Deep Recurrent Q-Learning for Partially Observable MDPs

Matthew Hausknecht and Peter Stone

University of Texas at Austin

November 13, 2015

Intelligent decision making is the heart of AI

Intelligent decision making is the heart of AI

Desire agents capable of learning to act intelligently in diverse environments

Intelligent decision making is the heart of AI

Desire agents capable of learning to act intelligently in diverse environments

Reinforcement Learning provides a general learning framework

Intelligent decision making is the heart of AI

Desire agents capable of learning to act intelligently in diverse environments

Reinforcement Learning provides a general learning framework

 RL + deep neural networks yields robust controllers that learn from pixels (DQN)

Intelligent decision making is the heart of AI

Desire agents capable of learning to act intelligently in diverse environments

Reinforcement Learning provides a general learning framework

 RL + deep neural networks yields robust controllers that learn from pixels (DQN)

DQN lacks mechanisms for handling partial observability

Intelligent decision making is the heart of AI

Desire agents capable of learning to act intelligently in diverse environments

Reinforcement Learning provides a general learning framework

 RL + deep neural networks yields robust controllers that learn from pixels (DQN)

DQN lacks mechanisms for handling partial observability

Extend DQN to handle Partially Observable Markov Decision Processes (POMDPs)

Outline

Motivation

Background MDP POMDP Atari Domain Deep Q-Network

Deep Recurrent Q-Network

Results

Related Work

Appendix

Markov Decision Process (MDP)

At each timestep Agent performs actions a_t and receives reward r_t and state s_{t+1} from the environment

Markov Decision Process (MDP)

At each timestep Agent performs actions a_t and receives reward r_t and state s_{t+1} from the environment

Markov property ensures that s_{t+1} depends only on s_t, a_t

Markov Decision Process (MDP)

At each timestep Agent performs actions a_t and receives reward r_t and state s_{t+1} from the environment

Markov property ensures that s_{t+1} depends only on s_t, a_t

Learning an optimal policy π^* requires no memory of past states

Partially Observable Markov Decision Process (POMDP)

True state of environment is hidden. Observations o_t provide only partial information.

Partially Observable Markov Decision Process (POMDP)

True state of environment is hidden. Observations o_t provide only partial information.

Memory of past observations may help understand true system state, improve the policy

Atari Domain

 160×210 state space $\rightarrow 84 \times 84$ grayscale

18 discrete actions

Rewards clipped $\in \{-1, 0, 1\}$

Source: www. arcadelearningenvironment.org

Atari Domain: MDP or POMDP?

Atari Domain: MDP or POMDP?

Depends on the state representation!

Atari Domain: MDP or POMDP?

Depends on the state representation!

- Single Frame \Rightarrow POMDP
- $\bullet \ \ \mathsf{Four} \ \mathsf{Frames} \Rightarrow \mathsf{MDP}$
- Console RAM \Rightarrow MDP

Deep Q-Network (DQN)

Model-free Reinforcement Learning method using deep neural network as Q-Value function approximator Mnih et al. (2015)

Takes the last four game screens as input: enough to make most Atari games Markov

Deep Q-Network (DQN)

Model-free Reinforcement Learning method using deep neural network as Q-Value function approximator Mnih et al. (2015)

Takes the last four game screens as input: enough to make most Atari games Markov

How well does DQN perform in partially observed domains?

Flickering Atari

Induce partial observability by stochastically obscuring the game screen

Flickering Atari

Induce partial observability by stochastically obscuring the game screen

$$egin{aligned} & eta_t & ext{with } p = rac{1}{2} \ & < 0, \dots, 0 > & ext{otherwise} \end{aligned}$$

Flickering Atari

Induce partial observability by stochastically obscuring the game screen

$$p_t = \left\{ egin{array}{ll} s_t & ext{with } p = rac{1}{2} \ < 0, \dots, 0 > & ext{otherwise} \end{array}
ight.$$

Game state must now be inferred from past observations

DQN Pong

True Game Screen

Perceived Game Screen

DQN Flickering Pong

True Game Screen

Perceived Game Screen

Outline

Motivation

Background MDP POMDP Atari Domain Deep Q-Network

Deep Recurrent Q-Network

Results

Related Work

Appendix

Long Short Term Memory Hochreiter (1997)

Long Short Term Memory Hochreiter (1997)

Identical to DQN Except:

- Replaces DQN's **IP1** with recurrent **LSTM** layer of same dimension
- Each timestep takes a single frame as input

Long Short Term Memory Hochreiter (1997)

Identical to DQN Except:

- Replaces DQN's **IP1** with recurrent **LSTM** layer of same dimension
- Each timestep takes a single frame as input

LSTM provides a selective memory of past game states

Long Short Term Memory Hochreiter (1997)

Identical to DQN Except:

- Replaces DQN's **IP1** with recurrent **LSTM** layer of same dimension
- Each timestep takes a single frame as input

LSTM provides a selective memory of past game states

Trained end-to-end using BPTT: unrolled for last 10 timesteps

DRQN Maximal Activations

Unit detects the agent missing the ball

DRQN Maximal Activations

Unit detects ball reflection on paddle

DRQN Maximal Activations

Unit detects the agent missing the ball

Unit detects ball reflection on paddle

Unit detects ball reflection on wall

Outline

Motivation

Background MDP POMDP Atari Domain Deep Q-Network

Deep Recurrent Q-Network

Results

Related Work

Appendix

DRQN Flickering Pong

True Game Screen

Perceived Game Screen

Flickering Pong

Pong Generalization: $POMDP \Rightarrow MDP$

How does DRQN generalize when trained on Flickering Pong and evaluated on standard Pong?

Pong Generalization: $POMDP \Rightarrow MDP$

Performance on Flickering Atari Games

Performance on Flickering Atari Games

Game	10-frame DRQN \pm std	10-frame DQN \pm <i>std</i>
Pong	12.1 (±2.2)	-9.9 (±3.3)
Beam Rider	$618 (\pm 115)$	$1685.6 (\pm 875)$

Performance on Flickering Atari Games

Game	10-frame DRQN \pm std	10-frame DQN \pm <i>std</i>		
Pong	12.1 (±2.2)	-9.9 (±3.3)		
Beam Rider	618 (±115)	1685.6 (±875)		
Asteroids	1032 (±410)	$1010 (\pm 535)$		
Bowling	65.5 (±13)	57.3 (±8)		
Centipede	4319.2 (±4378)	5268.1 (±2052)		
Chopper Cmd	1330 (±294)	1450 (±787.8)		
Double Dunk	-14 (±2.5)	-16.2 (±2.6)		
Frostbite	414 (±494)	436 (±462.5)		
Ice Hockey	-5.4 (±2.7)	-4.2 (±1.5)		
Ms. Pacman	1739 (±942)	1824 (±490)		

Game	10-frame DRQN \pm <i>std</i>	10-frame DQN \pm <i>std</i>		
Double Dunk	-2 (±7.8)	-10 (±3.5)		
Frostbite	2875 (±535)	519 (± 363)		

Game	10-frame DRQN \pm std	10-frame DQN \pm <i>std</i>
Double Dunk	-2 (±7.8)	-10 (±3.5)
Frostbite	2875 (±535)	519 (±363)
Beam Rider	3269 (±1167)	6923 (±1027)

Game	10-frame DRQN \pm <i>std</i>	10-frame DQN \pm <i>std</i>		
Double Dunk	-2 (±7.8)	-10 (±3.5)		
Frostbite	2875 (±535)	519 (±363)		
Beam Rider	3269 (±1167)	6923 (±1027)		
Asteroids	1020 (±312)	1070 (±345)		
Bowling	62 (±5.9)	72 (±11)		
Centipede	3534 (±1601)	3653 (±1903)		
Chopper Cmd	2070 (±875)	1460 (±976)		
Ice Hockey	-4.4 (±1.6)	-3.5 (±3.5)		
Ms. Pacman	2048 (±653)	2363 (±735)		

DRQN Frostbite

True Game Screen

Perceived Game Screen

Generalization: $MDP \Rightarrow POMDP$

How does DRQN generalize when trained on standard Atari and evaluated on flickering Atari?

Generalization: $MDP \Rightarrow POMDP$

Outline

Motivation

Background MDP POMDP Atari Domain Deep Q-Network

Deep Recurrent Q-Network

Results

Related Work

Appendix

Related Work

Deep Recurrent Q-Network

- Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. *Neural Comput.*, 9(8):1735–1780.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
 Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
 Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
 I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis,
 D. (2015). Human-level control through deep reinforcement
 learning. *Nature*, 518(7540):529–533.
- Narasimhan, K., Kulkarni, T., and Barzilay, R. (2015). Language understanding for text-based games using deep reinforcement learning. *CoRR*, abs/1506.08941.
- Wierstra, D., Foerster, A., Peters, J., and Schmidthuber, J. (2007). Solving deep memory POMDPs with recurrent policy gradients.

Thanks!

LSTM can help deal with partial observability

Largest gains in generalization between MDP \Leftrightarrow POMDP

Future work understanding why DRQN does better/worse on certain games

Source: https://github.com/ mhauskn/dqn/tree/recurrent

Matthew Hausknecht and Peter Stone

Outline

Motivation

Background MDP POMDP Atari Domain Deep Q-Network

Deep Recurrent Q-Network

Results

Related Work

Appendix

Computational Efficiency

	Backwards (ms)			Forwards (ms)		
Frames	1	4	10	1	4	10
Baseline	8.82	13.6	26.7	2.0	4.0	9.0
Unroll 1	18.2	22.3	33.7	2.4	4.4	9.4
Unroll 10	77.3	111.3	180.5	2.5	4.4	8.3
Unroll 30	204.5	263.4	491.1	2.5	3.8	9.4

Table : Average milliseconds per backwards/forwards pass. Frames refers to the number of channels in the input image. Baseline is a non recurrent network (e.g. DQN). Unroll refers to an LSTM network backpropagated through time 1/10/30 steps.