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Motivation

Intelligent decision making is the heart of AI

Desire agents capable of learning to act intelligently in diverse
environments

Reinforcement Learning provides a general learning framework

RL + deep neural networks yields robust controllers that learn
from pixels (DQN)

DQN lacks mechanisms for handling partial observability

Extend DQN to handle Partially Observable Markov Decision
Processes (POMDPs)
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Markov Decision Process (MDP)

State
st

Action
at

Reward
rt

At each timestep Agent
performs actions at and receives
reward rt and state st+1 from the
environment

Markov property ensures that
st+1 depends only on st , at

Learning an optimal policy π∗

requires no memory of past states
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Partially Observable Markov Decision Process
(POMDP)

Observation
ot

Action
at

Reward
rt

True state of environment is
hidden. Observations ot provide
only partial information.

Memory of past observations may
help understand true system
state, improve the policy
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Atari Domain

ActionObservation Score

160× 210 state space
→ 84× 84 grayscale

18 discrete actions

Rewards clipped ∈ {−1, 0, 1}

Source: www.

arcadelearningenvironment.org
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Atari Domain: MDP or POMDP?

ActionObservation Score

Depends on the state
representation!

• Single Frame ⇒ POMDP

• Four Frames ⇒ MDP

• Console RAM ⇒ MDP

7



Atari Domain: MDP or POMDP?

ActionObservation Score

Depends on the state
representation!

• Single Frame ⇒ POMDP

• Four Frames ⇒ MDP

• Console RAM ⇒ MDP

7



Atari Domain: MDP or POMDP?

ActionObservation Score

Depends on the state
representation!

• Single Frame ⇒ POMDP

• Four Frames ⇒ MDP

• Console RAM ⇒ MDP

7



Deep Q-Network (DQN)
Q-Values 18

IP1
512

Conv3

Conv2

Conv1 4

84

84

Model-free Reinforcement
Learning method using deep
neural network as Q-Value
function approximator Mnih
et al. (2015)

Takes the last four game screens
as input: enough to make most
Atari games Markov

How well does DQN perform in
partially observed domains?

8



Deep Q-Network (DQN)
Q-Values 18

IP1
512

Conv3

Conv2

Conv1 4

84

84

Model-free Reinforcement
Learning method using deep
neural network as Q-Value
function approximator Mnih
et al. (2015)

Takes the last four game screens
as input: enough to make most
Atari games Markov

How well does DQN perform in
partially observed domains?

8



Flickering Atari

Observation
ot

Action
at

Reward
rt

Induce partial observability by
stochastically obscuring the game
screen

ot =

{
st with p = 1

2
< 0, . . . , 0 > otherwise

Game state must now be inferred
from past observations
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DQN Pong

True Game Screen Perceived Game Screen
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DQN Flickering Pong

True Game Screen Perceived Game Screen
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Deep Recurrent Q-Network

. . . LSTM 512

18

1

84

84

tt − 1
Long Short Term Memory
Hochreiter (1997)

Identical to DQN Except:

• Replaces DQN’s IP1 with
recurrent LSTM layer of
same dimension

• Each timestep takes a
single frame as input

LSTM provides a selective
memory of past game states

Trained end-to-end using
BPTT: unrolled for last 10
timesteps
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DRQN Maximal Activations

Unit detects the agent missing the ball

Unit detects ball reflection on paddle

Unit detects ball reflection on wall
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DRQN Flickering Pong

True Game Screen Perceived Game Screen
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Flickering Pong
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Pong Generalization: POMDP ⇒ MDP

How does DRQN generalize when trained on Flickering Pong and
evaluated on standard Pong?
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Pong Generalization: POMDP ⇒ MDP
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Performance on Flickering Atari Games

Game 10-frame DRQN ±std 10-frame DQN ±std
Pong 12.1 (±2.2) -9.9 (±3.3)

Beam Rider 618 (±115) 1685.6 (±875)
Asteroids 1032 (±410) 1010 (±535)
Bowling 65.5 (±13) 57.3 (±8)
Centipede 4319.2 (±4378) 5268.1 (±2052)
Chopper Cmd 1330 (±294) 1450 (±787.8)
Double Dunk -14 (±2.5) -16.2 (±2.6)
Frostbite 414 (±494) 436 (±462.5)
Ice Hockey -5.4 (±2.7) -4.2 (±1.5)
Ms. Pacman 1739 (±942) 1824 (±490)
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Performance on Standard Atari Games

Game 10-frame DRQN ±std 10-frame DQN ±std
Double Dunk -2 (±7.8) -10 (±3.5)
Frostbite 2875 (±535) 519 (±363)

Beam Rider 3269 (±1167) 6923 (±1027)
Asteroids 1020 (±312) 1070 (±345)
Bowling 62 (±5.9) 72 (±11)
Centipede 3534 (±1601) 3653 (±1903)
Chopper Cmd 2070 (±875) 1460 (±976)
Ice Hockey -4.4 (±1.6) -3.5 (±3.5)
Ms. Pacman 2048 (±653) 2363 (±735)
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Performance on Standard Atari Games
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DRQN Frostbite

True Game Screen Perceived Game Screen
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Generalization: MDP ⇒ POMDP

How does DRQN generalize when trained on standard Atari and
evaluated on flickering Atari?
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Generalization: MDP ⇒ POMDP
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Thanks!

. . . LSTM

1

84

84

tt − 1

LSTM can help deal with
partial observability

Largest gains in generalization
between MDP ⇔ POMDP

Future work understanding
why DRQN does better/worse
on certain games

Source: https://github.com/

mhauskn/dqn/tree/recurrent

Matthew Hausknecht and Peter Stone
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Computational Efficiency

Backwards (ms) Forwards (ms)

Frames 1 4 10 1 4 10

Baseline 8.82 13.6 26.7 2.0 4.0 9.0
Unroll 1 18.2 22.3 33.7 2.4 4.4 9.4
Unroll 10 77.3 111.3 180.5 2.5 4.4 8.3
Unroll 30 204.5 263.4 491.1 2.5 3.8 9.4

Table : Average milliseconds per backwards/forwards pass. Frames refers
to the number of channels in the input image. Baseline is a non recurrent
network (e.g. DQN). Unroll refers to an LSTM network backpropagated
through time 1/10/30 steps.
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