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Abstract—Social navigation is the capability of an autonomous
agent, such as a robot, to navigate in a “socially compliant”
manner in the presence of other intelligent agents such as
humans. With the emergence of autonomously navigating mobile
robots in human-populated environments (e.g., domestic service
robots in homes and restaurants and food delivery robots on
public sidewalks), incorporating socially compliant navigation
behaviors on these robots becomes critical to ensuring safe and
comfortable human-robot coexistence. To address this challenge,
imitation learning is a promising framework, since it is easier
for humans to demonstrate the task of social navigation rather
than to formulate reward functions that accurately capture the
complex multi-objective setting of social navigation. The use of
imitation learning and inverse reinforcement learning to social
navigation for mobile robots, however, is currently hindered by
a lack of large-scale datasets that capture socially compliant
robot navigation demonstrations in the wild. To fill this gap,
we introduce Socially CompliAnt Navigation Dataset (SCAND)—a
large-scale, first-person-view dataset of socially compliant nav-
igation demonstrations. Our dataset contains 8.7 hours, 138
trajectories, 25 miles of socially compliant, human tele-operated
driving demonstrations that comprises multi-modal data streams
including 3D lidar, joystick commands, odometry, visual and
inertial information, collected on two morphologically differ-
ent mobile robots—a Boston Dynamics Spot and a Clearpath
Jackal—by four different human demonstrators in both indoor
and outdoor environments. We additionally perform preliminary
analysis and validation through real-world robot experiments
and show that navigation policies learned by imitation learning
on SCAND generate socially compliant behaviors.

I. INTRODUCTION

SOCIAL navigation is the capability of an autonomous
agent to navigate in a socially compliant manner such

that it recognizes and reacts to the objectives of other nav-
igating agents, at least somewhat adjusting its own path in
response, while also projecting signals that can help the
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Fig. 1: A human demonstrator teleoperates the two robots,
following a socially compliant strategy (left- moving with
traffic, right- sticking to the right of the road) around human
crowds.

other agents reciprocate. Enabling mobile robots to navigate
in a socially compliant manner has been a subject of great
interest recently in the robotics and learning communities [1]–
[5]. Towards enabling this capability, demonstration data of
socially compliant navigation for mobile robots, such as the
ones shown in Fig. 1, can be a valuable resource. For instance,
such demonstration information can be used to learn socially
compliant robot navigation using the paradigm of Learning
from Demonstrations (LfD) [6], [7] or understanding human
navigation in the presence of autonomous robots [8].

Datasets for social navigation, generally used for learning
and benchmarking, include data collected both in the real-
world [9] and in simulated environments [10], [11]. While
such datasets provide basic trajectories of the robots and
humans, they either contain limited interactions in constrained,
orchestrated environments or restrict themselves to indoor-only
navigation scenarios. When collecting data in such controlled
settings [9], naturally occurring social interactions including—
but not limited to—following lane rules of a country, yielding
to pedestrians and vehicles, walking with and against a crowd
of people, and street crossing is not captured. Additionally, the
robots used for data collection in previous social navigation
datasets [9] tend to use a simple controller for point-to-
point navigation that does not explicitly exhibit socially aware
navigation.

Recently, imitation learning has emerged as a useful
paradigm for designing mobile robot navigation controllers
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[12]–[15]. In this paradigm, the desired navigation behavior is
first demonstrated by an agent such as a human, the recording
of which is then utilized by an imitation learning algorithm
to imitate. This intuitive way of teaching a task to a robot
is also easy for non-expert humans since it only requires
providing demonstrations, instead of defining the rules of
the task itself, which may be hard to explicitly define for
social navigation. Motivated by recent successes of imitation
learning in robot navigation, we posit that one way to enable
autonomous agents to navigate socially is through learning
from human demonstrations of socially compliant navigation
behavior. However, there is a lack of large-scale datasets
containing socially compliant navigation demonstrations in the
wild that can be utilized for imitation learning.

To fill this gap, in this work, we introduce a dataset of
demonstrations for socially compliant robot navigation in the
wild. Our dataset contains 8.7 hours of human-teleoperated,
socially compliant, navigation demonstrations, specifically,
Velodyne lidar scans, joystick commands, odometry, camera
visuals, and 6D inertial (IMU) information collected on two
morphologically different mobile robots—a Clearpath Jackal
and a Boston Dynamics Spot—within the University of Texas
at Austin university campus. Comprising 25 miles in total
of 138 trajectories, Socially CompliAnt Navigation Dataset
(SCAND) is publicly released1 and also contains labeled tags
of naturally occurring social interactions with every trajectory.
Additionally, we demonstrate the utility of the dataset for
studying questions relevant to social navigation. We first
show that there exists more than one strategy for an agent
to navigate with social compliance, as it is possible for a
classifier to differentiate between driving approaches of two
different human demonstrators with an accuracy of 74.48%.
Secondly, we also show that with SCAND, it is possible to
learn socially compliant local and global navigation policies
through imitation learning.

II. RELATED WORK

In this section, we review related literature with a focus on
learning-based approaches for social navigation. We addition-
ally survey relevant datasets for robot navigation and contrast
their contributions with this work.

A. Learning for Robot Navigation

Recently, several algorithms have emerged that show the
potential of applying learning to address challenges in robot
navigation [2]. Broadly speaking, in the robot navigation
literature, learning-based approaches have been shown to be
successful in problems such as adaptive planner parameter
learning [16], overcoming viewpoint invariance in demonstra-
tions [13], and end-to-end learning for autonomous driving
[14], [17], [18]. Specifically in applying imitation learning for
social navigation, the work by Tai et al. [19] is the closest
to our work. They provide a simulation framework in gazebo
along with a dataset generated using the same where virtual
human agents navigate following the social force model [1].

1www.cs.utexas.edu/∼xiao/SCAND/SCAND.html

They additionally train a social navigation policy using the
Generative Adversarial Imitation Learning algorithm assuming
the social force model as the “expert” demonstrator and show
a successful deployment of the learned policy in the real-
world on a turtle bot robot. While their work has shown
that imitation learning can be applied to address the social
navigation problem, they do so assuming the social force
model in simulation as the “expert” demonstration. While
simulated environments enable fast and safe data collection
for online learning, they lack the naturally occurring social
interactions seen in the wild. Also, as we show in section IV,
there can be more than one strategy for an agent to navigate
socially in a scene, which is not considered in their work.

Other learning paradigms such as Reinforcement Learning
(RL) have also been applied to address the social navigation
problem. Everett et al. [4] present CA-DRL, a multi-agent
collision avoidance algorithm learned using RL. While this
work shows impressive real-world results, their approach is
limited to specific social scenarios and requires simulating
these scenarios for the online learning algorithm to learn
episodically. Kretzschmar et al. [20] use Inverse Reinforce-
ment Learning to learn cost functions for a socially compliant
navigation policy. Similar to our work, they utilize human
demonstrations of the social navigation task, however, they do
so utilizing a small-scale, one-hour-long dataset. In this work,
we contribute a large-scale dataset of robot social navigation
demonstrations comprising multi-modal real-world data over
multiple hours, both indoors and outdoors, on two different
robots. Additionally, we train an imitation learning algorithm
to show it is possible to learn socially compliant global and
local navigation policies using our dataset.

B. Datasets for Social Navigation

Over the last decade, datasets containing robots navigating
in both simulated and real-world environments have been
useful for a wide variety of research areas, such as tracking
groups of people [9], [25], [26], human trajectory prediction
[27], navigation [28], robot localization [21], [29], [30] and
collision risk assessment [31].

1) Simulated Datasets for Social Navigation: Social en-
vironments in simulation can provide researchers with fast
data collection on social navigation [10], [19], [32], [33].
Moreover, such simulated environments can be generated with
a specified number of elements: the number and locations of
the humans, the structure of the room, the number of objects,
and the interactions between people and between objects and
people [11]. While simulated platforms provide these benefits,
they are limited in that they lack the natural, real-world
interactions that are experienced by humans. Datasets that
capture real-world robot navigation data in the wild provide
researchers with more naturally occurring scenarios [21]–[24].
Additionally, datasets collected in the wild provide sensory
data for these scenarios which can be then used for perceptual
tasks related to navigation [34].

2) Real-world Datasets for Robot Navigation: In addition
to simulated datasets, several real-world datasets for long-
term robot navigation in human environments have also been

www.cs.utexas.edu/~xiao/SCAND/SCAND.html
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Dataset # Traj. Dist. (Km) Dur. (min) Sensors Nav. method # Robots Location
CoBot
[21] 1082 131 15600 2D Range Scanner, RGB-D Camera, Wheel

Odometry Autonomous 2 Indoors +
Outdoors

L-CAS
[22] 3 N/A 49 3D LiDAR Teleoperated 1 Indoors

NCLT
[23] 27 147.4 2094 3D LiDAR, RGB Camera, IMU, Wheel

Odometry, GPS Teleoperated 1 Indoors +
Outdoors

FLOBOT
[24] 6 N/A 27.5

3D LiDAR, RGB-D camera, Stereo Camera,
2D LiDAR, OEM incremental measuring

wheel encoder, IMU
Autonomous 1 Indoors

JRDB [8] 54 N/A 64
3D LiDAR, 2D LiDAR, Omnidirectional
Stereo Suite, RGB camera, RGB-D stereo

camera, 6D IMU
Teleoperated 1 Indoors +

Outdoors

THÖR [9] 600 N/A 60 3D LiDAR, Motion capture system,
Eye-tracking Glasses Autonomous 1 Indoors

SCAND 138 40 522
3D LiDAR, RGB-D Camera, Monocular

Camera, Stereo Camera, Wheel Odometry,
Visual Odometry

Teleoperated 2 Indoors +
Outdoors

TABLE I: Comparison of real-world datasets for robot navigation.

made available over the last decade. In the CoBots dataset
[21], two CoBots we deployed indoors autonomously using a
topological graph planner and collected more than 130 km
worth of laser scans, odometry, and localization data over
1082 deployments. Similarly, the L-CAS [22], FLOBOT [24],
JRDB [8] and NCLT [23] datasets contain LiDAR scans,
RGBD visuals, GPS, and IMU data collected independently
on different robots, addressing perception-related challenges
to long-term robot navigation. In all these different datasets,
the robots were deployed in a public environment, such as
a restaurant or a university campus, and teleoperated by a
human as opposed to being autonomous, but these teleoper-
ated demonstrations are not explicitly socially compliant. The
JRDB social navigation dataset [8] is the closest to our work,
but it is smaller in scale, containing only 64 minutes worth of
data from 54 indoor and outdoor trajectories. While the focus
of the JRDB dataset is to solve perception-related challenges
such as human tracking and detection in social navigation,
the focus of the SCAND dataset in this work is to address the
“navigation” sub-component of social navigation. The THÖR
dataset [9] provides motion trajectories of both robots and
humans using tracking helmets. However, this is smaller in
scale since it contains only one hour’s worth of data. Also,
the data is collected indoors in an 8.4x18.8m laboratory room
with an orchestrated social navigation scenario for the human
agents in the scene and a socially unaware, pre-defined path for
the robot—adjusting neither its speed nor trajectory to account
for surrounding people. Existing real-world datasets for robot
navigation are summarized in Table I.

While previous datasets collected with robots and humans
have proven to be useful to study localization, perception, and
other navigation-related challenges, they lack demonstration
information in the form of motion commands and navigation
strategies in different social scenarios that could help us
understand socially compliant robot navigation in the presence
of other autonomous agents. The SCAND dataset introduced in
this work addresses this gap and provides rich human demon-
stration information in the form of joystick commands and

multi-modal robot sensor data in different, naturally occurring
social scenarios. SCAND also contains labeled tags of twelve
different social interactions that occurred along the path. Also,
since robots of different morphologies and capabilities could
navigate differently and induce different social interactions,
SCAND also includes data from two different robots. For exam-
ple, the legged Spot, capable of climbing stairs could choose
to prefer the stairs along its path while navigating whereas the
wheeled Jackal might choose a ramp to navigate. The other
datasets use only one robot to collect data (the Cobots dataset
[21] uses two robots but they are morphologically the same).
Using two morphologically different robots makes SCAND
useful to investigate social navigation in robots with different
morphologies (wheeled vs. legged).

III. DATA COLLECTION PROCEDURE

In this section, we first describe the data collection proce-
dure used in SCAND and outline the sensor-suite present on
both robots. We then describe the labeled annotations of social
interactions provided with every trajectory.

A. Collecting Data

To collect multi-modal, socially compliant demonstra-
tion data for robot navigation, four human demonstrators—
including the first two authors of this work—navigate the robot
by teleoperation using a joystick. We collected data within the
UT Austin university campus, with the demographics of the
humans in the scene comprised mostly of students, faculty,
and other campus denizens. For each of the 138 trajectories in
SCAND, the human demonstrator walks behind the robot at all
times, maintaining on average two meters distance. The human
demonstrator does not explicitly interact with the crowd in the
scene. Unlike other datasets for social navigation [9], we do
not restrict data collection to a controlled, indoor environment
or orchestrate a social scenario for data collection. Instead,
similar to the JRDB dataset [8], we perform data collection in
the wild in both indoor and outdoor environments. The two
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Fig. 2: Five example scenarios from SCAND showing the RGB image and below it the accompanying Lidar with the monocular
image from side camera on the Spot. From left to right, the scenarios have the tags “Street Crossing”, “Narrow Doorway,
“Navigating Through Large Crowds”, “Vehicle Interaction”, and “Crossing Stationary Queue.”

robots are driven around the university campus on frequently
used sidewalks, roads, and lawns, and inside buildings, all with
people in the scene during peak hours of high foot traffic. This
includes data collected outdoors near the university’s football
stadium on two game days with high traffic public crowds
gathered near the arena. The Spot is driven at linear and
angular velocities in the range of [0, 1.6] m/s and [−1.5, 1.5]
rad/s, respectively, and the Jackal in the range of [0, 2.0] m/s
and [−1.5, 1.5] rad/s, respectively. Note that these velocities
are within the range of many people’s normal walking speed.

Fig. 3 shows the sensors present on the Clearpath Jackal
and the Boston Dynamics Spot robots. Both robots have
in common a VLP-16 Velodyne laser puck publishing at a
frequency of 10 Hz, a 6D inertial (IMU) sensor at 16 Hz,
and a front-facing Azure Kinect RGB camera at 20 Hz. In
addition to these common sensors, the Jackal has a front-facing
stereo camera (20 Hz) and wheel odometry (30 Hz), while
the Spot has five monocular cameras on its body (publishing
at 5 Hz), placed as shown in Fig. 3. We utilize the Boston
Dynamics APK to record the visual odometry of its body
frame and the joint angles of the legs on the robot. SCAND
also contains transforms between the frames of each of the
sensors relative to the robot’s body for both robots. We utilize
AMRL’s software stack [35] for data collection from different
sensors which we record in the rosbag format [36].

Although we provide visual information of the scene in
the form of surround-view monocular images on the Spot,
RGB image from the front-facing Kinect camera, and 3D
Velodyne laser scans on both robots, since the focus of this
work is specifically on navigation, we do not provide any
labeled annotations for human detection or tracking. We refer
the reader to the JRDB dataset [8] which contains detailed,
high-quality annotations for solving perception-related tasks.
Instead, SCAND contains joystick commands of linear and
angular velocities executed by the demonstrator while teleop-
erating the robot socially, along with rich, multi-modal sensory
information of the environment including labeled annotations
of 12 different social interactions in every trajectory. Fig. 2
shows five example scenarios and their associated tags.

B. Labeled Annotations of Social Interactions

We annotate each trajectory in SCAND with labels describ-
ing social interactions that occurred along the path. The labels

Tag Description # Tags
Against Traffic Navigating against oncoming traffic 22

With Traffic Navigating with oncoming traffic 74

Street Crossing Crossing across a street 34

Overtaking Overtaking a person or groups of
people 14

Sidewalk Navigating on a sidewalk 57

Passing
Conversational

Groups

Navigating past a group of 2 or more
people that are talking amongst

themselves
38

Blind Corner Navigating past a corner where the
robot cannot see the other side 6

Narrow
Doorway

Navigating through a doorway where
the robot waits for a human to open

the door
15

Crossing
Stationary

Queue
Walking across a line of people 6

Stairs Walking up and/or down stairs 22

Vehicle
Interaction Navigating around a vehicle 21

Navigating
Through Large

Crowds

Navigating among large unstructured
crowds 27

TABLE II: Descriptions of labeled tags contained in SCAND

are in the form of a list of textual captions of social interactions
taking place in a trajectory, chosen from a set of twelve
predefined labels of social interactions observed in SCAND.
For the full list of labels, refer to Table II. We intend the
labels to be useful for future studies of specific scenarios that
occur during social navigation in the real-world.

IV. ANALYSIS

In this section, we provide analysis on SCAND with the
data collected on the Spot to illustrate the usefulness of this
dataset for answering a variety of questions related to social
navigation. Specifically, we ask the following questions:

1) Is there more than one strategy for socially navigating
in a scene?

2) Can we learn a local and global planner for social
navigation using SCAND ?
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Fig. 3: Sensors present on the wheeled Jackal and the legged
Spot robots. Along with this multi-modal sensor information,
SCAND also contains joystick commands issued during the
navigation demonstration.

Fig. 4: Network architecture and inputs for the demonstrator
classifier. The classifier takes as its input ten-second long
sensor observations and predicts a demonstrator label. The BC
agent (not shown in this figure) follows a similar architecture,
with a global planner and local planner head instead of a
classifier head. Additionally, instead of the future trajectory,
the BC agent takes as its inputs the move_base global plan
and desired velocities.

We answer question 1 in subsection IV-A by learning a
neural network-based classifier that is trained for the task
of demonstrator classification given a ten-second sequence of
sensor observations and joystick commands as input. We then
answer question 2 in subsection IV-B by applying the behavior
cloning (BC) imitation learning algorithm [37] on SCAND to
learn a global and local planner jointly.

A. Demonstrator Classification

In this subsection, we consider the question “is there more
than one strategy for socially navigating in an environment?”
We hypothesize that the answer is yes, there is more than one
strategy to navigate in a socially compliant manner in a given
scenario.

1) Approach and Implementation: To answer this question
and to validate our hypothesis, we choose sixteen trajectories
driven by two demonstrators navigating along the same route
(Speedway road within the university campus) and train a
neural network for the task of demonstrator classification

(training on twelve trajectories and validating on four tra-
jectories). The input to our classifier is a ten-second long
sequence of sensor observations. This sequence consists of
processed sensor observations provided in SCAND such as
lidar scans (subsampled to 1 Hz and represented as grayscale
bird’s eye view (BEV) image), positions of the robot relative
to the first lidar frame, future trajectory driven by the human
consisting of 200 points in the most recent lidar frame, inertial
and joystick values executed by the demonstrator at each of
the lidar frames. The neural network architecture consists of
a four-layer convolutional encoder to process the grayscale
BEV lidar images and a three-layer fully connected network
to process the other sensor observations. The representations
output by these layers are fed into a three-layer fully connected
network classifier head. We use the binary cross-entropy loss
to train the classifier network. Fig. 4 shows the inputs and
neural network architecture of the demonstrator classifier.

2) Results and Conclusion: We find that the classifier is
74.48% accurate at classifying the expert on the held-out test
set. Given that random guessing would lead to a success rate of
50%, and that many ten-second trajectories do not indicate any
differentiating social interactions, this number is indicative of
successful prediction. The ability of the classifier to identify
the demonstrator from their navigation style with an accu-
racy of 74.48% using a ten-second sequence of observations,
combined with the fact that the demonstrations in SCAND
are socially compliant shows that there exists more than one
strategy for socially compliant navigation in a given scenario,
validating our hypothesis. Enabling algorithms to take into
consideration this manifold of socially compliant robot navi-
gation behaviors naturally observed in humans demonstrations
is a promising direction for future work.

B. Imitation Learning for Global and Local Planning

1) Approach and Implementation: To answer question 2,
we apply the BC imitation learning algorithm [37] on SCAND
to jointly train end-to-end a socially-aware global and local
planner for robot navigation. The objective of the global
planner agent is to predict the socially compliant global plan
(the future trajectory driven by the human demonstrator, within
a horizon of ten meters distance from the robot). The local
planner agent’s objective is to predict the forward and the
angular velocities demonstrated in SCAND in a socially com-
pliant manner. We jointly train the local and the global planner
agents using a common representation space of observations,
similar to the demonstrator classifier network shown in Fig.
4. However, unlike the demonstrator classifier network with
a single classifier head, here we use two different heads
(three-layer fully connected networks) for the global and the
local planner agents. As inputs to the BC agent, we provide
processed sensor observations from SCAND of two seconds
in length to account for temporal variations in the scene;
this includes BEV lidar scans (subsampled to 2 Hz and
represented as grayscale BEV image as shown in Fig. 4),
positions of the previous lidar frames relative to the first lidar
frame and inertial information at each of the lidar frames.
Additionally, we also provide the global path and desired
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Fig. 5: An example sequence of three BEV lidar frames of
a human walking across the robot’s (green box) path. Green
path shows the demonstrated trajectory, red path shows the
move_base global path, and the yellow path shows the
predicted trajectory by the learned BC agent. In frame 2, the
move_base path moves in the direction of the human’s future
state, whereas the learned path closely follows the desired
socially compliant path.

velocities produced by move_base [38] using the location
of the robot ten meters in the future from its current position
as prior information to the network. We posit that feeding
this prior information from move_base as inputs to the
BC agent would enable improved performance. The global
planner head predicts 200 points in the path driven by the
demonstrator, and the local planner predicts 20 timesteps of
joystick commands (v, ω) issued by the demonstrator since the
current frame. We sum the mean-squared error loss objectives
for both agents and update their parameters together. Note
that we do not utilize any representation learning algorithm
to pretrain the encoders that process the sensor observations,
but doing so may potentially improve results. However, since
the focus of this analysis is to show the potential of SCAND
in enabling existing imitation learning algorithms to learn
socially compliant navigation policies, representation learning
is left to future work.

2) Results and Conclusion: To evaluate the social naviga-
tion behavior of the global planner, we compute the Hausdorff
distance metric on a held out test set, between the global
path predicted by the learned global planner agent and the
actual path driven by the demonstrator in the future. The
average Hausdorff distance between the move_base global
path and the demonstrated path in a held out test set is
1.25. However, after training the BC global planner agent on
SCAND, the average Hausdorff distance between the predicted
trajectory and the demonstrated trajectory is improved at
0.26. Fig. 5 shows a scenario involving the robot, and a
human walking across the robot’s path. We see that in this
scenario, the predicted path closely matches that of the socially
compliant demonstrated path, whereas move_base turns in
the direction of the human’s future state, creating an undesired
interaction.

To validate the learned local planner agent, we conduct real-
world experiments using the Spot robot with fourteen human
participants in an indoor location. We design two scenarios—
static and dynamic—to evaluate the social compliance and
safety of the learned local planner and the move_base
planner, as shown in Fig. 6. In the static scenario, the robot
starts five meters ahead of a stationary human in the robot’s
path, and tries to navigate to a goal position five meters behind

Fig. 6: Evaluating the local planner agent trained using Behav-
ior Cloning on SCAND. Scenario on the left shows a stationary
human in the robot’s path and the scenario on the right shows
a human walking to the location of the robot. The robot is
evaluated on social compliance and safety as it navigates to
its goal position.

the human. In the dynamic scenario, the robot and the human
start facing each other 10 meters apart and try to reach the start
position of the other. In the dynamic scenario, the participants
were asked to navigate in a socially compliant manner to
their goal position and in both scenarios, the participants were
asked to observe the navigation behavior of the robot. After
each scenario, for both the algorithms, a questionnaire was
presented to the participant with the two following questions:

1) On a scale of 1 to 5, how “socially compliant” do you
think the robot was? (think of social compliance as how
considerate the robot was of your presence)

2) On a scale of 1 to 5, how “safe” did you feel around
the robot?

We randomized the order in which the two algorithms
(move_base and BC policy) were played to the partici-
pants. Fig. 7 shows the responses of the human participants.
On average, more humans felt the imitation learning agent
trained on SCAND was more socially compliant (SCAND
mean=4.39, sd=0.99; move_base mean=2.86, sd=0.82) and
safer (SCAND mean=4.71, sd=0.70; move_base mean=2.89,
sd=1.18) than the move_base agent. The results for both
questions are statistically significant as tested by a One-Way
Analysis of Variance (ANOVA) (Safe F1,55 = 47.87, p <
0.001; Socially Compliant F1,55 = 38.67, p < 0.001). This
is expected since the move_base agent is not designed
to exhibit social compliance. Refer to the attached supple-
mentary video for scenarios showing the behavior of both
the algorithms in the static and dynamic trials. The results
of this study support our hypothesis that imitation learning
using demonstrations provided in SCAND produces socially
compliant navigation policies. In the interest of reproducibility,
we provide the 75%-25% train-test splits of the trajectories
collected using the Spot robot in SCAND.

While we show here that the BC agent is able to handle
simple social navigation scenarios, better imitation learning
algorithms may be needed to handle more sophisticated social
navigation scenarios that are present in SCAND.
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Fig. 7: Mean and standard deviation of scores assigned by the
fourteen human participants in the evaluation study for the
learned local planner.

V. ANTICIPATED USE CASES

Although SCAND includes a wide variety of social nav-
igation scenarios, there may be novel interactions that are
less frequent. To improve generalizability of a learning based
approach to unseen situations, exploring representation learn-
ing for social navigation with SCAND is a promising future
direction. SCAND was collected in a single city (Austin, Texas,
USA) and might incorporate regional biases such as staying to
the right of the road, or overtaking pedestrians from the left.
This potential bias raises a need for algorithms, evaluations,
and metrics for social navigation that are flexible enough to
work in the presence of different local norms.

Evaluating social navigation policies is an active area of
research in the navigation community [10], [39]–[41]. While
benchmarking social navigation policies is out of scope for this
paper, existing simulation-based navigation benchmarks such
as SocNavBench [41] that use human-only trajectories could
be augmented and improved using human-robot interaction
trajectories in SCAND. Similarly, another interesting future
research direction is to explore Real-to-Sim transfer [42]–
[45] with SCAND and improve parameterized simulated social
navigation environments to generate more realistic social inter-
actions between virtual agents, directly benefiting data hungry
approaches such as reinforcement learning.

Other directions for future work that could directly benefit
from SCAND include trajectory prediction, trajectory classifi-
cation, and inverse reinforcement learning for large-scale cost
function learning. Previously, work on trajectory prediction
and classification has used human-only [46] or robot-only
[47] trajectories, but with access to SCAND, exploring human-
robot trajectories is an interesting direction for future work.
The work by Wulfmeir et al. [48] utilized static scenarios
to learn a cost function for autonomous robot navigation us-
ing Maximum Entropy Deep Inverse Reinforcement Learning
(MEDIRL). Applying MEDIRL on SCAND to learn cost func-
tions that incorporate social compliance is also an interesting

direction for future work.

VI. CONCLUSION

In this work, we introduce the Socially CompliAnt Navi-
gation Dataset (SCAND), a large-scale dataset of demonstra-
tions for mobile robot social navigation. SCAND contains 8.7
hours, 138 trajectories, 25 miles of socially compliant driving
demonstrations, collected on two morphologically different
robots. In addition to the multi-modal sensory data streams
from the two robots, SCAND also contains labeled annotations
of social interactions for all trajectories. We illustrate the
usefulness of SCAND for answering a variety of questions
related to social navigation. First, we show that there exists
more than one strategy for socially compliant navigation by
training a neural network classifier on the task of demonstrator
classification. Second, we train a behavior cloning agent on
the demonstrations from SCAND and show that it is possible
to learn both a socially compliant global and local planner
for mobile robot navigation using SCAND. We further validate
the performance of the behavior cloned local planner through
human trials on two social navigation scenarios and show that
the participants perceived the imitation learning agent to be
relatively more socially compliant and safe, compared to a
naive move_base agent.
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