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Abstract

Mobile robots must cope with uncertainty from many sources along the path from
interpreting raw sensor inputs to behavior selection to execution of the resulting
primitive actions. This article identifies several such sources and introduces meth-
ods for i) reducing uncertainty and ii) making decisions in the face of uncertainty. We
present a complete vision-based robotic system that includes several algorithms for
learning models that are useful and necessary for planning, and then place particular
emphasis on the planning and decision-making capabilities of the robot. Specifically,
we present models for autonomous color calibration, autonomous sensor and actu-
ator modeling, and an adaptation of particle filtering for improved localization on
legged robots. These contributions enable effective planning under uncertainty for
robots engaged in goal-oriented behavior within a dynamic, collaborative and ad-
versarial environment. Each of our algorithms is fully implemented and tested on a
commercial off-the-shelf vision-based quadruped robot.

Key words: Robotics, planning under uncertainty, robot vision, localization,
multi-robot behavior

1 Introduction

Autonomous robots encounter uncertainty in many forms along the path from
interpreting their raw sensor data to generating executable actions. There is
uncertainty manifest in decoding inevitably noisy sensor readings; there is un-
certainty in the effects of the robots’ actions, both past and future; and (in
part as a result of the former) there is uncertainty reflected in the robot’s
tracking of the world state. In multi-robot settings, there is further uncer-
tainty in the world knowledge of the other robots, both with regard to their
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relative accuracies, and with regard to consistency among the robots. How-
ever, in a team setting, teammates may be able to mitigate this uncertainty
by communicating with one another.

Robots must plan their actions in spite of all this uncertainty, and in some cases
may select actions specifically to reduce uncertainty. This article identifies
methods for coping with uncertainty towards action planning on a vision-
based mobile robot. Specifically, on such a robot, there is uncertainty in:

• the colors of the objects observed by the robot, for example as a result of
changing illumination conditions;

• the robot’s sensor model, for example mapping the observed height of an
object (in pixels) to its distance;

• the robot’s action model, for example determining how quickly it moves as
a result of its specific movement actions; and

• the robot’s location in its environment.

We summarize our novel algorithms for dealing with each of these forms of
uncertainty, initially on individual robots, and ultimately taking advantage
of collaborative multi-robot interactions. Specifically, we present algorithms
for autonomous color calibration, illumination invariance, autonomous sensor
and actuator modeling, and an adaptation of particle filtering for improved
localization on legged robots. Each of these technical contributions comes from
a detailed and independent research thread. This article synthesizes them
within the context of creating models for robot planning under uncertainty.

Collectively, these algorithms produce models that are necessary for effec-
tive planning under uncertainty for robots engaged in goal-oriented behavior
within a dynamic, collaborative and adversarial environment. We then place
particular emphasis on the ways in which our robots reach action decisions
based on these models. In particular, we focus on the robots’ ability to i)
interleave planning, action, and information-gathering; ii) execute consistent
actions over time; iii) behave reactively when appropriate and iv) share and
merge local perceptual information among teammates as a way of accurately
tracking the world state.

As the concrete substrate for our research, we implement all of our contribu-
tions on a team of commercial off-the-shelf robots, namely Sony ERS-7 Aibo
robots. Each contribution is validated individually in a controlled setting.
Taken together, some of these contributions enable effective execution of the
RoboCup robot soccer task following the rules of the four-legged soccer league,
while the others are forward-looking towards operating in more uncontrolled
environments.

The remainder of this article is organized as follows. Section 2 provides some
background information on the test platform and the application domain.
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Sections 3, 4, and 5 describe our methods for reducing the uncertainty at
the pixel level, in the action and sensor models, and in the robot’s position,
respectively. Then, Section 6 presents the methods incorporated to account for
the uncertainty in planning and decision-making. Finally, we briefly discuss
some related approaches in Section 7 and conclude in Section 8.

2 Background

Our focus is on developing efficient algorithms for reasoning under uncertainty
in task-oriented scenarios. One such scenario is the RoboCup Robot Soccer
Legged League 3 in which teams of fully autonomous robotic dogs manufac-
tured by SONY play a game of soccer on an indoor field.

In our experiments, we used the standard Legged League robot, the Sony Aibo
ERS-7 [1]. It is equipped with a CMOS color camera at the tip of its nose with
a horizontal field-of-view of 56.9o and a vertical field-of-view of 45.2o, providing
the robot with a limited view of its environment from which it has to extract
the information needed for decision-making. The images are captured in the
YCbCr format at 30Hz and image resolution of 208 × 160 pixels. It has 20
degrees of freedom: 3 in its head, 3 in each leg, and 5 more in its mouth,
ears and tail. It also has noisy touch sensors, IR sensors, and a wireless LAN
card for inter-robot communication. All processing – for vision, localization,
locomotion, and action-selection – is performed on-board the robot, using a
576MHz processor.

RoboCup Legged League games are played on a 4m × 6m green carpet pitch
with white field lines, color-coded goals, and four color-coded cylindrical bea-
cons used for localization. Additionally, the robot is able to perceive the orange
ball and red or blue uniforms worn by the robot teams. As a result, some of
the perceptual algorithms presented here are specific to color-coded environ-
ments. However, their uses for localization and decision-making generalize to
any perceptual system capable of identifying objects.

Currently, RoboCup games are played under constant and reasonably uniform
lighting conditions, but one research challenge is to enable the robots to play
under varying illumination conditions. 4 Our team has participated in both
the national (US-Open) and the international robot soccer competitions for
the last three years and has consistently ranked among the top teams.

3 http://www.tzi.de/4legged
4 The stated ultimate goal of the RoboCup initiative is to create a team of humanoid
robots that can beat the human soccer champions by the year 2050 on a real, outdoor
soccer field [2].
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3 Uncertain Object Colors

The first step towards planning on a mobile robot is gathering world state in-
formation. On a vision-based robot, interpreting raw sensor data is a formidable
challenge. Furthermore, most of the previous work in machine vision assumes
a stationary camera and/or relatively unconstrained computational resources.
In contrast, the algorithms on vision-based robots must work within the con-
straints of their on-board processing capabilities, and be robust to mobile
cameras.

Color is often (though certainly not always) one of the most informative vi-
sual cues in the environment. However, color segmentation is an inherently
uncertain operation due to the fact that there are more pixel values than
can possibly be labeled manually, thereby requiring error-prone generalization
that is often brittle. Furthermore, under changing illumination conditions, the
same pixel values may represent different colors. Finally, finding the desired
objects in environments with other objects of similar colors can be particu-
larly challenging. These difficulties in vision processing are addressed in this
section. We begin with an overview of our baseline vision system, and then
present our two approaches to mitigating the vast amount of uncertainty in
vision: autonomous color calibration and a method aimed at directly achieving
illumination invariance.

Our baseline vision system consists of two main components: color segmenta-
tion and object recognition.

First, in the color segmentation phase, the robot maps each pixel in the raw
YCbCr input image to a color class label (one of nine different colors in our
domain). To reduce the memory requirements, instead of generating this map-
ping for all possible (Y,Cb,Cr) combinations (0–255 along each dimension),
we subsample the color space to have values ranging from 0–127 along each
dimension. We represent this mapping as a color map, created off-board by
hand-labeling a set of images captured using the robot’s camera. To generalize
from the hand-labeled data, which covers roughly 3% of the whole space, the
color label assigned to each cell in the color map is modified to be the weighted
average of the cells within a certain Manhattan distance (a form of Nearest
Neighbor). The resulting color map (≈ 2 megabytes) is loaded on the robot
to segment its input images.

During segmentation, we find contiguous regions of constant colors by or-
ganizing the image pixels into run-lengths [3,4]. Adjacent run-lengths of the
same color are merged using the Union-Find algorithm [5]. We then build rect-
angular boundaries around the merged regions, bounding boxes, which store
properties corresponding to each region such as its dimensions.

In the object-recognition phase, we use these regions along with domain knowl-
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edge to detect the color-coded objects in the environment. One challenge of
this task is distinguishing the objects of interest from other objects surround-
ing the field that happen to be segmented as the same color. For instance, a
person standing by the field in an orange shirt may be identified as the ball.
By using heuristic constraints on the size, pixel density, and relative locations
of the regions, we can successfully isolate the objects of interest. These prop-
erties are also used to estimate the uncertainty in each object’s distance and
angle measurements, based on how well they conform to the expected values.
In addition to colored objects, we also recognize field lines by searching for
linear green-white transitions. Figure 1 shows the results from these process-
ing steps. More images and videos taken by the robot are available online. 5

Full details of this baseline vision system are available in [6].

Fig. 1. Successive processing stages of the baseline vision system.

Other researchers working in the RoboCup domain have developed similar
vision systems [3,7]. These systems as well as our own baseline implementation
suffer from two major drawbacks: they require time-consuming manual color
calibration and are highly sensitive to illumination changes. In almost all of
these systems several (≈ 20− 30) images need to be hand-labeled to generate
the color map. Because this tedious process can take hours to complete, it is
performed rather infrequently. This infrequent recalibration introduces great
uncertainty into vision processing, because as conditions gradually change, the
color map becomes increasingly obsolete.

To eliminate the time-consuming manual color calibration process, we devel-
oped an algorithm to enable the robot to autonomously learn the desired colors
using the structure of the environment: known locations, shapes and colors of
the objects in its world. Each color that the robot has to recognize is modeled
as a three-dimensional Gaussian with mutually independent color channels.
This algorithm requires that the robot have both training images and a model
of its world with known locations of uniquely color-coded objects.

The robot starts at a known fixed initial position with an empty color map and
traverses a specified sequence of positions on the field. At each such position
it learns about one or more colors by looking for candidate image regions of
unknown color that match the world model description of the objects. Note
that the robot does not have any labeled data; it chooses appropriate pixels
to learn the mean and variance of the Gaussians, which in turn are used to

5 http://www.cs.utexas.edu/users/AustinVilla/?p=research/robust_
vision
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generate the final color map using the Bayesian decision rule. The color learned
at each stage helps in the detection of the later colors by increasing the robot’s
ability to parse its environment. The effectiveness of the learned color map is
demonstrated in Figure 2.

This algorithm works under different illumination conditions and different
field settings. The segmentation performance of this color map, learned au-
tonomously in less than five minutes, is comparable to that of the hand-labeled
color map, which takes an hour or more to create [8]. Several sample images
and a video of the the algorithm in action, as seen by the robot’s camera, can
be found online. 6

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2. Results from the autonomous color calibration algorithm. (a)-(f) Input,
(g)-(l) Segmented with learned color map.

Although this color learning mechanism provides a means for autonomously re-
calibrating the color map, it does not provide a means for recognizing changes
in illumination conditions. A color map trained under one illumination con-
dition can become totally useless if the lighting conditions change, due to
the non-linear shift in colors. To provide robustness to illumination changes,
we hypothesized that different images from the same illumination condition
would have measurably similar color space distributions, as compared to dis-
tributions from different illumination conditions.

We consider three discrete illumination conditions, bright (≈ 1500lux), dark
(≈ 400lux), and intermediate (≈ 900). During the training phase, we train a
color map and collected a set of sample images of the environment for each
illumination condition. We use the normalized RGB (rgb) color space, which
inherently provides some illumination insensitivity [9], and store the sample
image distributions in (r,g). For comparing two distributions we use the KL-
divergence measure [10].

During its normal operation, the robot periodically samples an input image
to generate the (r,g) distribution which is compared with the stored sample
distributions. The sample image is assigned an illumination class label based

6 http://www.cs.utexas.edu/users/AustinVilla/?p=research/auto_vis
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on the training sample it is most similar to. If a sufficient number of sample
images are classified as belonging to a particular illumination class, the robot
considers itself to be in that illumination condition and uses the appropriate
color map for subsequent operations.

This mechanism involves the experimental estimation of a set of parameters,
which involves a trade-off between correctly identifying illumination changes
as soon as possible and not interfering with the normal operation of the robot.
With this approach, the robot performs efficiently and detects changes in il-
lumination quickly. In addition, when faced with illumination conditions for
which it has not been explicitly trained, the robot transitions to the clos-
est illumination condition and, empirically, performs as efficiently as before.
Therefore, it does not need to consider the continuous variation of illumina-
tion. Videos of this process [11] are available online. 7

In this section, we have summarized three algorithms that enable the robot
to deal with the uncertainty in its visual input. The baseline vision system
performs color segmentation and object recognition in real-time under rapid
camera motions, but it requires manual color calibration and is sensitive to
illumination changes. The color learning approach autonomously learns the
desired color distributions using the environmental structure. Robustness to
illumination changes is achieved using color maps and sample image distribu-
tions over a few discrete illumination conditions.

4 Uncertain Sensor and Actuator Models

The algorithms described in Section 3 greatly reduce the uncertainty in the
robot’s visual output, i.e. the location and size of objects in the visual field.
However, another significant source of uncertainty in the robot’s processing
comes from translating that visual data into useful information, such as the
robot’s actual distance to an object seen in an image. To accomplish this
translation, the robot relies on a sensor model which defines the relationship
between the object’s properties in the image and its position relative to the
robot on the field. Another model that the robot uses is an action model, which
adjusts its estimate of the world state according to the actions it executes.
Both the sensor and action models are inherently noisy. Inaccuracies in the
action and sensor models inevitably lead to inaccuracy in the robot’s location
estimate. The resulting uncertainty can therefore be reduced by ensuring that
the robot’s action and sensor models are accurately calibrated.

Sensor and actuator models are typically calibrated manually: sensor readings
are correlated with actual measured distances to objects, and robot actua-
tor commands are measured with a stopwatch and a tape measure. However
this type of approach has significant drawbacks. It is labor intensive, and the

7 http://www.cs.utexas.edu/~AustinVilla/legged/illumination
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model is necessarily tuned to a specific environment and may not apply more
generally. A technique for autonomously calibrating both models simultane-
ously, called asami (Autonomous Sensor and Actuator Model Induction), is
presented in this section.

asami explores the problem of autonomous model learning in the context of a
specific, somewhat simplified, setting. The robot learns a sensor model and an
action model, each represented by a calibration function. The sensor model
function maps the various readings of a visual sensor to relative distances
from a fixed landmark, and the action model function maps a range of action
commands to the velocities of the corresponding movements. asami is both
autonomous and unsupervised, in that the robot never receives any feedback
as to its actual location or velocity. asami’s goal is for the robot to learn
action and sensor models that accurately reflect its distances and velocities.

asami involves the robot performing the following three tasks simultaneously.

• Walking forwards and backwards while its visual sensor faces a fixed target,
covering a range of relevant distances and velocities.

• Learning a function from action commands to actual velocities, assuming
the distance calibration for the visual sensor is accurate.

• Learning a function from distance observation data to its distances from the
target, assuming the robot has an accurate sense of its velocities.

This process successfully learns action and sensor models that closely approx-
imate measurements made manually with a stopwatch and a tape measure.

The results reported in this section make use of the vision processing module
described in Section 3 as well as a learned walking module [12]. To move
forwards and backwards at different speeds, the robot interpolates between
parameters for an idle walk, a fast forwards walk, and a fast backwards walk.
As the experiments described below demonstrate, the resulting speed is a
non-linear function of the parameters.

Meanwhile, the Aibo’s visual sensor is based on its camera, which, as described
in Section 3, is used to recognize objects including a colored cylindrical beacon
that the robot can use to help it localize while on a playing field. The height of
the beacon in the robot’s image plane decreases with the robot’s distance from
the beacon; this observed height (in pixels) is the visual sensor reading used
for the experiments reported in this article. A video of the Aibo performing
its training behavior is available online. 8

Because the robot is trying to learn two arbitrary continuous functions, it
must represent them with a function approximator. Polynomial regression is

8 http://www.cs.utexas.edu/˜AustinVilla/?p=research/simultaneous calibration
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used for both functions. Furthermore, asami learns the action and sensor
models from each other in that it is not given any ground truth as to the
robot’s distance to the beacon or its speed. Therefore, it cannot learn the two
models in any particular units. However, the learned action and sensor models
are consistent with each other. Note that this property is sufficient for it to
perform domain-specific tasks, such as predicting the amount of time a specific
action command will take to yield a certain visual sensor reading.

Specifically, as the robot moves towards and away from the beacon, we de-
note its (actual) distance from the beacon at time t as x(t). The robot’s kth
visual sensor observation occurs at time tk and is denoted by obsk. Each value
reported by the visual sensor corresponds to a specific distance. This sensor
model function is denoted by S, so that x(tk) = S(obsk). The function S is
one of the two functions that the robot is trying to learn. At the same time,
the robot continuously executes an action command, C(t), that varies with
time. Each action command moves the robot at a specific velocity, and we
denote the function from command to velocity by A. The robot learns this ac-
tion model A along with the sensor model S. The action model also provides
information about the robot’s location: x(t) = x(0) +

∫ t
0 A(C(s)) ds. asami

works by implicitly performing a continual comparison of these two sources of
information. The robot knows the values of obsk, tk, and C(t), and its task is
to learn the functions A and S.

Note that the sensations and action effects are continually perturbed by zero-
mean random noise, so that formally S and A represent the average distance
or velocity corresponding to a given sensation or action selection. This noise
represents an unavoidable source of uncertainty for the robot, but by estimat-
ing S and A as accurately as possible, the uncertainty is minimized.

asami learns the action and sensor models simultaneously. To learn the sensor
model, it assumes the action model is correct, and uses the resulting state
estimate (the location estimate based on the action model), denoted by xa(t),
as training data for the sensor model. Similarly, to learn the action model,
asami uses a location estimate based on the current sensor model, xs(t), to
learn the action model.

Both models can be learned simultaneously because, even though the action
(sensor) model learned from an inaccurate sensor (action) model will be in-
accurate, it will be an improvement. As each model grows more accurate, its
ability to help the other model improve grows. As this bootstrapping process
continues, the two models converge to functions that accurately reflect what
they are trying to model. Because both models grow in accuracy as time goes
on, the regressions should give more weight to the more recent data points.
Thus a weighted regression is used, where each data point has a weight that
decreases over time [13].
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After asami has run for a pre-set amount of time (two and a half minutes), we
consider its best estimates for A and S to be the models that it has learned at
that point. The success of asami is evaluated by comparing the learned action
and sensor models to those measured with a stopwatch and a tape measure. A
typical run is depicted in Figure 3a. Over the course of a trial, both models get
progressively more accurate. The learning curves are depicted in Figure 3b.
Both models’ errors are shown, compared to the best possible error for the
measured model and the degree of the polynomial being learned. The data is
averaged over 15 trials [13].

a) b)
Time (s)

x(t)

Learned Action Model Error

Learned Sensor Model Error

Time (s)

Error

Fig. 3. a) In this example run, the +’s are values of xs(t), and the curve depicts
xa(t). Over time, each model learns how to keep its estimate of the location close to
the other model’s estimate. b) The error for the action model is in mm/s, and for
the sensor model in mm. The horizontal lines are at the minimum possible error to
the measured models for a polynomial of the appropriate degree.

Inaccuracy in the robot’s action and sensor models leads directly to uncer-
tainty in its location estimates. By learning accurate accounts of its action
and sensor models, the robot can minimize the corresponding uncertainty.
The technique presented in this section, asami, enables a mobile robot to au-
tonomously learn its sensor and action models in an environment with a fixed
landmark. The following section discusses how the robot can make use of ac-
curate action and sensor models to reduce the uncertainty generated during
Monte Carlo localization.

5 Uncertain Robot Localization

Typically, on mobile robots, the action and sensor models feed into a proba-
bilistic localization algorithm that explicitly represents the robot’s uncertainty
in its own location in the world. One such algorithm is particle filtering, also
known as Monte Carlo Localization (MCL) [14,15]. MCL has been shown to
be a robust solution for mobile robot localization, particularly in the face
of collisions and large, unexpected movements (e.g. the “kidnapped robot”
problem [15]). It has been well-studied on wheeled robots with range-finding
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sensors. This section summarizes extensions that increase its robustness and
reduce uncertainty for vision-based legged robots [16].

In Monte Carlo Localization, a robot estimates its position using a set of sam-
ples called particles. Each particle represents a hypothesis about the robot’s
pose: its global location (x, y) and orientation (θ). The density of particle prob-
abilities represents a probability distribution over the space of possible poses.
Each operating cycle, the robot updates its pose estimate based on its action
and sensor models. In the motion update, each particle’s pose is moved accord-
ing to the velocity reported by the action model. Random noise is added to
account for the model’s uncertainty. Next, during the observation update, the
sensor model is used to update each particle’s probability. The model predicts
the likelihood of the robot’s observations given the particle’s pose, and adjusts
the particle’s probability accordingly.

Finally, particles are resampled in proportion to their probabilities. High prob-
ability particles are duplicated, replacing particles with low probability. In
addition, to cope with unexpected movements, standard MCL approaches use
reseeding ; during the resampling step, a few of the particles with low prob-
ability are replaced by estimates obtained by triangulation of the landmarks
seen in the current frame [17].

We have shown that a vision-based legged robot, operating in a world with
unmodeled movements, encounters some particularly difficult types of uncer-
tainty during localization. Our improvements on the basic Monte Carlo Local-
ization algorithm allow this theoretically well-grounded approach to be prac-
tically deployed in this tricky setting. In particular, we have demonstrated
significant increases in localization accuracy and certainty by i) overcoming
biased distance estimate; ii) improving the robot’s action model; and iii) main-
taining landmark histories.

In the observation update step of MCL, the likelihood of an observation can
be calculated from the perceived distance and angle to the observed landmark.
Distance estimates computed analytically using geometric methods tend to be
inaccurate and are hence not used in standard MCL methods, resulting in the
exclusive use of angle information for probability updates [18].

In our approach, a distance function is constructed via cubic regression based
on empirical data relating the size of a landmark in the image to its distance
from the robot. Including the resulting distance estimates in the localization
update decreased localization error by more than 30% when compared with
using only angle information, and by almost 50% when compared with using
an analytic distance model [16].

Causing the robot to shorten its step as it approaches a target point so as
to take advantage of a more precise motion model during the motion update
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reduced the localization error by an additional 40%. Finally, enabling the robot
to remember landmark histories did not have any significant effect during
smooth, unobstructed motion. But it enabled the robot to recover much more
quickly from unmodeled movements, such as colliding with another robot or
being picked up and moved [16].

After such unmodeled movements, it is important to quickly triangulate one’s
pose from fixed landmarks. To do so, either two or three landmarks must be
seen, depending on whether or not distance information is used. A shortcoming
of previous reseeding approaches is that they require the landmarks to be seen
in the same camera frame, which may not occur very frequently. We contribute
a concrete mechanism to enable reseeding even when two landmarks are never
seen concurrently.

Observed distances and angles to landmarks are stored over successive frames
in a landmark history. These stored values are adjusted each frame based on
the robot’s odometry, computed by its action model. Successive observations
of the same landmark are averaged, weighted by their confidence, then given
as input for reseeding. Because the robot’s action model is uncertain, the
confidence is decayed each cycle that the record stays in the history. The
robot’s high-level vision module occasionally mistakes one object for another,
resulting in a false observation. To prevent these false observations from having
long-term consequences, records that have been in the history for too long are
thrown out.

The robot’s final pose estimate is represented by the set of particles in MCL.
When a single estimate is required for planning and decision-making, we use
the weighted average of the particles. The robot’s certainty in its pose is found
by averaging the particle weights. This estimated pose and corresponding cer-
tainty, combined with knowledge of the relative positions of movable objects in
the environment, constitute the robot’s world state, upon which all planning
decisions are made.

6 Planning and Decision-Making Under Uncertainty

To this point, we have introduced methods for reducing the uncertainty in the
robot’s world state estimate that results from its vision, motion, and local-
ization processes. In this section we place particular emphasis on the robot’s
methods for dealing with uncertainty in planning and decision-making. We
introduce algorithms by which our robots can i) interleave planning, action,
and information-gathering so as to reduce localization uncertainty; ii) execute
consistent actions over time so as to prevent oscillations due to uncertainty;
iii) determine when to use reactive behaviors instead of deliberative ones; and
iv) share and merge local perceptual information among teammates as a way
of accurately tracking the world state and planning collaborative actions.
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6.1 Interleaving Planning, Acting, and Information-Gathering

When planning under uncertainty, it may be possible to act explicitly so as
to reduce uncertainty, perhaps at some cost. For example, a lost driver in
a new city can stop to ask for directions, or can follow signs to a known
landmark and replan from there. When such information-gathering actions
are available, the agent can take one of three basic attitudes towards dealing
with uncertainty. First, at the most passive extreme, the agent can neglect to
explicitly gather information, instead planning based on whatever information
happens to be available. Second, an agent can take a slightly more active role
in its information-gathering by acquiring missing information on an as-needed
basis. Third, at the most active extreme, the agent could treat information-
gathering as a first class planning operator and deliberatively maintain its
level of certainty in the world state over the course of its entire plan. Here,
we provide an example of this third form of fully interleaved planning and
information-gathering.

In RoboCup soccer, the robot’s main focus is on the ball. It must constantly
track the ball’s position and act decisively as soon as it gains possession.
At the same time, it must stay well-localized to make good planning deci-
sions. Because it is often difficult for the robot to see landmarks when its
head is pointed down at the ball, there is a trade-off between tracking mov-
ing targets (the ball and the opponents) and staying localized. In this con-
text, information-gathering actions include communication with teammates
and purposely looking for landmarks to improve localization accuracy. In a
behavior called active localization, the robot occasionally shifts its focus from
the ball to actively look for landmarks to improve its localization estimate.

Active localization is triggered when the uncertainty in the localization esti-
mate becomes too large. If the localization certainty falls below a threshold,
the robot uses its current pose estimate and the known geometry of the world
to predict the relative positions of the various landmarks. It then uses this
knowledge to plan the motion of its head (pan and tilt) that should allow it
to see the closest markers. Because performing active localization could cause
the robot to lose track of the ball’s position, especially when the ball is nearby,
active localization is performed only when the robot is a sufficient distance
(more than 800mm) away from the ball.

The robot’s objective in including active localization in its action plan is to
arrive at the ball with high certainty in its location, so that it does not need
to pause to localize after reaching the ball. To verify that active localization
can achieve this objective, we performed the following experiment.

The robot starts at a fixed point slightly behind the center of the field with
the ball near the edge of the opposite goal box. At the start of a trial, the
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robot initiates its plan of walking to the ball and kicking it into the goal. Two
seconds after the robot begins executing its plan, we impede its motion for
four seconds by holding it still. While the robot attempts to walk towards the
ball, the simulated collision disrupts the robot’s localization estimate. We then
release the robot and allow it to continue executing its goal-scoring behavior
until it either successfully scores a goal or fails by kicking the ball out of
bounds.

This experiment was performed with and without active localization and com-
prised 15 trials. For the successful trials, we recorded the number of attempted
kicks before scoring as well as the total time taken. The results, shown in Ta-
ble 1, show that active localization significantly improves the robot’s ability
to score quickly and consistently. The time results are statistically significant
(p-value of 1.385× 10−5 using a one-tailed t-test).

Active Localization Avg. Time Avg. Attempts Success Rate

Without 26.11± 5.74 2.7± 1.16 20%

With 15.617± 6.33 1.2± 0.42 67%
Table 1
Time, number of attempts, and success rate for goal-scoring with and without active
localization.

Without the active localization, the robot often ends up with a wrong pose
estimate when it it gets to the ball. It kicks the ball in the wrong direction
and then has to make more than one attempt before it gets the ball into the
goal. When using active localization the robot almost always kicks the ball
into the goal on its first attempt.

6.2 The Task Hierarchy

One common danger of planning under uncertainty is that fluctuations in a
robot’s estimated world state can cause the robot to vacillate among the be-
haviors planned from each perceived state. To counter this effect, the robot
must be equipped with some form of hysteresis that biases it towards pursu-
ing consistent subgoals over time [19]. This section presents our novel action
selection paradigm designed for this purpose.

In the absence of uncertainty, a purely reactive architecture suffices to describe
intelligent agent behaviors. One well-known such architecture is the production
rule system, which consists of if-then rules that are evaluated at each action
opportunity to map world states to action choices. These systems are often
used to describe behaviors for agents in the RoboCup Simulated Soccer league,
where agents have much better sensors than those that exist in the real world
today [20]. In this simulation environment, the agents can trust their world
state knowledge to be stable and reliable.
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However, the highly noisy sensors used in the RoboCup Legged League prevent
any teams known to the authors from using production rule systems. Instead,
many teams use finite state machines (FSMs) to describe behaviors. Robots
using this architecture switch behaviors only when their observations provide
strong enough evidence that the current behavior is no longer appropriate.

Although FSMs are simple to implement, they can be hard to maintain, re-
fine, and expand. For this reason, we designed a task hierarchy framework [21].
Instead of representing each behavior or activity as an atomic state, we cre-
ate tasks that may recursively call other tasks. Like a subroutine call, the
invocation of a task may persist for some time (throughout multiple low-level
execution cycles) and maintain local state information. Unlike typical subrou-
tines, each task in the stack of active subtasks continually monitors the world
state and may switch to a new subtask in response. The stack thus corresponds
to a consistent set of active subgoals, and the robot benefits from hysteresis
at each level of the hierarchy. This framework thus provides more flexibility
than FSMs while generalizing their ability to enable hysteresis, which is so
important when acting under uncertainty.

6.3 Opportunistic Reactivity

As presented throughout this article, a large source of uncertainty in planning
is the robot’s localization estimate, which in turn comes from the robot’s
sensation and action histories. However, in certain circumstances, there may
be enough information from the robot’s instantaneous perceptions to make a
reactive decision. That is, the correct action to take is the same, regardless of
the details of the world state.

We take advantage of such opportunistic reactivity in our robots by enabling
them to shoot directly towards the goal whenever it is close and visible. When
the robot acquires the ball in the quarter of the field closest to the offensive
goal, it first turns to the angle where the goal should be located, assuming its
localization estimate is correct. However, once it reaches that angle, it makes
a small adjustment to face the center of the largest region of goal-color that it
has seen in the last few vision frames. After this adjustment, it kicks the ball.

The robot’s objective in this situation is to kick toward the largest opening
into the goal, avoiding all possible obstacles (including both things that are
modeled by the world state, such as the position of the opponent goalie or
other robots, and things which are entirely unmodeled, such as a referee’s
leg). Since the robot cannot accurately identify all possible obstacles, and
since the robot’s estimation of its own location is itself prone to uncertainty,
the best information the robot has about the location of this opening is its
immediate perception about regions of goal-color.

Note that this opportunistic reactivity contrasts with action architectures that
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fully integrate reactive and deliberative reasoning [22,23]. Our robot acts en-
tirely based on its world model except for during such exceptional circum-
stances when the immediate perceptions provide all the information necessary
to act.

6.4 World State Representation and Communication

To this point, we have focused on how an individual robot can plan its actions
in the face of uncertainty. A multi-robot environment introduces new oppor-
tunities and additional challenges with regard to acting under uncertainty.
For instance, robots may share their own world state information with their
teammates to improve the accuracy of each other’s estimates. However, when
there are large discrepancies in world state estimates between teammates, co-
ordinating behaviors can be a challenge.

In our multiagent scenario, each robot maintains its own world state estimate.
The robot tracks the ball and opponent positions using a Kalman filter-like
representation [24]. When the robot sees the ball, the ball’s relative distance
and angle are represented as a two-dimensional Gaussian with variances com-
puted from the uncertainty of the observation [21]. Each ball observation is
merged with the previous estimate, which is first adjusted in accordance with
the robot’s motion. The merging process gives more weight to observations
with lower variances. If the ball is not seen, the current estimate’s certainty
is degraded by increasing its variance. Opponent position estimates are main-
tained similarly. We also maintain an estimate of the relative velocity of the
ball, based on the change in ball position estimates over a few frames. Velocity
information can be used to update the ball’s position estimate even when the
ball is not seen, for example when performing active localization (Section 6.1).

Using this probabilistic framework to represent the various movable objects
in the world, the robots are able to incorporate information communicated by
teammates. To reliably merge teammate information with its own estimate, a
robot must know that teammate’s uncertainty in the information provided.

When each robot broadcasts its state information to its teammates, it must
convert its egocentric representation to the global coordinate system using the
robot’s estimate of its own position. The uncertainties of the communicated
information are therefore a function of the relative object uncertainty and the
robot’s own position uncertainty. A robot must be sufficiently certain of both
estimates before it will communicate information about that object.

When merging the ball estimates from teammates, a robot primarily trusts
what it sees over what is communicated, i.e. it considers the teammates’ esti-
mates of the ball only when the certainty of its own ball location estimate is
low. It then merges the teammates’ estimates and uses the result to decide the
direction in which to start searching for the ball. Without the communicated
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information, the robot typically spends much of its time recovering after losing
sight of the ball, especially after sudden ball movements such as kicks. With
communication. however, if one robot sees the ball, its teammates are able to
turn in the most probable direction to recover the ball’s position quickly.

To empirically test the advantage of information sharing between robots, we
performed the following experiment. Two robots are placed on the field, one in
the goalkeeper position at the center of the goal, the other near the far corner
of the opposite goal. We place the ball directly in front of the first robot. In
this position, the ball is in clear sight of the first robot but too far away to be
seen by the second robot.

The second robot’s goal is to find and approach the ball, which it initially
cannot see. Our hypothesis was that the robot would perform best when se-
lectively merging information from its teammate. That is, it could improve
performance by listening to its teammate’s ball information when it was un-
certain itself. At the same time, we expected that if the robot continued to use
the merged estimate even when the ball was in plain sight, its performance
would degrade. The reasoning behind this hypothesis is that the robots’ local,
relative ball estimates are much more accurate than their global estimates,
which must rely on both robots’ estimates of their own poses. Thus for a
robot that sees the ball, incorporating a teammate’s global ball estimate is
more likely to degrade the estimate quality.

Results verifying these effects over 15 trials are shown in Table 2. A successful
trial is one in which the robot is able to touch the ball in less than one minute.
The average time is calculated for successful trials only.

Merged Estimates Average Time (s) Success Rate

Never 28.72± 11.9 67%

When needed 15.87± 1.7 100%

Always 38.73± 11.86 60%
Table 2
Time taken to find the ball using different communication paradigms.

All timing results are statistically significant according to a one-tailed t-test.
The standard deviation is higher when merged estimates are never used be-
cause the robot takes random walks across the field and manages to find the
ball faster in some trials. Similarly, when information from teammates is al-
ways taken into account, the improper merging can cause the robot to wander
off in random directions. Note that with excessive merging the robot actually
performs worse than in the case with no communication.

In other work done on information sharing in this domain [25], only the ball
estimates benefited from the combination of sensory and communicated infor-
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mation. However, we found that it is better for the robot to know the likely
locations on the field where it might be obstructed. Therefore, in our case,
robots always merge communicated opponent estimates. Once again, the esti-
mates with higher certainty are given proportionately more importance. This
information is used mainly to avoid the opponents. We observe that using the
merged opponent estimates provides a significant improvement in the robot’s
behavior. For example, when the robot is close to an opponent (even one it
cannot see), it is able to determine that it is necessary to clear the ball quickly.

Although all of the behaviors described above are planned based on a single
averaged pose estimate derived from the localization algorithm, it would be
possible to choose the action that is most effective for the range of possible lo-
cations in which the robot might be [26]. But overall, these behaviors are quite
effective, as evidenced by our cumulative score of 22–1 in 5 games (and 3rd-
place finish) at the 2005 RoboCup US Open tournament 9 , and quarterfinalist
status at RoboCup 2005.

7 Related Work

In the early sections of this article, we have referred to some of the relevant re-
search related to each of the model-building subtopics covered. In this section,
we focus on the most related work pertaining to planning under uncertainty.

One family of approaches to planning under uncertainty comes from the classi-
cal planning community. Using a STRIPS-like representation of states and ac-
tions (operators), systems such as Weaver and Buridan take decision-theoretic
approaches to searching for plans with maximum expected utility [27]. How-
ever the symbolic representations of the world state assumed by these ap-
proaches are often hard to come by in robotic applications.

In robotics, different techniques have been implemented for dealing with un-
certainty in the robots’ inputs and actions, depending on the application. Sim
et al. [28] present an approach to SLAM and robot exploration that generates
an optimized online control policy such that the robot can explore new places
quickly while obtaining data that leads to the most accurate map of the world.
A similar idea is presented by Whaite and Ferrie [29]. Roy et. al [30] look at
the problem of uncertainty for health care robots where the robot has to find
and assist residents of a health-care facility. Work has also been done on plan-
ning robot actions in partially observable environments using POMDPs [31].
POMDPs have been used to control robot medical assistants, which keep track
of patients and detect missing people [32]. In multiagent scenarios, coordina-
tion graphs have been used to achieve cooperative behavior among agents,

9 The top three teams were quite evenly matched as evidenced by the fact that we
beat the eventual champion in an exhibition match and lost to the 2nd-place team
by only 1 goal.
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even in the absence of communication between them [33].

Though several such approaches exist for control, coordination and action
selection, especially for multiagent teams, very few approaches address un-
certainty simultaneously at different levels, from the low-level sensors to the
high-level decision-making and back to the low-level actuators. In our domain,
we have presented techniques that enable a group of four robots to do so while
effectively sharing information and functioning efficiently as a team.

8 Conclusion

Mobile robots encounter uncertainty from many different sources. Compared
to wheeled robots with distance-based sensors, legged robots with vision-based
sensing must cope with extreme uncertainty. This article identifies sources of,
and proposes methods for mitigating, uncertainty coming from pixel segmen-
tation, sensor modeling, action modeling, and localization. It then focuses on
the mechanisms for planning and decision-making in the face of the resulting
uncertainty. We report methods for enabling the robots to i) interleave plan-
ning, action, and information-gathering; ii) execute consistent actions over
time; iii) behave reactively when appropriate and iv) share and merge local
perceptual information among teammates as a way of accurately tracking the
world state.

All the experiments were conducted on a commercial, off-the-shelf robot and
evaluated using the robotic soccer test-bed environment. Our ongoing research
agenda includes generalizing to multiple platforms and testing these algo-
rithms in more uncontrolled (e.g. outdoor) environments.
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