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Abstract

Commonsense reasoning and probabilistic planning are two
of the most important research areas in artificial intelligence.
This paper focuses on Integrated commonsense Reasoning
and probabilistic Planning (IRP) problems. On one hand,
commonsense reasoning algorithms aim at drawing conclu-
sions using structured knowledge that is typically provided
in a declarative way. On the other hand, probabilistic plan-
ning algorithms aim at generating an action policy that can be
used for action selection under uncertainty. Intuitively, rea-
soning and planning techniques are good at “understanding
the world” and “accomplishing the task” respectively. This
paper discusses the complementary features of the two com-
puting paradigms, presents the (potential) advantages of their
integration, and summarizes existing research on this topic.

Introduction
Robots that operate in the real world frequently need to
work on complex tasks that require more than one action.
Two planning paradigms have been developed for robots that
work on such complex tasks: task planning and probabilis-
tic planning. Task planning algorithms focus on computing a
sequence of actions, implicitly assuming perfect action exe-
cutions in a deterministic domain. Probabilistic planning al-
gorithms aim at, in stochastic domains, computing an action
policy that suggests an action from any state under the uncer-
tainty from the non-deterministic outcomes of robot actions.
Examples of non-deterministic action outcomes include op-
ponent moves in chess and results of grasping an object us-
ing an unreliable gripper. This paper focuses on probabilistic
planning in stochastic domains.

The Markov assumption states that the next state only
relies on the current state and is independent of all previ-
ous states (the first-order case). Accordingly, Markov de-
cision processes (MDPs) and partially observable MDPs
(POMDPs) have been developed as probabilistic planning
frameworks under full and partial observabilities respec-
tively (Kaelbling, Littman, and Cassandra 1998). When the
current world state is not directly observable, the robot needs
to make observations to estimate the current state, where
the observations are frequently local and unreliable. Ac-
cordingly, a belief distribution over all possible states is
maintained as the state estimation representation. MDP and
POMDP algorithms, e.g., value iteration (Sutton and Barto

1998), Monte Carlo tree search (Kocsis and Szepesvári
2006) and SARSOP (Kurniawati, Hsu, and Lee 2008), help
compute a policy that enables planning toward maximizing
long-term rewards.

Orthogonal to planning, commonsense knowledge is used
to refer to the knowledge that is normally true but not al-
ways. Such knowledge can be represented in different forms,
e.g., as defaults and using probabilities. Commonsense rea-
soning is concerned with drawing conclusions (or generating
new knowledge) using the existing commonsense knowl-
edge. Generally speaking, all knowledge is commonsense
knowledge and can be represented in very different forms,
such as First-Order Logic (FOL) (Smullyan 1995), Markov
Logic Networks (MLNs) (Richardson and Domingos 2006),
and Answer Set Programming (Gelfond and Kahl 2014).
Such reasoning paradigms are good at drawing (determinis-
tic, probabilistic, or both) conclusions within a static world,
but is ill-equipped for planning to achieve long-term goals
in dynamic, stochastic domains.

The difficulty of solving MDP and POMDP problems
comes from the two major computational challenges of
“curse of dimensionality” (a complex robotic task generates
a high-dimensional state space) and “curse of history” (a
robot often needs to take many actions to reach the goal, re-
sulting in a long planning horizon) (Kurniawati et al. 2011).

The main objective of Integrated commonsense Rea-
soning and probabilistic Planning (IRP) algorithms
is to decompose a robot planning problem into two
sub-problems: commonsense reasoning and probabilis-
tic planning. Then a commonsense reasoner and a
probabilistic planner can be used to focus on the
sub-problems of high-dimensional reasoning and long-
horizon planning respectively. .

In what follows, we first present a state space decompo-
sition strategy that paves the way of IRP methods, and then
summarize existing research related to this topic.

State Space Decomposition
State space decomposition plays an important role in IRP
algorithms. We first define endogenous and exogenous do-
main variables for the sake of easier discussion. Endogenous
variables are the variables whose values the robot wants to
actively change or observe (or both). Exogenous variables
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Figure 1: An illustrative example: the robot needs to navi-
gate from its start location (S) to the goal (G). The hatching
area on the right is a near-window area where the robot can
be trapped (probabilistically) under sunlight.

are the variables whose values the robot only wants to pas-
sively observe and adapt to as needed.

Consider a robot navigation problem in a fully-observable
2D grid world shown in Figure 1. The robot can take actions
(North, East, South, and West) to move toward one of its
nearby grid cells, and such actions succeed probabilistically.
The hatching cell is a dangerous area to the robot, because,
in the mornings, sunlight there can blind its range-finder sen-
sor, causing it unrecoverably lost (probabilistically). In this
example, the robot’s current location should be modeled as
an endogenous variable, because its value change needs to be
modeled in the planning process, i.e., its value needs to be
actively changed. Current time (morning or not) should be
modeled as an exogenous variable, meaning that the robot
does not need to change its value in the planning process.
However, it is indeed necessary to keep an eye on (passively
observe) its value, and adjust the probabilistic planner as
needed, e.g., reducing the success rate of navigating though
the near-window cell when current time is morning.

In principle, all domain variables should be modeled in
(PO)MDPs. However, in practice, we usually do not do that,
because there is always the trade-off between model com-
pleteness and computational tractability. The goal of main-
taining two sets of variables is to enable the robot to focus on
planning over a long horizon in a relatively small state space
(partial space) and reasoning within a relatively large state
space (full space). Given full and partial state spaces where
the robot reasons and plans respectively, the question will be
how the reasoning and planning in two different spaces are
connected, which will be discussed next.

Existing Research on IRP Problems
Logical commonsense reasoning has been incorporated
into probabilistic planning to compute an informative
prior (Zhang, Sridharan, and Bao 2012; Zhang, Sridharan,
and Wyatt 2015). In that work, a target search problem was
used as the application domain. The robot’s noisy observa-
tions were modeled using a POMDP, and the belief distri-
bution of the POMDP represents the estimate of the target’s
position, as the single endogenous variable. The robot moves
to different areas in a large office domain to “uncover” the
position of the target object. A categorical tree that includes

a large number of exogenous variables (such as scanners and
printers are office electronics) was constructed using a log-
ical reasoner. As a result, the probabilistic planner is able
to focus on a very small partial space that includes only
the variable of the target’s position, while being able to rea-
son about the target’s likely positions within a much larger
state space. The gap between commonsense reasoning and
probabilistic planning was bridged by using a set of heuris-
tics (such as printers are usually collocated with scanners)
to convert deterministic conclusions into a distribution for a
POMDP.

In order to better bridge the gap between commonsense
reasoning and probabilistic planning, some IRP algorithms
have used reasoners that are able to reason about both
logical and probabilistic commonsense knowledge. These
algorithms and implementations include CORPP (Zhang
and Stone 2015) and OpenDial (Lison 2015) that use P-
log (Baral, Gelfond, and Rushton 2009) and MLN (Richard-
son and Domingos 2006) for commonsense reasoning re-
spectively. Their commonsense reasoners are able to di-
rectly output a probability distribution for the planner. For
instance, a spoken dialog problem was used as the appli-
cation domain in (Zhang and Stone 2015), where the robot
uses unreliable speech recognition to identify the human’s
request. In that work, the state space decomposition enables
the probabilistic planner to focus on only the endogenous
variables that are needed for specifying the requests (such as
delivering coffee for alice). All other variables, such as time
– people prefer buying coffee in the mornings, are modeled
as exogenous variables and handled by the commonsense
reasoner.

There are other ways of integrating commonsense rea-
soning and probabilistic planning, where full and partial
state spaces are not explicitly differentiated. A refinement-
based architecture has been developed for robot reasoning
and planning (Sridharan et al. 2015). At the high level, an ac-
tion language is used for computing a sequence of symbolic
actions to deterministically guide the robot behaviors. At the
low level, a probabilistic model (a POMDP) is used for phys-
ically implementing these actions. As a result, in that work,
the high level reasoning layer is able to conduct compli-
cated reasoning tasks, such as explaining history behaviors,
that are impossible for probabilistic planners. In another line
of research, commonsense reasoning was used for diagnos-
tic tasks and generating explanations, and a hybrid plan-
ner allows switching between deterministic and probabilis-
tic planners (Hanheide et al. 2015). POMDP-based planning
has been integrated with commonsense learning, where the
agent learns from a set of example traces and commonsense
knowledge refers to the knowledge based on which a refer-
ence policy generates the example traces (Juba 2016).

Probabilistic planning frameworks and algorithms assume
a known world model (including world dynamics and robot
capabilities). In case of an unknown world, reinforcement
learning (RL) algorithms can be used to help an agent learn
an action policy by interacting with the environments (Sut-
ton and Barto 1998). Existing research has studied the in-
tegration of commonsense reasoning and RL. For instance,
relational RL has been used for learning robot action precon-
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Figure 2: The robot navigation domain that includes four
possible navigation goals. Human pedestrians might block
the hallway (probabilistically), and sunlight can blind the
robot’s range-finder sensors (probabilistically).

ditions (affordances), as a kind of commonsense knowledge
about robot capabilities (Sridharan, Meadows, and Gomez
2017). In order to reduce the space of exploration in RL, a
commonsense reasoner has been used to help the agent to fo-
cus on only the reasonable actions, significantly increasing
the learning rate (Leonetti, Iocchi, and Stone 2016).

In what follows, we summarize our IRP algorithm called
iCORPP that dynamically constructs (PO)MDPs to shield
exogenous variables from (PO)MDPs while still enabling
probabilistic planning to adapt to the exogenous events.

A Summary of iCORPP, an IRP Algorithm
A general description of interleaved CORPP (iCORPP) is
available in our recent paper (Zhang, Khandelwal, and Stone
2017). In this section, we directly present an instantiation
of iCORPP on a robot navigation problem, and compare
it against CORPP, which is similar except that CORPP re-
quires the planner to consider any exogenous variables that
could change its transition dynamics. Figure 2 shows the
domain map, where the robot needs to visit the four loca-
tions that are connected through a corridor. However, human
pedestrians can block the way (probabilistically) in the cor-
ridor and sunlight can blind the robot’s range-finder sensors.
It is also known that sunlight only exists in near-window ar-
eas when the time is morning and the weather is sunny.

We assume the values of all domain variables are fully
observable, so we can use an MDP to construct the planner.
If we model only thirty locations in the corridor, there will
be ten states in the state space. When we consider each of the
locations can be either occupied or unoccupied by humans,
the number of states becomes 30× 230. When we further
consider each of the locations can be either under sunlight
or not, the number of states becomes 30× 230× 230, which
is a huge number. This is a small toy domain, and we still
have not considered the domain variables of time, weather,
and each area is near-window or not.

The whole idea of iCORPP in this domain is to model
only robot position as the endogenous variable for proba-
bilistic planning and all others as exogenous variables to be
considered only by the commonsense reasoner.

Next, we very briefly describe our commonsense rea-
soner, where the probabilistic transition system of MDP is

described in P-log (Baral, Gelfond, and Rushton 2009). In
case of exogenous events, our commonsense reasoner dy-
namically constructs a new MDP that captures the effects of
the exogenous variables on the transition dynamics of the
endogenous variables.

The navigation domain shown in Figure 2 is defined using
sorts row and col, and predicates belowof and leftof. We
then introduce predicates near row and near col used for
specifying if two grid cells are next to each other, where R’s
(C’s) are variables of row (column).

near row(RW1,RW2)← belowof(RW1,RW2).

near row(RW1,RW2)← near row(RW2,RW1).

near col(CL1,CL2)← leftof(CL1,CL2).

near col(CL1,CL2)← near col(CL2,CL1).

We use predicates near window and sunny to define the
cells that are near to window and the cells that are actually
under sunlight. The rule below is a default stating that: in
the mornings, a cell near window is believed to be under
sunlight, unless defeated elsewhere.

sunny(RW,CL)← near window(RW,CL), not ¬sunny(RW,CL),
curr time= morning.

While navigating in areas under sunlight, there is a large
probability of becoming lost (0.9), which deterministically
leads to the end of an episode.

pr(next term= true | curr row= RW, curr col= CL,

sunny(RW,CL), curr term= false) = 0.9.

pr(next term= true | curr term= true) = 1.0.

The robot can take actions to move to a grid cell next to its
current one: action = {left,right,up,down}. For instance,
given action up, the probability of successfully moving to the
above grid cell is 0.9, given no obstacle in the above cell.

pr(next row= RW2 | curr row= RW1, curr col= CL1,

belowof(RW1,RW2), ¬sunny(RW2,CL1),
¬blocked(RW2,CL1), curr a= up) = 0.9.

iCORPP significantly reduces the complexity of proba-
bilistic planning compared to its one-shot solution, while en-
abling robot behaviors to adapt to exogenous changes. As an
example on complexity, the MDP constructed by iCORPP
(thirty positions, five weather conditions and three times) in-
cludes only 60 states, whereas the traditional way of enumer-
ating all combinations of attribute values (Boutilier, Dean,
and Hanks 1999), produces more than 2ˆ69 states, which
cannot be solved (accurately or approximately) in practice.

Experimental Results
Experiments in simulation were conducted using
GAZEBO (Koenig and Howard 2004). We used a solver
introduced in (Zhu 2012) for P-log programs (except that
reasoning about reward was manually conducted) and value
iteration for MDPs (Sutton and Barto 1998).



We limit the number of random walkers to be 1 and
its speed to be one fifth of the robot’s. A goal room is
randomly selected from the four flag rooms. Reasoning
happens only after the current episode is terminated (goal
room is reached). The walker’s position is the only exoge-
nous domain change (by temporarily setting the time to be
“evening”). We cached policies for both CORPP as the base-
line (4 policies) and iCORPP (56 policies).

The walker moves slowly between loc0 and loc2. Without
adaptive planning developed in this work, the robot follows
the “optimal” path and keeps trying to bypass the walker
for a fixed length of time. If the low-level motion planner
does not find a way to bypass the walker within the time, the
robot will take the other way to navigate to the other side
of the walker and continues executing the “optimal” plan
generated by the outdated model. When the robot navigates
between loc0 and loc2, iCORPP reduces the traveling time
from about 250 seconds to about 110 seconds, producing a
significant improvement.

A comprehensive description of the experimental results
is available in our iCORPP paper (Zhang, Khandelwal, and
Stone 2017) and this web page includes videos of real-robot
experiments. 1

Conclusions
In this paper, we present the motivation of Integrated
commonsense Reasoning and probabilistic Planning (IRP)
within the context of robot planning. We summarize exist-
ing research on this topic and present our recent work, called
iCORPP, that dynamically constructs MDPs and POMDPs
for adaptive robot planning. The general idea of IRP algo-
rithms is to decompose the original probabilistic planning
problems into the sub-problems of commonsense reasoning
and probabilistic planning that respectively focus on “under-
standing the world” and “accomplishing the task”. iCORPP
demonstrates that this decomposition significantly reduces
the state space where planning is conducted and enables
robot to adapt to the value change of exogenous variables
without including these variable in planning models.
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