. As opposed to the action-dependent features used by TPOT-RL which

create an abstract feature space prior to learning, states are clustered during learning based on the best action

to take from each state. Another contribution is the combination of low-level behaviors, such as shooting

and avoiding an opponent, that are learned using RL [Asadaet al., 1994b; Uchibeet al., 1996]. Rather than

building the learned behaviors at different behavior levels as in layered learning, two previously learned

control strategies are used to produce a new one, which then replaces the original two.

Minimax-Q learning for Markov games was first applied in an abstract simulated soccer game [Littman,

1994]. This version of the domain is much simpler than the soccer server, having 800 states, 5 actions, and

no hidden information. One player on each team moves in a grid world and the ball is always possessed

by one of the players. Using minimax-Q, players learn optimal probabilistic policies for maneuvering past

each other with the ball.

The authors conducted machine learning experiments in a simulator based closely on the Dynasim sim-

ulator [Sahota, 1996] which simulates the Dynamite robots mentioned above. First, we used memory-based

learning to allow a player to learn when to shoot and when to pass the ball [Stone and Veloso, 1996a]. We

then used neural networks to teach a player to shoot a moving ball into particular parts of the goal [Stone and

Veloso, 1998]. Based on training in a small region of the field, our agent was able to learn to successfully

time its approach to a moving ball such that it could score from all areas of the field. These experiments

served as the basis for our initial learning experiments in the soccer server [Stone and Veloso, 1996b].

In another early learning experiment in the soccer server, a player learned when to shoot and when to

pass [Matsubaraet al., 1996]. The agent bases its decision on the positions of the ball, the goaltender, and

one teammate.

8.4 The Competition Years

The research reported in Section 8.3 confirmed the potential of robotic soccer as an AI research domain

and justified the value of having large-scale competitions from a research perspective. Starting with the

first competitions held in 1996 (Pre-RoboCup-96 and MiroSot-96) and continuing since then, there has

been a great deal of robotic soccer-related research. It has been presented both at dedicated robotic soccer

workshops held in conjunction with the competitions and in other scientific forums. In this subsection we

review some of this recent robotic soccer research.

8.4.1 Robot Hardware

Much of the research inspired by competitions has been devoted to building robot hardware that is suitable

for this challenging environment, e.g. [Achimet al., 1996; Honget al., 1996; Hsia and Soderstrand, 1996;

Kim et al., 1996; Shimet al., 1996; Velosoet al., 1998a]. The emphasis in hardware approaches varies

greatly. Some research focuses on fast and robust visual perception of the environment [Sargentet al., 1997;

Cheng and Zelinsky, 1998; Han and Veloso, 1998]. And some research focuses on automatic calibration of
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vision parameters [Shenet al., 1998; Veloso and Uther, 1999] in response to the need for vision systems that

work under various lighting conditions (conditions at competitions are never the same as in the lab). Instead

of vision, one alternative approach is to use a laser range-finder for localization in the environment [Gutmann

et al., 1998].

Other research focuses on robot path planning in crowded, dynamic, environments [Hanet al., 1996;

Kim and Chung, 1996; Bowling and Veloso, 1999]. Path planning is particularly challenging with non-

holonomic robots because they can only move straight in the direction that they are facing or in curved

paths starting from their current location and direction. Omnidirectional robots can simplify path planning

considerably: they do not have to consider the direction they are facing as a constraint [Priceet al., 1998;

Yokotaet al., 1998].

In addition to robots developed specifically for the competitions, there have been robots created to ex-

hibit special soccer-related skills. Shoobot [Mizunoet al., 1996, 1998] is a nomad-based robot that can

dribble and shoot a soccer ball as it moves smoothly through an open space. The Sony legged robots [Fujita

and Kageyama, 1997] walk on four legs. They have been used as the basis of an exclusively legged-robot

soccer competition [Velosoet al., 1998c]. And the Honda humanoid robots [Hirai, 1997] have been demon-

strated kicking a real soccer ball and performing a penalty shot with a shooting and a goaltending robot.

This demonstration indicates the feasibility of RoboCup’s long-term goal of having a humanoid robot soc-

cer competition on a real soccer field [Kitanoet al., 1998].

8.4.2 Soccer Server Accessories

In addition to soccer-playing agent development, the soccer server has been used as a substrate for 3-

dimensional visualization, real-time natural language commentary, and education research.

Figure 13 shows the 2-dimensional visualization tool that is included in the soccer server software.

SPACE [Shinjoh, 1998] converts the 2-dimensional image into a 3-dimensional image, changing camera

angle and rendering images in real time.

Another research challenge being addressed within the soccer server is producing natural language com-

mentary of games as they proceed. Researchers aim to provide both low-level descriptions of the action, for

example announcing which team is in possession of the ball, and high-level analysis of the play, for example

commenting on the team strategies being used by the different teams. Commentator systems for the soccer

server include ROCCO [Andreet al., 1998], MIKE [Matsubaraet al., 1999], and Byrne [Binsted, 1999].

8.4.3 Multiagent Control and Robotic Soccer Strategy

The robotic soccer domain has inspired many different approaches to building and organizing teams of

agents.

Some research is based on applying existing programming methodologies to the robotic soccer domain.

Team GAMMA [Noda, 1998] is built using Gaea [Nakashimaet al., 1995], a logic programming language
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that is essentially a multi-threaded, multi-environment version of prolog. Gaea implements a dynamic sub-

sumption architecture, allowing agents to override behaviors in different ways based on the current envi-

ronment, or behavior context. Team ROGI [de la Rosaet al., 1997] is built using another programming

methodology, namely agent-oriented programming [Shoham, 1990].

Other research, introduces new multiagent control methodologies and applies them to robotic soc-

cer. For example, the MICROB robotic soccer team is an implementation of the Cassiopeia programming

method [Drogoul and Collinot, 1998]. Cassiopeia focuses on the organizational issues of multiagent tasks,

analyzing the interdependencies of low-level skills and facilitating the formation of groups based on these

inter-dependencies. Temporary organizations are formed based on the contract net framework [Smith, 1980].

For example, the player with the ball might contract with another player to place itself in a particular lo-

cation to receive a pass. This approach differs from that of the CMUnited-98 small-robot team [Velosoet

al., 1999] which uses strategic positioning using attraction and repulsion (SPAR). There, the agents position

themselves autonomously, and the agent with the ball decides autonomously where to pass: no negotiation

is involved, enabling the players to act as quickly as possible.

Scerri [1998] presents another multi-layered approach to robotic soccer. However, unlike our own hierar-

chical approach, it does not involve the learning of any behaviors. In this approach, the different abstraction

layers deal with different granularities of sensory input. For example, a low-level move-to-ball behavior is

given the ball’s precise location, while a high-level defend behavior—which might call go-to-ball—knows

only that the ball is in the defensive half of the field. The Samba control architecture [Riekki and Roening,

1998] uses two behavior layers: the reactive layer which defines action maps from sensory input to actuator

output; and the task layer which selects from among the action maps.

ISIS [Tambeet al., 1998] is a role-based approach to robotic soccer based on STEAM [Tambe, 1997].

STEAM defines team behaviors that can be invoked dynamically. There has also been another formation-

based approach to positioning agents on the soccer field [Matsumoto and Nagai, 1998]. However, unlike

in our dynamic formations with flexible positions, the player positions are static and the team formation

cannot change dynamically. Several other researchers recognize the importance of decomposing the soccer

task into different roles, e.g. [Coradeschi and Karlsson, 1998; Ch’ng and Padgham, 1998].

One approach with dynamically changing roles is developed in a soccer simulator other than the soccer

server [Balch, 1998]. Balch uses his behavioral diversity measure to encourage role learning in an RL frame-

work, finding that providing a uniform reinforcement to the entire team is more effective than providing local

reinforcements to individual players.

Often, definitions of robotic soccer positions involve fixed locations at which an agent should locate

itself by default, e.g. [Gutmannet al., 1998; Matsumoto and Nagai, 1998]. In contrast, the within a locker-

room agreement as described above, flexible positions allow players to adjust their locations within their

roles [Stone and Veloso, 1999]. The ranges of flexibility are defined a priori as a part of the locker-room

agreement. Observational reinforcement learning [Andou, 1998] allows agents tolearn their positions dy-
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namically based on the distribution of past ball locations in a game. A similar approach is also described

in [Inoue and Wilkin, 1997].

In another learning approach, teammate and opponent capabilities are learned through repeated trials

of specific actions [Nadella and Sen, 1997]. This research is conducted in a soccer simulator in which the

ball is always in possession of a player, eliminating the necessity for fine ball control. Each player has an

assigned efficiency in the range[0; 1] for the execution of actions such as passing, tackling, and dribbling

corresponding to the probability that the action will succeed. Agents do not know the abilities of themselves,

their teammates, or the opponents. Instead, they learn to estimate them based on repeated trials. The agents

can then base action decisions on the learned parameters.

Layered learning [Stone, 2000] has been implemented in the simulated robotic soccer domain. Layered

learning is a general-purpose machine learning paradigm for complex domains in which learning a mapping

directly from agents’ sensors to their actuators is intractable. Given a hierarchical task decomposition, lay-

ered learning allows for learning at each level of the hierarchy, with learning at each level directly affecting

learning at the next higher level. TPOT-RL [Stone, 2000] (mentioned above) is used for one of learned

layers in a layered learning implementation.

All of the learning approaches described above are used to learn portions of an agent’s behavior. Other

aspects are created manually. In contrast, a few entirely learned soccer behaviors have been created.

Hexcer [Uther and Veloso, 1997] is an extension of the grid world soccer game described above [Littman,

1994]. Rather than square grid locations, the world is defined as a lattice of hexagons. Thus the action space

is increased and the geometric constraints are altered. The added complexity necessitates the development

of generalized U-trees to allow agents to learn successful policies [Uther and Veloso, 1997]. In Hexcer, it

is possible for agents to learn straight from sensors to actuators because, like Littman’s simulation, Hexcer

has a much smaller state space than the soccer server and the agents have no hidden state.

The RoboCup-97 and RoboCup-98 competitions each included one team created using genetic program-

ming [Koza, 1992]. In both cases, the goal was to learn entirely from agent sensors to actuators in the soccer

server. The first attempt [Lukeet al., 1998] was eventually scaled down, although a successful team was

created based on some manually created low-level skills. The following year, Darwin United [Andre and

Teller, 1999] entered an entirely learned team.

9 Conclusion

This survey is presented as a description of the field of MAS. It is designed to serve both as an introduc-

tion for people unfamiliar with the field and as an organizational framework for system designers. This

framework is presented as a series of four increasingly complex and powerful scenarios. The simplest sys-

tems are those with homogeneous non-communicating agents. The second scenario involves heterogeneous

non-communicating agents. The third deals with homogeneous, communicating agents. Finally, the general
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MAS scenario involves communicating agents with any degree of heterogeneity.

Each multiagent scenario introduces new issues and complications. In the MAS literature, several tech-

niques and systems already address these issues. After summarizing a wide range of such existing work,

useful future directions are presented. Throughout the survey, Machine Learning approaches are empha-

sized.

Although each domain requires a different approach, from a research perspective the ideal domain em-

bodies as many issues as possible. Robotic soccer is presented here as a useful domain for the study of MAS.

Systems with a wide variety of agent heterogeneity and communication abilities can be studied. In addition,

collaborative and adversarial issues can be combined in a real-time situation. With the aid of research in

such complex domains, the field of MAS should continue to advance and to spread in popularity among

designers of real systems.

MAS is an active field with many open issues. Continuing research is presented at dedicated conferences

and workshops such as the International Conference on Multiagent Systems [Weiß and Sen, 1996; Sen, 1996;

AAA, 1995]. MAS work also appears in many of the DAI conferences and workshops [Distributed, 1990;

Weiß, 1996]. This survey provides a framework within which the reader can situate both existing and future

work.
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