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Abstract—Consider a small team of autononomous robots, each
equipped with a radio, that are deployed in an ad-hoc fashion and
whose goal it is to act as signal relay nodes to form a temporary,
adaptive, and highly robust communication network. To perform
this type of self-optimization and self-healing, relative localization
(i.e. knowing direction and distance to every other robot in the
network) is necessary. In a sense, the problem is similar to the one
studied in ad-hoc sensor networks. The key differences are that
(1) anchor nodes with known locations are not available; that (2)
the connectivity graph is very sparse, because of a comparatively
small number of nodes involved; and that (3) the communication
nodes are actually mobile robots such that apart from location
we also have to estimate the directions to other nodes (which can
not be obtained from a single time slice). To solve this problem,
we propose a global approach that exploits the mobility of the
robots to obtain multiple connectivity measurements over a small
time window. Together with the odometry of individual robots,
we then try to estimate underlying locations that best explain
the observerd connectivity data by minimizing a suitable stress
function. Through simulation of a concrete real-world scenario
we show that our approach performs reasonably well with as
few as ten robots. We examine its performance both under
outdoor and indoor conditions (i.e. uniform and non-uniform
signal propagation). In addition, we also consider the case where
we are able to observe the distance between connected tobots,
which further improves accuracy substantially.

I. INTRODUCTION

While radio communication generally works well in open

(line of sight — LOS) environments, impeding features such as

walls or other obstacles hinder the propagation of radio signals

in indoor (non-LOS) environments such that direct communi-

cation often becomes impossible. However, having communi-

cation when operating in these environments is highly desir-

able for many real-world situations (for example, establishing

and maintaining communication throughout disaster-stricken

urban areas to coordinate rescue and emergency operations).

A solution we explore in this paper is to employ a team of

intelligent communication robots that are scattered through

the environmnent and whose task it is to autonomously create

and sustain a temporary communication network. To maintain

reliable communication over extended periods of time, the

robots will have the ability to move so that they can constantly

adjust their position and always find the best signal. In

particular, as the network is intended to be multi-path and

multi-hop, the loss of individual nodes should not stop data

from finding its way to its endpoint via alternative node paths.

Thus, if a single robot fails or is destroyed, the rest of the

network will have to reposition to cover-up the resulting black

spot. In this context, having relative localization (i.e. knowing

direction and distance to every other robot in the network is

necessary, or at least very useful, for performing the desired

self-optimization and self-healing behavior [1].

For this paper, we describe a history-based approach that

jointly estimates relative positions of the robots by combining

individual odometry with the global connectivity graph over

a small time window. More specifically, we will consider the

localization problem under the following constraints (which

stem from our particular application):

• the robots are deployed ad-hoc, scattered throughout the

environment and unaware of their initial global location

and heading. The goal is to estimate their relative position

in the network (i.e. distance and direction to all other

robots).

• as there are no stationary beacon nodes with known

locations, the relative locations of the robots can only

be jointly determined from connectivity.

• the total number of robots is small, such that any tech-

nique relying on dense coverage will fail.

• the robots are mobile1, but we do not assume control over

their movement. However, the robots are equipped with

fairly accurate odometry sensors.

• the robots may have to operate under non-LOS condi-

tions, such that signal strength measurements may be-

come unreliable and cannot be used to directly infer the

underlying distance.

• the robots (small, inexpensive units) lack any sensor

device that would otherwise enable sophisticated mapping

of the environment.

II. RELATED WORK

The localization problem for a single mobile robot has

been extensively studied in the past. Mobile robot localization

usually works by assuming a prior map and then trying to

determine the robot’s position with respect to that map by

integrating motion and sensor data over time using Bayesian

filtering. More advanced algorithms try to learn a map and

solve the localization problem simultaneously (SLAM). For a

summary of these methods, see [10]. However, chiefly because

of two reasons, these methods are not directly applicable

to our situation: (1) the robots are deployed in uncharted

territory and lack sensors for mapping the environment; and

1It is a crucial assumption we make throughout this paper that the robots
actually change their positions such that their connectivity changes over time.
Only this way will we obtain sufficient data to solve an otherwise seriously
underdetermined reconstruction problem.



(2) these methods do not adequately address the problem of

simultaneously localizing multiple robots.

Map-free localization is a common objective in the context

of WiFi localization. Here, given a number of stationary

objects (i.e. WiFi access points), the goal is to estimate the

location of a mobile device just based on signal strength

readings. In [4] this was done for an indoor environment by

first learning signal strength maps for the individual access

points from labeled ground truth data using GP regression, and

subsequently using Bayesian filtering to estimate the location

of the device. In [3] this approach was extended to work

without labeled data, using GPLVM, a recent method for non-

linear GP-based dimensionality reduction. However, in order

to produce reasonable results, dense and overlapping coverage,

i.e. a large number of access points, was required. Another

example of applying dimensionality reduction for map-free

localization is presented in [11]. There, the objective was

to determine the location of a number of stationary objects,

using first a mobile robot to obtain temporally related (and

therefore similar) measurements of some spatial relationship

(such as visibility, distance, direction).Then dimensionality

reduction was applied to a history of these high-dimensional

measurements to produce the low-dimensional locations of the

objects.

Localization in ad-hoc sensor networks probably comes

closest to what we want to achieve, being both map-free and

specifically tailored to simultaneously localize multiple objects

from a pairwise similarity measure (radio communication).

The methods exploit the fact that each node in a commu-

nication network constrains the possible locations of every

other node by virtue of having restricted communication range

(which usually means every node has contact only with nodes

in its neighborhood). A detailed survey of this area is provided

by [2]. However, many of the existing technologies rely on

large numbers of carefully placed anchor nodes whose location

must be known in advance. In addition, many localization

methods require more information than just connectivity, and

use distance or angle measurements from the anchor nodes

to apply multilateration or triangulation techniques to find

coordinates of the unknown nodes [6]. A method that does not

rely on anchor nodes, and works even when only connectivity

is available, is MDS-MAP [8]. However, connectivity-only

MDS-MAP requires dense networks with many nodes (on the

order of hundreds) and a high degree of connectivity (average

number of neighbors). In our case, the communication network

consists of a comparatively small number of nodes (in our

experiments we consider only 10 nodes) with the average

number of neighbors being about 0-2; the reconstruction

problem will thus be seriously underconstrained in the absence

of movement. Finally, localization in sensor networks usually

assumes that the communication nodes are stationary. The

novelty/contribution of this paper is to explicitly consider (and

exploit) the case where the nodes are in fact autonomous

mobile robots and the induced connectivity graph changes over

the time (as the robots move around, edges break up and new

edges are formed).
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Fig. 1. Motion of robot i over a period of T = 3 time steps, shown
in a global coordinate system. The heading direction (bearing) is into the
direction of the positive x-axis. For every time step t = 2, . . . , T , the robot
can observe the relative change in direction dt

θ,i
= dθ(i, t), and the amount

of distance traveled δt
i

= δ(i, t). In general, the initial pose (x1

i
, y1

i
, θ2

i
) will

be unobservable.

III. DETAILED DESCRIPTION OF OUR APPROACH

Our approach is a history-based global approach that tries

to jointly estimate relative positioning of robots: first, we

combine the individual observation and motion histories of

all robots in the network. We then estimate locations such

that the induced connectivity graph is most consistent with the

observed connectivity graph (for all time steps in the history).

In the following, we will consider N robots moving in a 2D

world for a number of T time steps.

A. Individual motion

Let x(i, t) = xt
i denote the x-coordinate, y(i, t) = yt

i the

y-coordinate, and θ(i, t + 1) = θt+1
i the heading of robot i

at time t. As illustrated in Figure 1, the coordinates are given

with respect to a global coordinate system, and the heading is

given with respect to the positive x-axis (note the use of t+1
to indicate heading at time t).

Given only the coordinates (x1
i , y

1
i ), . . . , (xT

i , yT
i ), we can

compute the associated (absolute) heading for all but the

last time step. First, introduce the distance robot i moved

between two successive time steps along each of the coordinate

directions:

dx(i, t) := x(i, t) − x(i, t − 1), t = 2 . . . T

dy(i, t) := y(i, t) − y(i, t − 1), t = 2 . . . T.

We then have

θ(i, t) = atan2
(

dy(i, t), dx(i, t)
)

, t = 2 . . . T,

which gives us the heading (for robot i) at time steps t =
1 . . . T − 1 (see Figure 1).

Conversely, if we know the start pose (x1
i , y

1
i , θ2

i ), i.e.

location and heading at time t = 1, and are given both the

distances robot i traveled between successive time steps, i.e.

δ(i, t) :=
(

dx(i, t)2 + dy(i, t)2
)1/2

, t = 2 . . . T, (1)



and the relative changes in heading, i.e.

dθ(i, t) := θ(i, t) − θ(i, t − 1), t = 2 . . . T, (2)

we can compute the locations for all time steps t = 2 . . . T

beyond the first:

θ(i, t) = θ(i, 2) +

t
∑

k=3

dθ(i, k) (3)

x(i, t) = x(i, 1) +

t
∑

k=2

δ(i, k) cos
(

θ(i, k)
)

(4)

y(i, t) = y(i, 1) +
t
∑

k=2

δ(i, k) sin
(

θ(i, k)
)

. (5)

Now assume we do not know the initial pose of node,

but could observe the history of its motion, i.e. we could

observe the δ’s from Eq. (1) and dθ’s from Eq. (2). Let

(xstart
i , ystart

i , ϕstart
i ) be a guess for the true unknown initial pose

(x1
i , y

1
i , θ2

i ) in a global coordinate frame. Together with the

observably odometry data δ and dθ, every such guess then

gives rise to a path {(x̂t
i, ŷ

t
i)}t=1,...,T

i=1,...,N via Eqs. (3)-(5):

θ̂(i, t) = ϕstart
i +

t
∑

k=3

dθ(i, k) (6)

x̂(i, t) = xstart
i +

t
∑

k=2

δ(i, k) cos
(

θ̂(i, k)
)

(7)

ŷ(i, t) = ystart
i +

t
∑

k=2

δ(i, k) sin
(

θ̂(i, k)
)

. (8)

B. Joint connectivity

Whereas motion is handled independently for every indi-

vidual node, the connectivity graph induced by the locations

of all nodes at any time t is a global property of the whole

network. Let ̺(i, j, t) denote the Euclidean distance between

node i and node j

̺(i, j, t) :=
[

(xt
i − xt

j)
2 + (yt

i − yt
j)

2
]1/2

for i = 1, . . . , N − 1, j = i + 1, . . . , N , t = 1, . . . , T .

Furthermore, let c(i, j, t) denote a binary connectivity variable

c(i, j, t) :=

{

1 if node i and j could communicate at time t

0 else.

Ideally, under LOS conditions, signal strength falls off uni-

formly and connectivity is thus directly related with the

underlying distance. In this case, we can model connectivity

by setting c(i, j, t) = 1 if ̺(i, j, t) ≤ Rmax, where Rmax is

the maximum communication distance. Under non-LOS con-

ditions the situation is substantially more difficult; in general,

signal strength, and thus connectivity, is then less strongly

correlated with distance (e.g. two nodes could be physically

close but seperated by a wall that absorbs the signal). In our

simulations (see Section 4), we will use a sophisticated ray-

casting approach to model physical signal propagation in an

indoor environment. However, since our nodes are incapable

of determining the topology of their environment (and thus

are unaware of walls), we will model the uncertainty using

a simple probabilistic relationship between pairwise distance

and connectivity.

C. Objective

Regardless of what underlying physical process gave rise

to the measured signal strength, assume we could observe the

joint connectivity of the network together with the individual

motion of nodes over a history of T time steps. Figure 2

depicts this situation. Our goal is now to collectively find

initial poses for all nodes, i.e. determine vector

~x := (xstart
1 , ystart

1 , ϕstart
1 , . . . , xstart

N , ystart
N , ϕstart

N ) ∈ R3N , (9)

such that when we apply the odometry to expand the paths

over time, the connectivity graph induced by the underlying

estimated locations best agrees with the observed connectivity

graph induced by the unknown true locations. Let ˆ̺~x(i, j, t)
denote the distance between estimated locations for i and j at

time t for a particular ~x from Eq. (9):

ˆ̺~x(i, j, t) :=
[

(x̂t
i − x̂t

j)
2 + (ŷt

i − ŷt
j)

2
]1/2

,

where {(x̂t
i, ŷ

t
i)} is obtained via Eqs. (6)-(8).

In the following we will consider two different scenarios: in

the first scenario, we assume, as described above, that we can

only observe whether or not two nodes were connected at any

given time in the history. In a second scenario, we consider the

case where range information is available for nodes that can

communicate (for example, by assuming that the nodes are

equipped with time difference of arrival (TDoA) hardware).

In both scenarios, to determine the best fit between con-

nectivity graphs derived from a particular guess ~x and the

observed (true) connectivity, we will first define a suitable

error function and then minimize it with respect to the vector

of initial poses ~x.

Doing this for the second scenario is pretty straightforward:

if we have access to the pairwise distances ̺ for connected

nodes, we can directly consider the error function

E(~x) =
1

2

T
∑

t=1

N−1
∑

i=1

N
∑

j=i+1

[

ˆ̺~x(i, j, t) − ̺(i, j, t)
]2

c(i, j, t),

(10)

where ˆ̺~x denotes the pairwise distance for locations expanded

from ~x, and minimize it with respect to ~x. Note that this

approach only makes use of information for nodes that are

connected, i.e. ignores the nodes that are not connected. Still,

as we will see in Section 4, this will give us very good results,

since we are integrating information over multiple time steps.

The first scenario is more challenging because we have

fewer and less reliable information from which we can

infer locations. Here we assume a simple (topology-free)

probabilistic model for observing connectivity between nodes

at any given time given underlying locations, and find the

maximum likelihood solution for ~x over all the full history of
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Fig. 2. Graphical illustration of our objective. Left: As the individual robots move and change their location, so does the underlying connectivity graph
change over time. Graph sketches the movement of 3 robots over 4 time steps; lines mark connectivity. Center: A sketch of the indoor office environment
used in the experiments. Right: Measurements we have from which to reconstruct the positioning of the robots with respect to each other. An entry of ’-1’
in the pairwise distance matrix denotes missing data (i.e. robots could not communicate).

observations. As observation model we utilise a Gaussian cdf

p(ct
ij = 1 | x̂t

i, ŷ
t
i , x̂

t
j , ŷ

t
j) := 1 − Φµ,σ2

(

ˆ̺~x(i, j, t)
)

p(ct
ij = 0 | x̂t

i, ŷ
t
i , x̂

t
j , ŷ

t
j) := Φµ,σ2

(

ˆ̺~x(i, j, t)
)

incorporating our belief that the probability of i and j being

connected will be high when i and j are close. Here, as usual,

Φµ,σ2(·) is defined as

Φµ,σ2(·) =
1

2

(

1 + erf

{ · − µ√
2σ2

})

with parameters µ being the mean, and σ2 being the variance

of the underlying Gaussian density. We then minimize the error

function

E(~x) =

T
∑

t=1

N−1
∑

i=1

N
∑

j=i+1

{

ct
ij log

(

1 − Φµ,σ2

(

ˆ̺~x(i, j, t)
)

)

+

(1 − ct
ij) log

(

Φµ,σ2

(

ˆ̺~x(i, j, t)
)

)}

(11)

which is the associated negative loglikelihood. The first term

in the sum corresponds to the connected nodes, and is large

when two nodes were observed as being connected, but their

estimated locations are far apart. Conversely, the second term

corresponds to the non-connected nodes, and is large when

two nodes were observed as being not connected, but their

estimated locations are close. Admittedly, this is a rather broad

approach that completely ignores the underlying topology, but

it is the best we can do given the little information we have.

IV. EXPERIMENTAL RESULTS

As test environment we simulate an indoor office space,

a small sketch of which is shown in Figure 2b. We use

CYBELEPRO, a proprietary simulator [X], to model the motion

of robots in the environment under real-world conditions. For

the following experiments we consider a team of N = 10
robots. At the start of the simulation the robots were artificially

placed such that they were well spread out and located in

different parts of the environment. Under this setup, the nodes

did not form a fully connected network initially (some nodes

were deliberately placed outside the communication range of

all other nodes), but were able to establish a fully connected

mesh after performing some exploratory movemnet. This setup

simulates the initial phase of our intended application: scat-

tered nodes explore their immediate surroundings and search

for other nodes until a fully connected network is established.

We consider two scenarios for the propagation of radio

signals. The first one corresponds to an open environment

and models received signal strength with radial symmetric

attentuation: two nodes were allowed to communicate when

their distance was below 9m, irrespective of impeding walls

and other obstacles. In the second scenario we actively inves-

tigate indoor localization, where the underlying topology (see

Figure 2b) strongly effects the propagation of the signal. This

was implemented by precomputing a signal strength map for

the whole office area: first, the space was evenly divided into a

grid of cells. Then the received signal strength between every

pair of cells was calculated by modeling the signal propagation

and attentuation by integrating the effect of obstacles along a

ray cast between the cells [9]. Note that for the purpose of

localization the robots themselves were unaware of underlying

topology.

A. Range-based localization

For each of these two scenarios, our primary interest is

in obtaining relative localization using distance-based mea-

surements. We therefore assume that whenever two robots

can communicate, we can observe the underlying distance.

To solve the localization problem, we collected odometry of

every individual robot, together with joint connectivity data

and associated distances, over a time horizon of 60 seconds2,

giving us δ(i, t), dθ(i, t), c(i, j, t), ̺(i, j, t). Assembling the

data across the nodes and time steps can be done by having

every node broadcast its local odometry and connectivity data

(at this point we do not consider the cost of communication).

Since the underlying minimization problem in Eq. (10) does

not admit a closed form solution, we employ the efficient

and Hessian-free scaled conjugate gradients algorithm [5] as

2The simulation is updated once every 100msecs. To reduce communica-
tion, we only considered measurements at the rate of 1Hz. We subsampled
the data and adjusted the odometry correspondingly.
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Fig. 3. Results for range-based and connectivity-based estimation of the relative positioning. The error is shown in terms of relative angular error (measured
as angle between any two robots i and j, with respect to the heading of i), relative distance error, and reconstruction error (given as L2 norm between ground
truth and reconstruction after coordinate system registration). Each bar shows the average over all robots and time steps, with the error bars corresponding
to one standard deviation. Note the different scales of the y-axis. Figure 4 and 5 show in more detail the results for connectivity-based outdoor localization
under low noise.

an iterative gradient-based solver. The computation of the

gradient is described in Appendix A. Since the problem is

nonconvex, we have to deal with multiple local minima. To

ensure a high-quality solution, we ran the solver multiple

times, each time restarting with a random initial value for ~x.

In our case we used 100 restarts and ran the optimizer for a

maximum of 200 iterations. Note that in principle, because all

the nodes in the network share the same data, this computation

can be carried out in a distributed way.

Figure 3a shows the result for both scenarios using the

same data. Since our goal is relative localization, we determine

the quality of the reconstruction by taking the angular error

between any two robots (i.e. the angle under which node i

sees node j with respect to its own heading) and their relative

distance. The plot shows the corresponding errors averaged

over all pairs of robots and time steps (errorbars are given

in one standard deviation). In addition, we also consider the

effect of making noisy measurements: all of the observations

(i.e. both odometry terms and the range) were corrupted by

white noise with standard deviation of 1% (denoted as ’low’)

or 10% (denoted as ’medium’).

B. Connectivity-based localization

In a second series of experiments, we repeated all of

the above, this time assuming localization from connectivity

alone. In this case, the relative locations were estimated by

solving Eq. (11). The computation of the gradient is given in

Appendix B. As we can see from the results in Figure 3b, the

reconstruction error for both the outdoor and the indoor sce-

nario is, unsurprisingly, substantially higher for connectivity-

based localization than it is for range-based localization: in

the outdoor case the angular error on the average is about 2-

4 degrees, whereas with range-based localization it was less

than 1 degree (with zero noise). For the case of ’low noise’,

Figure 4 shows in more detail how the error is distributed

over its values. To give a visual impression of the quality

of reconstruction, Figure 5 shows both the estimated and

true locations, after fitting the relative coordinates to the

true coordinates via Procrustes analysis [7]. Still, as most

applications only require approximate localization, an error of

this order of magnitude will usually be acceptable, considering
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Fig. 4. Error for connectivity-based outdoor localization with low noise.
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Fig. 5. Ground truth versus reconstruction (after performing registration).
Plot shows individual paths of 10 robots over a time horizon of 60 seconds
(one measurement every 1 second). The true locations are shown in black, the
associated reconstructions are shown at the end of the red lines. The length
of the red lines therefore indicates the reconstruction error. (Note that some
paths contain fewer than 60 distinct points, in that case the robot remained
stationary for some time.)

that we can achieve this result from connectivity alone. Also

note that our method for connectivity-based localization is far

less susceptible to noise. On the other hand, under indoor

conditions range-based localization still continues to work

with negligible performance loss, whereas connectivity-based

localization breaks down and produces an angular error of

about 20 degrees on the average.



APPENDIX A: GRADIENT FOR RANGE-BASED

The gradient of Eq. (10) is computed as follows: the partial

derivative ∂x(ν) for the ν-th component of ~x, where x(ν) is

one of xstart
ν , ystart

ν , ϕstart
ν for ν = 1 . . . N , is obtained from

∂x(ν)E =

T
∑

t=1

N−1
∑

i=1

N
∑

j=i+1

[

ˆ̺~x(i, j, t) − ̺(i, j, t)
]2

c(i, j, t)·

·
[

∂x(ν) ˆ̺~x(i, j, t)
]

. (12)

Since only those terms in the sum where either index i or

index j is equal to ν are unequal from zero, we can rewrite

the summation in the following way:

∂x(ν)E =

T
∑

t=1

{

ν−1
∑

i=1

[

ˆ̺~x(i, ν, t) − ̺(i, ν, t)
]2

c(i, ν, t)·

·
[

∂x(ν) ˆ̺~x(i, ν, t)
]

+

N
∑

i=ν+1

[

ˆ̺~x(ν, i, t) − ̺(ν, i, t)
]2

c(ν, i, t)·

·
[

∂x(ν) ˆ̺~x(ν, i, t)
]}

(13)

To compute the derivative of the pairwise distances ˆ̺~x, we

have to consider the following 6 different cases. First, consider

the derivative with respect to the initial x-coordinate of the ν-

th robot. Repeated application of the chain rule gives:

∂xstart
ν

ˆ̺~x(i, ν, t) = −
[

ˆ̺~x(i, ν, t)
]

−1
d̂x(i, ν, t), (14)

where d̂x(i, ν, t) := x̂(i, t) − x̂(ν, t). Second, doing the same

for the y-coordinate, we obtain:

∂ystart
ν

ˆ̺~x(i, ν, t) = −
[

ˆ̺~x(i, ν, t)
]

−1
d̂y(i, ν, t), (15)

where d̂y(i, ν, t) := ŷ(i, t) − ŷ(ν, t). Third, for the derivative

with respect to the initial heading angle ϕstart
ν , we obtain

(repeated application of the chain rule):

∂ϕstart
ν

ˆ̺~x(i, ν, t) =
[

ˆ̺~x(i, ν, t)
]

−1·
·
[

d̂x(i, ν, t)β̂~x(ν, t) − d̂y(i, ν, t)α̂~x(ν, t)
]

, (16)

where

α̂~x(ν, t) :=

t
∑

k=2

δ(ν, k) cos

(

ϕstart
ν +

k
∑

l=2

dθ(ν, l)

)

β̂~x(ν, t) :=
t
∑

k=2

δ(ν, k) sin

(

ϕstart
ν +

k
∑

l=2

dθ(ν, l)

)

.

The remaining three cases correspond to the derivatives with

respect to the first index in ˆ̺~x(ν, i, t), here we just have to

invert the sign of Eqs. (14)-(16). Note that for the first time

step t = 1 the derivative with respect to ϕstart
ν is zero, i.e.

∂ϕstart
ν

ˆ̺~x(ν, i, 1) = ∂ϕstart
ν

ˆ̺~x(i, ν, 1) = 0.

APPENDIX B: GRADIENT FOR CONNECTIVITY-BASED

Likewise, to compute the gradient of Eq. (11), we start from

∂x(ν)E =
T
∑

t=1

N−1
∑

i=1

N
∑

j=i+1

Φ′

µ,σ2

(

ˆ̺~x(i, j, t)
)

[

∂x(ν) ˆ̺~x(i, j, t)
]

·

·
( 1 − c(i, j, t)

Φµ,σ2

(

ˆ̺~x(i, j, t)
) − c(i, j, t)

1 − Φµ,σ2

(

ˆ̺~x(i, j, t)
)

)

,

where Φ′ is derivative of the Gaussian cdf, i.e.

Φ′

µ,σ2(·) = exp
{

− (· − µ)2

2σ2

}

· 1√
2πσ2

.

Rewriting this sum similar to Eq. (13), we only need to plug in

the previously computed partial derivates from Eqs. (14)-(16).
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