
In RoboCup-2013 Robot Soccer World Cup XVII, Lecture Notes in Artificial Intelligence,

Springer Verlag, Berlin, 2013.

The Open-Source TEXPLORE Code Release for

Reinforcement Learning on Robots

Todd Hester and Peter Stone

Department of Computer Science
University of Texas at Austin

Austin, TX, 78712
{todd,pstone}@cs.utexas.edu

Abstract. The use of robots in society could be expanded by using
reinforcement learning (RL) to allow robots to learn and adapt to new
situations on-line. RL is a paradigm for learning sequential decision mak-
ing tasks, usually formulated as a Markov Decision Process (MDP). For
an RL algorithm to be practical for robotic control tasks, it must learn
in very few samples, while continually taking actions in real-time. In
addition, the algorithm must learn efficiently in the face of noise, sen-
sor/actuator delays, and continuous state features. In this paper, we
present the texplore ROS code release, which contains texplore, the
first algorithm to address all of these challenges together. We demon-
strate texplore learning to control the velocity of an autonomous ve-
hicle in real-time. texplore has been released as an open-source ROS
repository, enabling learning on a variety of robot tasks.

Keywords: Reinforcement Learning, Markov Decision Processes, Robots

1 Introduction

Robots have the potential to solve many problems in society by working in
dangerous places or performing unwanted jobs. One barrier to their widespread
deployment is that they are mainly limited to tasks where it is possible to hand-
program behaviors for every situation they may encounter. Reinforcement learn-
ing (RL) [19] is a paradigm for learning sequential decision making processes that
could enable robots to learn and adapt to their environment on-line. An RL agent
seeks to maximize long-term rewards through experience in its environment.

Learning on robots poses at least four distinct challenges for RL:

1. The algorithm must learn from very few samples (which may be expensive
or time-consuming).

2. It must learn tasks with continuous state representations.
3. It must learn good policies even with unknown sensor or actuator delays (i.e.

selecting an action may not affect the environment instantaneously).
4. It must be computationally efficient enough to take actions continually in

real-time.

Addressing these challenges not only makes RL applicable to more robotic con-
trol tasks, but also many other real-world tasks.

While algorithms exist that address various subsets of these challenges, we
are not aware of any that are easily adapted to address all four issues. RL
has been applied to a few carefully chosen robotic tasks that are achievable with
limited training and infrequent action selections (e.g. [11]), or allow for an off-line
learning phase (e.g. [13]). However, to the best of our knowledge, none of these
methods allow for continual learning on the robot running in its environment.

In contrast to these approaches, we present the texplore algorithm, the first
algorithm to address all four challenges at once. The key insights of texplore
are 1) to learn multiple domain models that generalize the effects of actions
across states and target exploration on uncertain and promising states; and 2)
to combine Monte Carlo Tree Search and a parallel architecture to take actions
continually in real-time. texplore has been released publicly as an open-source
ROS repository at: http://www.ros.org/wiki/rl-texplore-ros-pkg.

2 Background

We adopt the standard Markov Decision Process (MDP) formalism for this
work [19]. An MDP consists of a set of states S, a set of actions A, a reward
function R(s, a), and a transition function P (s′|s, a). In many domains, the state
s has a factored representation, where it is represented by a vector of n state
variables s = 〈x1, x2, ..., xn〉. In each state s ∈ S, the agent takes an action
a ∈ A. Upon taking this action, the agent receives a reward R(s, a) and reaches
a new state s′, determined from the probability distribution P (s′|s, a).

The value Q∗(s, a) of a given state-action pair (s, a) is an estimate of the
future reward that can be obtained from (s, a) and is determined by solving the
Bellman equation: Q∗(s, a) = R(s, a) + γ

∑
s
′ P (s′|s, a)maxa′ Q∗(s′, a′), where

0 < γ < 1 is the discount factor. The goal of the agent is to find the policy π

mapping states to actions that maximizes the expected discounted total reward
over the agent’s lifetime. The optimal policy π is then π(s) = argmax

a
Q∗(s, a).

Model-based RL methods learn a model of the domain by approximating
R(s, a) and P (s′|s, a) for each state and action. The agent can then plan on
this model through a method such as value iteration [19] or uct [10], effectively
updating the Bellman equations for each state using their model. RL algorithms
can also work without a model, updating the values of actions only when taking
them in the real task. Generally model-based methods are more sample efficient
than model-free methods, as their sample efficiency is only constrained by how
many samples it takes to learn a good model.

3 TEXPLORE

In this section, we describe texplore [9], a sample-efficient model-based real-
time RL algorithm. We describe how texplore returns actions in real-time in
Section 3.1, and its approach to model learning and exploration in Section 3.2.

3.1 Real-Time Architecture

In this section, we describe texplore’s real-time architecture, which can be used
for a broad class of model-based RL algorithms that learn generative models.
Most current model-based RL methods use a sequential architecture, where the
agent receives a new state and reward; updates its model with the new transition
〈s, a, s′, r〉; plans exactly on the updated model (i.e. by computing the optimal
policy with a method such as value iteration); and returns an action from its
policy. Since both the model learning and planning can take significant time,
this algorithm is not real-time. Alternatively, the agent may update its model
and plan on batches of experiences at a time, but this requires long pauses for
the batch updates to be performed. Making the algorithm real-time requires two
modifications to the standard sequential architecture: 1) utilizing sample-based
approximate planning and 2) developing a novel parallel architecture called the
Real-Time Model-Based Architecture (rtmba) [7].

First, instead of planning exactly with value iteration, rtmba uses uct [10],
a sample-based anytime approximate planning algorithm from the Monte Carlo
Tree Search (mcts) family. mcts planners simulate trajectories (rollouts) from
the agent’s current state, updating the values of the sampled actions with the
reward received. The agent performs as many rollouts as it can in the given time,

Fig. 1. Parallel Architecture.

with its value estimate improving with
more rollouts. These methods can be
more efficient than dynamic program-
ming approaches in large domains be-
cause they focus their updates on states
the agent is likely to visit soon rather
than iterating over the entire state space.

In addition, we developed a Real-
Time Model Based Architecture (rtmba)
that parallelizes the model learning,
planning, and acting such that the
computation-intensive processes (model
learning and planning) are spread out
over time. Actions are selected as quickly
as dictated by the robot control loop,
while still being based on the most recent
models and plans available.

Since both model learning and planning can take significant computation
(and thus wall-clock time), rtmba places both of those processes in their own
parallel threads in the background, shown in Figure 1. A third thread interacts
with the environment, receiving the agent’s new state and reward and returning
the action given by the agent’s current policy. The threads communicate through
shared data structures protected by mutex locks. By de-coupling the action
thread from the time-consuming model-learning and planning processes, rtmba
releases the algorithm from the need to complete the model update and planning
between actions. The full details of this architecture are described in [7, 9].

3.2 Model Learning

While the parallel architecture we just presented enables texplore to operate
in real-time, the algorithm must learn an accurate model of the domain quickly
to learn the task with high sample efficiency. While tabular models are a common
approach, they require the agent to take every action from each state once (or
multiple times in stochastic domains), since they learn a prediction for each
state-action separately. If we assume that the transition dynamics are similar
across state-action pairs, we can improve upon tabular models by incorporating
generalization into the model learning. texplore achieves high sample efficiency
by combining this generalization with targeted exploration to improve the model
as quickly as possible.

texplore approaches model learning as a supervised learning problem with
(s, a) as the input and s′ and r as the outputs the supervised learner is predict-
ing. The supervised learner can make predictions about the model for unseen or
infrequently visited states based on the transitions it has been trained on. tex-
plore uses C4.5 decision trees [15] as the supervised learner to learn models of
the transition and reward functions. The algorithm learns a model of the domain
by learning a separate prediction for each of the n state features and reward. For
continuous domains, the algorithm uses the M5 regression tree algorithm [16],
which learns a linear regression model in each leaf of the tree, enabling it to
better model continuous dynamics by building a piecewise linear model.

Each tree makes predictions for the particular feature or reward it is given
based on a vector containing the n features of the state s along with the action a:
〈x1, x2, ..., xn, a〉. To handle robots, which commonly have sensor and actuator
delays, we provide the model with the past k actions, so that the model can
learn which of these past actions is relevant for the current prediction.

Using decision trees to learn the model of the MDP provides us with a model
that can be learned quickly with few samples. However, it is important that the
algorithm focuses its exploration on the state-actions most likely to be relevant
to the the task. To drive exploration, texplore builds multiple possible models
of the domain in the form of a random forest [3]. The random forest model is a
collection of m decision trees, where each tree is trained on only a subset of the
agent’s experiences (〈s, a, s′, r〉 tuples). Each tree in the random forest represents
a hypothesis of what the true domain dynamics are. texplore then plans on the
average of these predicted distributions, so that texplore balances the models
predicting overly positive outcomes with the ones predicting overly negative
outcomes. More details, including an illustrative example of this exploration,
are provided in [9].

4 ROS Code Release

The texplore algorithm and architecture presented in this paper has been fully
implemented, empirically tested, and released publicly as a Robot Operating Sys-
tem (ROS) repository at: http://www.ros.org/wiki/rl-texplore-ros-pkg.

ROS1 is an open-source middleware operating system for robotics. It includes
tools and libraries for commonly used functionality for robots such as hardware
abstraction and messaging. In addition, it has a large ecosystem of users who
release software packages for many common robot platforms and tasks as open
source ROS repositories. With texplore released as a ROS repository, it can
be easily downloaded and applied to a learning task on any robot running ROS
with minimal effort. The goal of this algorithm and code release is to encourage
more researchers to perform learning on robots using state-of-the-art algorithms.

The code release contains five ROS packages:

1. rl common: This package includes files that are common to both reinforce-
ment learning agents and environments.

2. rl msgs: The rl msgs package contains a set of ROS messages (http:
//www.ros.org/wiki/rl_msgs) that we have defined to communicate with
reinforcement learning algorithms. The package defines an action message
that the learning algorithm publishes, and a state/reward message that it
subscribes to. To interface the learning algorithm with a robot already run-
ning ROS, one only needs to write a single node that translates action mes-
sages to actuator commands for the robot and translates robot sensor mes-
sages into state/reward messages for the learning algorithm. The advantages
of this design are that we can apply RL on a wide variety of tasks by simply
creating different RL interface nodes, while the actual learning algorithms
and the robot’s sensors/actuators interfaces are cleanly abstracted away.

3. rl agent: This package contains the texplore algorithm. In addition, it
includes several other commonly used reinforcement learning algorithms,
such as q-learning [21], sarsa [17], r-max [2], and dyna [18]. The agent
package also includes a variety of model learning and planning techniques
for implementing different model-based methods.

4. rl env: This package includes a variety of benchmark RL domains such as
Fuel World [8], Taxi [4], Mountain Car [19], Cart-Pole [19], Light World [12],
and the simulated car velocity control domain presented in Section 5.

5. rl experiment: This package contains code to run RL experiments without
ROS message passing, by compiling both the experiment and agent together
into one executable. This package is useful for running simulated experiments
that do not require message passing to a robot.

5 Example Application

In this section, we present more details on how to interface the texplore algo-
rithm with a robot already running ROS. In particular, we will demonstrate the
ability of texplore to learn velocity control on our autonomous vehicle [1]. This
task has a continuous state space, delayed action effects, and requires learning
that is both sample efficient (to learn quickly) and computationally efficient (to
learn on-line while controlling the car).

1 www.ros.org

The task is to learn to drive the vehicle at a desired velocity by controlling
the pedals. For learning this task, the RL agent’s 4-dimensional state is the
desired velocity of the vehicle, the current velocity, and the current position
of the brake and accelerator pedals. The agent’s reward at each step is −10.0
times the error in velocity in m/s. Each episode is run at 10 Hz for 10 seconds.
The agent has 5 actions: one does nothing (no-op), two increase or decrease the
desired brake position by 0.1 while setting the desired accelerator position to 0,
and two increase or decrease the desired accelerator position by 0.1 while setting
the desired brake position to 0. While these actions change the desired positions
of the pedals immediately, there is some delay before the brake and accelerator
reach their target positions.

Fig. 2. ROS RL Interface.

The vehicle was already using
ROS [14] as its underlying middleware.
The rl msgs package defines an action
and state/reward message for the agent
to communicate with an environment.
To connect the agent with the robot, we
wrote a ROS node that translates ac-
tions into actuator commands and sen-
sor information into state/reward mes-
sages. The agent’s action message is an
integer between 0-4 as the action. The interface node translates this action into
messages that provide commanded positions for the brake and throttle of the
car. The interface node then reads sensor messages that provide the car’s velocity
and the true positions of the pedals, and uses these to create a state vector and
reward for the agent and publishes a state/reward message. Figure 2 visualizes
how the learning algorithm interfaces with the robot.

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0 5 10 15 20

A
v
e

ra
g

e
 R

e
w

a
rd

Episode Number

Physical Vehicle Velocity Control from 2 to 5 m/s

Fig. 3. Average rewards of texplore
learning to control the physical vehicle
from 2 to 5 m/s.

We ran five trials of Continuous
texplore (using M5 regression trees)
with k = 2 delayed actions on the phys-
ical vehicle learning to drive at 5 m/s
from a start of 2 m/s. Figure 3 shows
the average rewards over 20 episodes. In
all five trials, the agent learned the task
within 11 episodes, which is less than
2 minutes of driving time. This exper-
iment shows that our texplore code
release can be used to learn a robotic
task that has continuous state and actu-
ator delays in very few samples while se-
lecting actions continually in real-time.
In addition to learning to control the velocity of an autonomous vehicle, a variant
of texplore has also been used to learn how to score penalty kicks in the Stan-
dard Platform League of RoboCup [6]. More results with comparisons against
other state-of-the-art algorithms are available in [9, 5].

6 Related Work

Since texplore is addressing many challenges, there is ample related work on
each individual challenge, although no other methods address all four challenges.
Work related to the algorithmic components of texplore is detailed in [9, 5].
In this section, we look at related reinforcement learning code releases.

Similar to our rl msgs package which defines ROS messages for an agent
to communicate with an environment, rl-glue [20] defines similar messages for
general use. The rl-library2 builds off of this as a central location for sharing
rl-glue compatible RL projects. However, currently the library only contains
the sarsa(λ) [17] algorithm, and does not have any algorithms which focus on
learning on robots.

RLPark3 is a Java-based RL library that includes both learning methods
and methods for the real-time display of learning data. RLPark contains a
variety of algorithms for both control and prediction, both on-line or off-line.
It does contain some algorithms that target learning on robots, however it does
not provide a ROS interface for connecting with other robots.

The York Reinforcement Learning Library (yorll)4 focuses on multi-agent
learning, however it works for single-agent learning as well. It contains a few
basic algorithms like q-learning [21] and sarsa [17], and has various options
for handling multiple agents. However, it does not have any algorithms which
focus on learning on robots.

Teaching Box5 is a learning library that is focused on robots. It contains some
algorithms for reinforcement learning as well as learning from demonstration. It
uses rl-glue to interface the agent and environment, rather than using ROS.

7 Conclusion

We identify four properties required for RL to be practical for continual, on-line
learning on a broad range of robotic tasks: it must (1) be sample-efficient, (2)
work in continuous state spaces, (3) handle sensor and actuator delays, and (4)
learn while taking actions continually in real-time. This article presents the code
release of texplore, the first algorithm to address all of these challenges. Note
that there are other challenges relevant to robotics that texplore does not
address, such as partial observability or continuous actions, which we leave for
future work.

The code release provides the texplore algorithm along with a variety of
other commonly used RL algorithms. It also contains a number of common
benchmark tasks for RL. The release includes a set of ROS messages for RL
which define how an RL agent can communicate with a robot. Using these defined
messages, it is easy to interface texplore or the other algorithms provided in
the code release with robots already running ROS.

2 library.rl-community.org/wiki/Main_Page
3 rlpark.github.com/
4 www.cs.york.ac.uk/rl/software.php
5 amser.hs-weingarten.de/en/teachingbox.php

Acknowledgements

This work has taken place in the Learning Agents Research Group (LARG) at UT
Austin. LARG research is supported in part by NSF (IIS-0917122), ONR (N00014-09-
1-0658), and the FHWA (DTFH61-07-H-00030).

References

1. P. Beeson, J. O’Quin, B. Gillan, T. Nimmagadda, M. Ristroph, D. Li, and P. Stone.
Multiagent interactions in urban driving. Journal of Physical Agents, 2(1):15–30,
March 2008.

2. R. Brafman and M. Tennenholtz. R-Max - a general polynomial time algorithm
for near-optimal reinforcement learning. In IJCAI, 2001.

3. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
4. T. Dietterich. The MAXQ method for hierarchical reinforcement learning. In

ICML, pages 118–126, 1998.
5. T. Hester. TEXPLORE: Temporal Difference Reinforcement Learning for Robots

and Time-Constrained Domains. PhD thesis, Department of Computer Science,
University of Texas at Austin, Austin, TX, December 2012.

6. T. Hester, M. Quinlan, and P. Stone. Generalized model learning for reinforcement
learning on a humanoid robot. In ICRA, May 2010.

7. T. Hester, M. Quinlan, and P. Stone. RTMBA: A real-time model-based reinforce-
ment learning architecture for robot control. In ICRA, 2012.

8. T. Hester and P. Stone. Real time targeted exploration in large domains. In ICDL,
August 2010.

9. T. Hester and P. Stone. TEXPLORE: Real-time sample-efficient reinforcement
learning for robots. Machine Learning, 87:10–20, 2012.

10. L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In ECML, 2006.
11. N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion. In AAAI

Conference on Artificial Intelligence, 2004.
12. G. Konidaris and A. G. Barto. Building portable options: Skill transfer in rein-

forcement learning. In IJCAI, 2007.
13. A. Ng, H. J. Kim, M. Jordan, and S. Sastry. Autonomous helicopter flight via

reinforcement learning. In NIPS, 2003.
14. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Ng. ROS: an open-source robot operating system. In ICRA Workshop on Open

Source Software, 2009.
15. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
16. R. Quinlan. Learning with continuous classes. In 5th Australian Joint Conference

on Artificial Intelligence, pages 343–348, Singapore, 1992. World Scientific.
17. G. Rummery and M. Niranjan. On-line Q-learning using connectionist systems.

Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering
Department, 1994.

18. R. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In ICML, pages 216–224, 1990.

19. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

20. B. Tanner and A. White. RL-Glue : Language-independent software for
reinforcement-learning experiments. JMLR, 10:2133–2136, September 2009.

21. C. Watkins. Learning From Delayed Rewards. PhD thesis, University of Cambridge,
1989.

