BOME! Bilevel Optimization Made Easy A Simple First-order Approach

***Bo Liu¹**, *Mao Ye¹, Stephen Wright², Peter Stone^{1,3}, Qiang Liu¹ ¹The University of Texas at Austin, ²University of Wisconsin, ³Sony Al

Challenges

Scalability: prior BO methods often require computing 2nd gradient order iteration. each **Theory:** lack non-asymptotic convergence result when are non-convex w.r.t. v, θ .

BOME! (General Idea)

Idea: Convert BO into a constrained optimization problem, where g is required to be less than a certain threshold (ideally its optimal value for the given v).

> Optimize the outer problem s.t. the **optimality gap** for inner problem is 0

$$\theta')$$

$$(v, \theta)$$

Step 1: Compute the approximate va	3
$\hat{q}(v,\theta) = g(v,\theta) - g(v,\theta_k^{(T)}).$	
Step 2: Descent the outer s.t. the inne	5
$(v_{k+1}, \theta_{k+1}) \leftarrow (v_k, \theta_k) - \xi \delta_k$	1
where $\delta_{k} = rgmin_{\delta} abla f - \delta ^{2}$	
descend f	

Message: For smooth and (possibly) non-convex inner/outer objectives, • non-convex g, rate is $O(K^{-1/4} + \exp(-bT))$ $O(K^{-1/3} + \exp(\operatorname{rate}))$ improves convex to

Experiment (on a toy example)

Coreset

Find the closest point in the trapezoid to the target goal.

Conference on Neural Information Processing Systems, 2021

BOME! (Algorithm)

alue function (the optimality gap gf

obtained by T-step gradient descent, then stop gradient

er also improves

 $\langle \nabla \hat{q}, \delta \rangle \ge \phi \ge 0$ s.t.

 \hat{q} does not ascend

Theory