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Kinematic coordinations 
capture learning 
during human–exoskeleton 
interaction
Keya Ghonasgi 1, Reuth Mirsky 2, Nisha Bhargava 3, Adrian M. Haith 4, Peter Stone 5,6 & 
Ashish D. Deshpande 1*

Human–exoskeleton interactions have the potential to bring about changes in human behavior 
for physical rehabilitation or skill augmentation. Despite significant advances in the design and 
control of these robots, their application to human training remains limited. The key obstacles to the 
design of such training paradigms are the prediction of human–exoskeleton interaction effects and 
the selection of interaction control to affect human behavior. In this article, we present a method 
to elucidate behavioral changes in the human–exoskeleton system and identify expert behaviors 
correlated with a task goal. Specifically, we observe the joint coordinations of the robot, also referred 
to as kinematic coordination behaviors, that emerge from human–exoskeleton interaction during 
learning. We demonstrate the use of kinematic coordination behaviors with two task domains 
through a set of three human-subject studies. We find that participants (1) learn novel tasks within the 
exoskeleton environment, (2) demonstrate similarity of coordination during successful movements 
within participants, (3) learn to leverage these coordination behaviors to maximize success within 
participants, and (4) tend to converge to similar coordinations for a given task strategy across 
participants. At a high level, we identify task-specific joint coordinations that are used by different 
experts for a given task goal. These coordinations can be quantified by observing experts and the 
similarity to these coordinations can act as a measure of learning over the course of training for 
novices. The observed expert coordinations may further be used in the design of adaptive robot 
interactions aimed at teaching a participant the expert behaviors.

Robotic exoskeleton-based training has the potential to affect persistent changes in human  behavior1 making 
these devices uniquely suited for rehabilitation post neurological  injury2–4. For example,  Harmony5 is a bi-manual 
upper-body exoskeleton developed for  assessment6,7 and  rehabilitation8,9 post neurological injuries such as stroke. 
Robots like the Harmony exoskeleton allow for reliable sensing and robust control of close interactions between 
the human body and the robotic system. Though there has been significant progress in designing robots for 
rehabilitation, applying these robots to train human behavior remains an open challenge due to the difficulty of 
predicting the effect of physical interaction on the combined human–robot system’s  behavior10. The complex-
ity of the human neuromuscular system and its stochastic motor behaviors coupled with the dynamics of the 
exoskeleton limits our understanding of this interaction. In this article, we address the challenge of quantifying 
human–exoskeleton interaction through the observation of kinematic behavioral changes compared to a known 
successful coordinated behavior. We demonstrate the efficacy of our method in the context of novel motor task 
training. We further explore the use of our metric to quantify domain knowledge in the form of expert behav-
iors learned for a given task goal. Characterizing human–robot interaction effects using our method could 
significantly improve the assessment of robotic rehabilitation and translate expert performance to effective robot 
interactions for human learning, where the robot can encourage the patient to move in a manner closer to the 
known successful  coordinations11,12.
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The field of motor learning approaches the challenge of quantifying the neuromuscular system’s behavior 
through observation of performance. Research in this area largely focuses on cognitive  learning13,14 or relatively 
simple static motor  learning15–17. However, dynamic behaviors that are representative of day-to-day motor learn-
ing and neurorehabilitation have received less  attention18,19, and even fewer studies consider dynamic interactions 
between a human and an  exoskeleton20–22. Dynamic task studies use “extrinsic” performance metrics such as 
task success or  accuracy23–25, which are easy to measure and accurately represent the effect of human move-
ment on task outcome. But these metrics fail to capture the underlying neuromuscular behavior that affects the 
performance. “Intrinsic” metrics instead capture the underlying motor behavior for example by considering 
joint  kinematics26,27. Thus, intrinsic metrics together with extrinsic metrics afford a more complete picture of 
performance by observing both human behavior and task outcomes respectively. In this article, we perform this 
comprehensive analysis using extrinsic metrics from the task environment (such as virtual reality or camera-
based hand-tracking tasks, Fig. 1a) and intrinsic metrics from the Harmony exoskeleton (Fig. 1b). We aim to 
develop generalizable metrics of performance that improve as training progresses (Fig. 1c), thereby allowing us 
to characterize learning.

The study of intrinsic metrics has shown that humans employ dimensionality reduction to simplify neuromus-
cular control. For example, humans coordinate their joints to move in a smooth and controlled manner despite 
over-actuation in the joint space for cartesian-space tasks like  reaching28–30. These coordination behaviors, also 
referred to as kinematic coordinations, are time-independent features of behavior exhibited during a movement. 
Principal component analysis (PCA) is commonly used to identify these coordinations in motor learning litera-
ture. The same method has been used in the control of exoskeletons to imitate a physical therapist’s  assistance31, 
to discourage certain “unhealthy” coordination  behaviors22, or for assistive path  planning32. These studies have 
shown kinematic coordination behaviors may emerge through, and can be affected by, human–exoskeleton 
interaction. However, these studies don’t consider the behavioral information encoded within these coordina-
tions. We posit that these joint coordinations emerge in exoskeleton interactions as a consequence of learning 
and may provide a potential avenue for exoskeleton intervention design based on expert behaviors. The novel 
idea of this article is to elucidate task-specific domain knowledge in the form of expert interaction behaviors 
through kinematic coordination behaviors. Specifically, we present a method to quantify the human–robot 
system’s joint coordinations, identify expert task-specific behaviors, and measure similarity to these desired 
coordinations over the course of learning.

In this article, we show that humans learn certain synergistic behaviors over time and that task goals, task 
instructions, and targeted practice all affect the learned behavior. We validate kinematic coordination behav-
iors as a measure of the human–robot system’s dynamic interaction behavior through four results across three 
human-subject studies using the Harmony exoskeleton. First, we show that participants learn a novel dynamic 
task to an equivalent extent both with and without the exoskeleton as measured by changes in extrinsic metrics 
within participants (Result 1). This result indicates that the robot does not deter learning, further verifying it as 
a suitable platform for the study of human–robot interaction through novel task learning. Next, we show that 
successful behaviors employed by a given participant tend to converge as learning occurs (Result 2). Participants 
appear to learn joint coordinations that are correlated with success and learn to employ them more effectively. 
Third, we compare these learned “successful” coordinations to other movement attempts of the same task and 
find convergence to these participant-specific coordination behaviors through the course of training regardless 
of whether participants achieve success (Result 3). Finally, we construct task-specific kinematic coordination 
behaviors from learned successful attempts across different participants and find that experts converge to these 
coordinations for certain task goals (Result 4). These constructed coordinations present a novel method to 
quantify domain knowledge toward robot intervention design. For each of the results 2, 3, and 4, a reference 
coordination behavior is defined, either for a given participant or task goal, and compared to other movement 
attempts using a kinematic coordination distance metric such that a lower distance indicates a similarity to 
the reference joint coordination behavior. Together, these results show that kinematic coordinations are good 
indicators of learning, and further, that these coordinations encode expert behaviors that may be beneficial to 
the design of robotic interventions for exoskeleton-based motor training.

In the following sections, we present a comprehensive analysis of kinematic coordination as an intrinsic 
performance metric for the characterization of human–exoskeleton interaction behaviors. We find that humans 
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Figure 1.  We observe the effect of learning in (a) the task space (score and end effector speed) measured in 
a virtual task environment, and (b) the joint space (joint angles, velocities, and torques) measured using the 
Harmony exoskeleton’s sensors. The expected trends in performance change over the course of training seen in 
(c) may vary, but participants are all expected to improve and become experts crossing a threshold performance 
level.
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learn to coordinate the joints of the Harmony exoskeleton to leverage its dynamics. Further, the manner of 
coordination converges as task performance improves, suggesting that these observed coordination behaviors 
are a measure of the implicitly learned behavior. Finally, we identify task-specific coordinations that some expert 
participants converge to over time. Our overarching goal is to use the information encoded in these kinematic 
coordinations to motivate exoskeleton interventions for motor training and rehabilitation. The same robot that 
measures the kinematic coordinations may teach expert behaviors to novices, through carefully designed interac-
tion control, potentially resulting in faster and larger improvements in task performance. The characterization 
of dynamic task learning using kinematic coordination behaviors opens up many novel avenues for robot-based 
training by targeting the learning of coordinations rather than extrinsic performance improvement, includ-
ing coordination-based training effect assessment or coordination-focused robot intervention design. Such 
coordination-focused approaches may be applied to exoskeleton-based  rehabilitation12 as well as the design and 
control of other physical human–robot interaction devices like robotic prostheses and surgical robots.

Results
To facilitate our study of human behavior through motor training, we selected tasks that were both dynamic and 
challenging, ensuring learning through repeated practice. Two task platforms are used in our studies: (1) the 
2-D video game Reach  Ninja33 (Fig. 2a,b), and (2) a simplified virtual reality implementation of the Kendama 
 task34 (Fig. 2e). In the Reach Ninja task, the individual’s goal is to maximize their score by using the red hand-
tracking cursor to hit the positive scoring (blue) targets while avoiding the negative scoring (black) ones. In the 
virtual kendama task, participants aim to swing the ball attached to a cup through a string and catch it in the cup. 
Participants are trained to perform the task using two distinct strategies: front swing (Fig. 2f) and side-swing 
(Fig. 2g). Both of these tasks require the participants to learn a new dynamic motor behavior, rather than adapt 
from previously learned tasks. These tasks are complementary to one another on at least three dimensions: (a) 
the Reach Ninja task is sequential and requires the human to learn a long-term strategy, as opposed to the short-
term dynamic Virtual Kendama task; (b) in Reach Ninja the end effector is in the human’s hand, while in Virtual 
Kendama the controller is a rigid extension of the robot end effector; and (c) in Reach Ninja the human needs to 
reason about several objects that move in the environment, whereas in Kendama there is only one moving object. 
These differences mean that together, the two tasks cover a wide variety of potential properties that can affect 
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Figure 2.  Reach ninja task (a,b) a webcam tracks the movement of an object held in the player’s hand. The 
player’s goal is to maximize their score by moving the red cursor (tracking their hand movement) to hit the blue 
(positive) targets while avoiding the black (negative) targets. Participants train for roughly the same amount of 
time on this task in study 1 without the exoskeleton (a,c) and in study 2 while wearing the exoskeleton (b,d). 
Virtual simplified Kendama task (e) on the left is the task as observed through the VR headset while on the right 
a participant attempts the task in VR while wearing the Harmony exoskeleton. The goal of the task is to move 
the Kendama cup so that the ball is swung up and caught in the cup. (f) and (g) show the front-swing and side-
swing strategies respectively. Participants are trained on at least 200 attempts in 4 blocks of 50 each (h).
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learning. Thus, by observing behavioral changes due to learning in these two domains, we validate the robust-
ness of task-dependent extrinsic metrics and generalizable intrinsic metrics to identify behavior changes due to 
learning regardless of these varying properties. In particular, we demonstrate the generalizability of our kinematic 
coordination metric to both task domains despite the differences in the task goals and movement behaviors.

We present results from three human-subject studies. The first study considers novel task learning without 
robot interaction, while the other two consider learning while using the Harmony  exoskeleton5. In both robot 
studies presented in this article, the Harmony exoskeleton is set to a gravity-assistance mode where it passively 
follows the wearer’s movements while accounting for its own weight. Only naive participants unfamiliar with the 
tasks are recruited for the experiments. Extrinsic performance metrics are used to evaluate performance changes 
before and after the training to confirm learning and intrinsic metrics are designed to characterize behavioral 
changes as learning occurs. The three studies presented below in detail are Reach Ninja, no robot (Study 1: 
RNNR, Fig. 2c), Reach Ninja, with robot (Study 2: RNWR, Fig. 2d), and Virtual Kendama, with robot (Study 3: 
VKWR, Fig. 2h). We use repeated measures ANOVA for statistical analysis and reject the null hypothesis on the 
significance condition p < α where α = 0.05 . All statistically significant results are highlighted in Table 1. Note 
that not all hypotheses presented in the Methodology section are discussed in the manuscript. The hypotheses 
that are not discussed did not show a significant result, thereby not allowing us to reject the null hypotheses. 
These results are omitted in the discussion as they do not add much and do not change the key contributions 
of the article. Further, we only present the p-values of the relevant hypotheses as they are sufficient to establish 
the validity of using kinematic coordination behaviors to capture learning effects. Future studies will also report 
effect size as we focus more on the learning effects themselves. The same details for the current results can be 
found in the supplementary material available along with the article.

Result 1: Individuals learn to perform novel dynamic upper-body tasks while wearing an 
upper-body exoskeleton. The first milestone in this research is showing that donning an exoskeleton 
does not hinder learning when compared to a similar training process without the exoskeleton. We present 
results comparing two similar task-learning experiments with and without the Harmony exoskeleton. The goal 
of such a comparison is to establish that the exoskeleton is a feasible platform for the study of motor learning. 
Though the exoskeleton provides several sensing and actuation capabilities it does offer physical limitations in 
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Figure 3.  Extrinsic performance metrics on the Reach Ninja task. Each colored dashed line refers to a different 
participant. The solid black line with square markers shows the averages across participants in each block and 
the error bars show the standard error in the pre-training and post-training blocks respectively. The cross-
effect of No Robot (a,c) versus With Robot (b,d) on pre- versus post-training performance shows a null result, 
suggesting that there was no significant effect of the exoskeleton on learning effects. The exoskeleton does not 
hamper task learnability.

Table 1.  p-values for statistically significant comparisons. Note that in this article, p-values are considered 
significant if they lie below α = 0.05 . Upon applying Holm-Bonferroni correction the new threshold for 
significance across 21 hypotheses would be α = 0.0024.

Study Hypothesis Metric Factors p-value

1 H1 Final score percentage Pre-training Post-training < 0.001

1 H1 Mean speed Pre-training Post-training 0.0082

2 H1 Final score percentage Pre-training Post-training < 0.001

2 H1 Mean speed Pre-training Post-training 0.0043

2 H9 KCD to final success Pre-training Post-training < 0.001

3 H4 Success rate Initial Learned < 0.001

3 H7 Success rate Session A vs B (initial) 0.01

3 H10 KCD to final success Initial vs Learned < 0.001

3 H13 KCD to reference success Initial vs learned < 0.001

3 H21 KCD to strategy-specific success Initial > Learned (Side-swing) 0.009
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how dynamic tasks can be performed, such as with the available degrees of freedom and inertia effects. The com-
parison presented in this result shows that the exoskeleton has no direct detrimental effects on skill acquisition. 
The comparison of the two cases is presented with the Reach Ninja task. We also present improvements observed 
in training on the Virtual Kendama task while wearing the exoskeleton to establish the task is learnable.

Reach Ninja task. Participants learn to perform the Reach Ninja task under two different conditions: (1) with-
out the robot (Fig. 2a), and (2) with the robot (Fig. 2b). In the no-robot case, participants practice a timed ver-
sion of the task with their dominant arm, whereas in the robot case, participants practice an episodic version 
of the task with their non-dominant arm. The two experimental protocols are matched so that participants get 
roughly similar amounts of training time in-game (training episode length is approximately 4 s on average). 
Some results from each of these studies have been presented independently in prior  works33,35. Here, we present a 
broader comparison between the results of the two studies to identify the effect of the exoskeleton on the changes 
in performance through repeated practice on the Reach Ninja task. Two extrinsic performance metrics are used 
to measure learning:

Final score percentage: final score of a given attempt as a percentage of the maximum possible score averaged 
across all attempts in a block (%).

Mean speed: average speed of the player’s hand during a given task attempt (px/s).
As presented in prior  works33,35, in both studies, participants improve in the chosen extrinsic performance 

metrics (Fig. 3), demonstrating higher accuracy (final score percentage) and rigor or confidence (mean speed) 
in their movements with p < α . Additionally, in this paper we present results from a two-way repeated measures 
ANOVA, with pre-training and post-training measurements as a within-subject factor and no-robot versus 
robot as a between-subject factor. Combining the results from these two studies shows no significant effect of 
the exoskeleton on learning ( p = 0.377 > α ). This null result suggests that in both cases, with and without the 
exoskeleton robot, participants were able to learn the reach ninja task by themselves.

It should be noted that there were some differences in the overall experimental setup between the two cases in 
addition to the exoskeleton, particularly in the definition of an attempt, and the total experiment time. Further, 
in both cases, participants were given one of two types of training. However, as there was no effect of the train-
ing on the performance in either study, we consider all participants from one study to be part of a single group 
(either with or without the robot). With this larger number of participants, we still see no significant effect of 
the exoskeleton on the overall performance improvement. This null result does not necessarily confirm that the 
learning in the two experimental conditions is identical. However, as the training time was roughly the same, 
and the task goal and dynamics remained unchanged, we conclude that the robot had no significant negative 
effect on task learnability. This result validates our use of the exoskeleton to study learning and eventually as a 
platform for motor training for skill acquisition. We do not consider an in-depth analysis of the specific changes 
in the performance metrics here as it is beyond the scope of this paper. However, future analyses of the Reach 
Ninja task will include larger subject populations to increase our confidence in the statistical results. In the rest 
of the paper, we present results from human-subject experiments conducted with the exoskeleton.

Kendama task. Participants train on the simplified virtual reality Kendama task by repeatedly attempting to 
perform the task while wearing the exoskeleton. A training session consists of 200 attempts split into four blocks 
of 50 with short breaks in between each block to prevent fatigue. Participants are asked to perform the task with 
one of two strategies, side swing or front swing during a session of the task. They then repeat the experiment on 
a different day using the other movement strategy. In total, data is collected for 21 participants performing two 
sessions of training with 200 attempts in each session, except for one participant for whom only data from the 
first session is considered. A total of 8 participants learn the task using the front swing strategy in their first ses-
sion, and 13 participants learn the side swing strategy in their first session.
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Figure 4.  Success rate in the Virtual Kendama task: (a) Front swing in session A, (b) Side swing in session 
A, (c) Side swing in session B, (d) Front swing in session B. Results in (a) and (c) are from the same group 
of participants, and (b) and (d) are from the same group of participants. Each colored dashed line refers to a 
different participant. The solid black line with square markers shows the averages across participants in each 
block and the error bars show the standard error in the initial and learned blocks respectively. In all cases, 
session A or B, side swing or front swing strategy, participants improved their success rate (number of successes 
in a block of 50 attempts) from the initial (first 50) to the learned (last 50) attempts.
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For each attempt, success is determined as a binary value: if the ball is caught in the cup and held for at least 
1 s, the attempt is considered successful. To illustrate changes in the player’s performance over time, the number 
of successes in the first 50 attempts and the last 50 attempts is plotted in Fig. 4. The number of successes in the 
first 50 attempts is referred to as the initial success rate, while the number of successes in the last 50 attempts is 
referred to as the learned success rate. The change from the initial to learned success rates is evaluated for all the 
participants in both sessions of the experiment. The results (Fig. 4) show a statistically significant increase in the 
success rate metric across all participants regardless of their movement strategy (effect size = 0.86, p < 0.001). 
Participants learned to perform the kendama task while wearing the exoskeleton, and they were able to do so 
regardless of the chosen task strategy. There was a statistically significant difference between the initial perfor-
mance in session A compared to session B (effect size = 0.36, p < 0.001), where participants performed better 
initially in session B. However there was no cross-effect of the session, meaning that the relative change in per-
formance from initial to learned was not affected by the session. This result indicates participants were able to 
transfer some learning from the first session to the second and were able to then improve upon their performance 
to the same degree in the second session.

Overall, we find that extrinsic metrics serve as a good measure to compare performance before and after 
training and that this performance is not hindered by training with an exoskeleton. The improvements in these 
task-specific metrics for both task domains are indicative of learning. This result is a crucial step in validating 
the use of the exoskeleton for further in-depth performance analysis.

Result 2: Exoskeleton wearers converge to certain coordination behaviors during successful 
attempts. The second milestone in this article is presenting the notion of converging coordination behav-
iors as a proxy for success and how it is evaluated in different settings. We show that regardless of the task 
goal, humans converge to joint coordinations that are correlated with success in their post-training or learned 
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Figure 5.  Reach Ninja kinematic coordination distance (KCD) from reference final success. [(a) final success, 
(b) and (c) non-final successes] are some example coordinations from a reference participant and (d) shows 
the average distance across all participants. Each colored dashed line refers to a different participant. The solid 
black line with square markers shows the averages across participants in each block and the error bars show the 
standard error in the pre-training and post-training blocks respectively. On average, participants decrease the 
KCD from the reference final success from pre-training successes to post-training successes.
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Figure 6.  (a,b) show representative successful coordinations in the final block for two representative 
participants in their respective session A. (c,d) show initial and learned distance to reference success for the 
Virtual Kendama task in session A and session B respectively. Each colored dashed line refers to a different 
participant. The solid black line with square markers shows the averages across participants in each block and 
the error bars show the standard error in the initial and learned blocks respectively. In general, participants 
showed a decreasing trend in distance from reference success from pre/initial performance to post/learned 
performance in both the Reach Ninja and Kendama tasks.
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attempts. Note that these coordination behaviors may not be consistent between the tasks, or even when using 
a different strategy within the same task. Yet, participants always demonstrate convergence to their respective 
success-correlated coordination behaviors.

The improvement in the extrinsic performance of the Reach Ninja and Kendama tasks suggests that 
participants learn the task and that the behavior in post-training towards the end of the experiment is 
representative of the learned behavior. Joint angle position data from both studies are used to identify a 
convergence toward “successful” coordination behaviors. The last successful behavior (representing the most 
learned behavior) for a given training session and participant is used as a reference coordination and compared 
to all other successes in the initial and learned attempts in the same session. The kinematic coordination distance 
 metric35 (Eq. 1) used to compare two sets of kinematic coordination behaviors from distinct attempts measures 
how dissimilar the two behaviors are.

where PF and PX are the principal component coordination behaviors from two different movements F and X with 
m and n principal components respectively. With i ∈ (1,m), j ∈ (1, n) . DPF ,PX , this equation gives the minimum 
distance between any pair of vectors between the two subspaces PF and PX . A lower distance indicates a higher 
similarity between the two behaviors. The distance of the final successful coordination PF (Fig. 5a) from other 
coordinations PA and PB in Fig. 5b,c as measured by Eq. (1) is 0.67 and 0.78 respectively. This metric is evaluated 
and averaged across each successful movement in the pre-training or initial attempts and the remaining successful 
movements in the post-training or learned attempts after training. Results for this comparison are demonstrated 
for the Reach Ninja task in Fig. 5 and the Virtual Kendama task in Fig. 6.

As presented in our prior  work35, participants in the Reach Ninja study demonstrate a decrease in the kin-
ematic coordination distance from a reference success as learning occurs, decreasing from initial to learned 
performance ( p < 0.001 ). This result indicates that despite the high variability in task performance, participants 
learn to leverage certain joint coordination behaviors as they improve upon the task. In this article, we addition-
ally consider the Kendama task comparing the final learned successful movement behavior against successes in 
the initial block and the successes in the final block (except the final success). The coordination distance from 
the reference behavior also decreases on average from the initial to learned performance (effect size = 0.68, 
p < 0.001 ). This result is true for both task strategies used by participants, suggesting that they are able to modify 
their joint coordination for different movement patterns towards the same task goal.

The key contribution in this result is the validation of using kinematic coordination as a measure of perfor-
mance change in different task domains. Given the differences in the reach ninja and virtual kendama tasks, 
as well as the different types of virtual kendama strategies, the consistent results demonstrate the robustness of 
our method for the characterization of kinematic changes in task performance correlated with skill acquisition. 
Based on the reduction in kinematic coordination distance to the final success in both tasks, we conclude that 
improvement in extrinsic performance of the human–exoskeleton system is accompanied by an increase in 
success-correlated joint coordination similarity over time. Specifically, as participants learn a task, regardless of 
the specific task or movement strategy, they move with increasingly similar joint coordination as they succeed at 
the tasks. While similar metrics have been used in the past, the goal of this result is to validate the use of extrinsic 
metrics in the context of training with an exoskeleton. Further, these results provide us with a baseline for the 
expected change in performance as participants learn. This baseline allows us to identify kinematic measures of 
performance that are correlated with these extrinsic performance improvements.

Result 3: Convergence is a consequence of learning over time. The results from the Reach Ninja 
and Virtual Kendama kinematic coordination analyses raise an important question about whether the learning 
process (and not just successes) can be characterized by success-correlated coordination behaviors. Specifically, 
if participants converge toward certain learned joint coordination behaviors while succeeding over time, is the 
same behavior observed in all learned block attempts as a result of participants learning the coordination itself? 
The Reach Ninja task does not allow for the identification of a specific movement attempt when not defined as 
a success. However, having validated the use of the final success as a reference, and given the more structured 
Virtual Kendama task, we can compare a reference success-correlated behavior to all attempts of the task regard-
less of success. To this end, we define a general successful behavior constructed by averaging across all success-
ful movements in the learned block and repeat the analysis performed with only the final successful behavior 
as a reference. Examples of the averaging process for two representative participants are shown in Fig. 7a,b. By 
averaging across different successful attempts, we capture more of the variability of the movements and avoid 
comparing against noisy data from a single attempt. PCA is used on the reference kinematic signals averaged 
across all successful attempts in the final block, and the resulting kinematic coordination is used as the reference. 
This reference coordination can be compared against all attempts in a session to identify trends in the data. Note 
that a similar analysis is impossible to perform with the Reach Ninja task as it is currently designed.

Based on earlier results, we expect that participants will display a decreasing trend in the distance from this 
generalized reference coordination regardless of whether a given attempt is successful. To capture this trend 
and confirm statistical significance, we average the distance from the reference coordination across all attempts 
in the initial block and the failed attempts (all attempts except successes) in the final block. Final block suc-
cesses are omitted to avoid bias. The averaged distance decreases from initial attempts to learned attempts, as 
shown in Fig. 7c–f. Repeated measures ANOVA is used to evaluate the change from initial to learned distance 
(within-subject) from reference coordination across participants in both the front swing and side swing groups 
(within-subject) regardless of session number. The results show that there is a statistically significant decrease 

(1)DPF ,PX = mini,jsin(φi,j) = mini,j
√

(1− (ui · vi)2),
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in the distance (increasing similarity to the reference) from initial to learned behaviors in both groups (effect 
size = 0.78, p < 0.001).

These results show that participants converge to a participant-specific “successful” behavior over time. 
Specifically, we construct a success-correlated performance using a given participant’s successful movement 
behaviors and find that the participant does indeed converge to this behavior as they learn. This result only 
compares the successful behaviors of a given participant against their own performance. However, this method of 
constructing success-correlated coordination behaviors allows us to further consider the construction of expert 
successful behaviors as addressed in the next result.

Result 4: Experts may converge to strategy-specific kinematic coordination. The overarching 
goal of the current study is to identify avenues for exoskeleton intervention that may benefit the motor learn-
ing process. To this end, we aim to identify expert behaviors that can inform the intervention design for novice 
training. Given the high-dimensional nature of the human–robot system and the dynamic nature of the vir-
tual kendama task, participants could perform a strategy-specific movement using many different coordination 
behaviors. For example, we observe participants succeed at the side-swing strategy with different coordination 
behaviors throughout their training, as evidenced by successes that have large KCD relative to their successful 
coordination (initial performance in Fig. 7). Result 3 suggests that as participants get better at the task, they 
converge to a specific coordination behavior that may or may not be similar across participants.

Pilot experiments with the virtual kendama task suggested that participants converged not only to a partici-
pant-specific coordination behavior but that this behavior was similar across different participants who became 
experts at a given strategy. Based on this interesting pilot observation, we hypothesize that we can construct strat-
egy-specific coordination behaviors from a sufficiently large dataset of participants and that expert participants 
will converge to these behaviors as they learn. We evaluate this hypothesis by first constructing strategy-specific 
joint coordination behaviors (using data from study 3) and comparing them against the initial and learned block 
attempts across participants who become experts at the end of training (at least 10 successes in the final block). 
The successful movements in the last 10 attempts for the first session of every participant are averaged for a given 
strategy group similar to the averaging process within a participant for the previous result. The strategy-specific 
averaged joint angle behaviors are then decomposed using PCA. This strategy-specific coordination is then com-
pared to initial and learned performance for experts (at least 10 successes in the learned block). The constructed 
reference coordinations are represented in Fig. 8a,b, and the results of the comparison are shown in Fig. 8c,d.

Note that these behaviors are not the only way by which success can be achieved, but rather are possible 
coordination behaviors that we expect expert participants to converge to. An important critique of identifying 
coordination behaviors across participants is that any common behaviors may be attributed to the participants 
learning the robot’s dynamics rather than the strategy. However, the distinction between the front-swing and 
side-swing expert strategy coordination behaviors shows that participants are learning to behave in different 
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Figure 7.  (a,b) show the end-effector time-correlated displacement in each of the robot’s 7 joint angles in 
time (zeroed to the start of a movement block for visualization) for a front-swing and a side-wing participant 
respectively. All gray lines represent unsuccessful attempts whereas green lines represent successful attempts, 
and the dashed black line represents the average on the final block successes used to construct the reference 
successful coordination for the two representative participants. The comparison of the constructed reference 
coordination against initial and non-successful learned coordination are shown in (c) front swing session A, (d) 
side swing session A, (e) side swing session B, (f) front swing session B. In all cases, participants perform more 
similarly to the reference successful behavior in the learned attempts compared to the initial attempts.
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ways given strategy-specific instructions. In this condition where participants are instructed to follow a specific 
strategy, the strategy becomes a part of the task parameters.

We conduct a 2-way repeated measures ANOVA with movement type (front-swing/side-swing) as a between-
subject factor and trial type (initial/learned) as a within-subject factor. The analysis does not show a significant 
effect of the trial type (p > 0.05). Note that there are 8 front-swing experts and 8 side-swing experts. There is 
high variability in the distance to strategy-specific coordinations for the front-swing group suggesting experts 
were able to succeed with a variety of strategies. However, six expert participants in the side-swing group show a 
decreasing trend of distance to side-swing coordination from initial to learned performance. To account for high 
variability, a post-hoc directed paired t-test was conducted for each of the front-swing and side-swing groups. 
The tests considered initial versus learned performance and specifically queried whether the mean of the Learned 
data points was lower than that of the Initial data points within a strategy. These t-tests revealed that there was 
indeed a statistically significant decrease in the distance to strategy reference in the side-swing group (p = 0.044) 
but not in the front-swing group. These results indicate that participants who become experts in the side-swing 
strategy in their first session tend to converge to the same kinematic coordination over time. More generally, 
we identified a strategy specific reference coordination behavior across different participants, and demonstrate that 
expert participants in one training group tend toward this coordination as they practice the same task goal.

Discussion
In this paper, we present evidence that humans learn to perform novel dynamic tasks in an exoskeleton 
environment by coordinating the robot’s joints in a time-independent but task-dependent manner. Changes in 
the observed kinematic coordination behaviors and comparisons to reference learned behaviors suggest that 
participants use feedback in the form of task performance to converge toward success-correlated behaviors over 
time. Additionally, our results suggest that for certain task goals participants converge to the same coordination 
behavior as they become experts at the task. Using two task domains, Reach Ninja and Virtual Kendama, and 
the Harmony exoskeleton, we validate the robustness of our proposed PCA-based kinematic coordination 
identification method, the kinematic coordination distance metric, and their relevance to the quantification of 
task-specific expert motor behavior.

We first show that performance metrics such as normalized scores and success rates allow for a superficial 
assessment of  learning33. As training progresses, these performance metrics improve, indicating that participants 
learn to perform the task more accurately and efficiently. We further find that the introduction of the exoskeleton 
in the learning environment does not significantly hinder learning as evidenced by the null effect of the robot 
on learned performance. However, we find that these performance metrics provide a partial picture of learning 
by observing the effect of human behavior on the environment. We complete this picture by characterizing the 
underlying human behavior using data from the exoskeleton’s sensors. Joint coordination behaviors identified 
using PCA on the joint angle signals allow for the characterization of intrinsic behavioral changes associated 
with extrinsic indicators of  learning35. Thus, we present a comprehensive analysis of both intrinsic and extrinsic 
performance toward the identification of learning during human–exoskeleton interaction. We also present results 
that suggest kinematic coordination may be a good representation of locally optimal movement behaviors for a 
given task goal as observed in expert performers.

In prior work, we presented the use of our intrinsic performance metric for successful movement behaviors for 
one task domain. In this paper, we validate the prior method in a new task domain demonstrating its robustness, 
and expand it further to assess general movement behaviors and not just successful ones. Specifically, our results 
show that the learning trends observed in the reach ninja task are not task-specific or random, as they are also 
identified in the two sub-cases of the virtual kendama task (side-swing and front-swing). In addition, we present 
evidence of learning in movements that did not necessarily result in success, thus improving our ability to 
quantify skill in novice participants. Most importantly, we construct task-specific coordination behaviors that 
may encode expert domain knowledge per some of our results. Since these coordinations are distinct for the 
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Figure 8.  (a,b) show the strategy-specific coordination behaviors constructed from learned successes (i.e. 
successful movements in the final 10 attempts of the session) across all participants for the front-swing and 
side-swing strategies respectively. Kinematic coordination distance (KCD) from strategy-specific coordination is 
used to compare expert participants against these coordinations as seen in (c) for the front-swing and (d) for the 
side-swing. These comparisons omit the attempts that are used to construct the strategy-specific behavior. In the 
side-swing case, participants perform more similarly to the reference strategy-specific behavior in the learned 
attempts compared to the initial attempts.
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two task instructions (side-swing versus front-swing), we conclude that participants are not only learning the 
robot dynamics over time but also learning strategy-specific coordination behaviors. We observe that though 
participants are explicitly instructed to perform a specific strategic movement, we find that success can be 
achieved for a given strategy with different coordination behaviors. For example, in the front-swing case, not all 
experts converge to the same across-participant behavior. Thus, the strategy instruction acts as a task parameter, 
where participants can still perform the task with different coordination behaviors given the same high-level 
movement goal. However, in the side-swing case, we do find experts converge to the corresponding coordination 
behavior, suggesting the observed behavior is a preferred solution for that particular strategy. This additional 
result suggests that for certain task and movement goals, we may quantify across-participant success-correlated 
coordination behaviors from expert data. The key takeaway from the results of the studies presented in this paper 
is that as participants learn, they converge toward certain robot joint coordination behaviors correlated with 
success. Improvements in task performance (score, success/failure) are correlated with convergence to these 
coordinations. Moreover, certain coordination behaviors may encode ‘optimal’ behaviors for a given task goal 
as evidenced by similarity across expert participants.

The goal of this article is to systematically validate and test the robustness of kinematic coordination behaviors 
as a measure of motor behavior and learning in the human–exoskeleton system. To this end, we highlight the 
need to perform systematic and controlled experiments that validate the robustness of our method. For example, 
participants in study 3 are given explicit high-level instructions on how to perform the task. The goal of such a 
controlled study is to establish the usability of kinematic coordination to identify experts for a given strategy. 
This article provides the necessary validation and serves as a foundation for our future work that will address 
questions regarding training assessment as well as design.

While the current results present promising evidence in the use of kinematic coordination for skill assessment, 
they also raise several new questions on the nature of learning and the effect of task parameters. For example, 
while expert participants converge to similar coordination in the side-swing Virtual Kendama task, the same is 
not observed in the front-swing Virtual Kendama experts. This discrepancy in results could have two possible 
explanations. First, the number of expert participants is much lower than the total number of participants since 
not everyone was able to achieve at least 10 successes in their final training block. Second, there is some indication 
that participants in the front-swing group (6 experts out of 8 participants) are more successful at the task overall 
than those in the side-swing group (5 experts out of 13 participants), suggesting that the front-swing strategy is 
easier and could be performed with more number of distinct coordination behaviors than the side-swing strategy. 
Due to the scope of the article, we do not focus on answering these kinds of learning-focused questions and 
instead highlight the possible applications of kinematic coordination in quantifying motor performance. Our 
future work will look more closely at the observed changes in behavior and analyze these to draw conclusions 
about the motor learning process.

The convergence of participant behavior to certain measurable task-specific coordinations opens up an 
interesting new avenue for skill and rehabilitation training design. Prior work suggests that joint coordination 
is an indicator of motor development and  skill26,36. Observing and quantifying these coordinations could 
inform motor training protocol design. Identifying task-specific “expert coordination behaviors” and leveraging 
them to adaptively modulate robot interaction could potentially bring about persistent behavioral changes in 
 participants22. Further, from rehabilitation literature, we know that those suffering from neurological injury 
benefit from functional motor  training37,38. Prior work has shown evidence that participants can adapt to 
environmental constraints introduced by exoskeleton robots, but this adaptation may or may not translate well 
outside of the exoskeleton after  training1,22,31. Our current method could be extended to better assess the effect 
of such training protocols as well as inform the design of novel training protocols. Researchers have also studied 
the use of coordination behaviors from demonstrations by physical therapists to design exoskeleton interventions 
for impaired  participants31. Our work suggests that this method could be taken further to not only provide 
performance assessment and movement assistance but to identify task-specific “desired coordination behaviors” 
from expert data and utilize these for the control of exoskeletons for targeted training.

Our overarching goal is to use kinematic coordination as a tool for assessing and designing effective and 
efficient exoskeleton-based training protocols for physical rehabilitation and skill acquisition. Assuming certain 
“desirable” kinematic coordination behaviors can be identified for a given task goal by observing experts, and that 
the exoskeleton interaction can be controlled to teach these coordination behaviors to novices, training protocol 
design could be made more reactive to the observed behavior. Optimal and adaptive training protocols could 
then be designed by tailoring the desired movement behaviors to the goal of training (for example, functional 
task rehabilitation). The same approach could potentially be used to train novices for the efficient use of robotic 
prostheses or the telemanipulation of surgical robots. Thus, the methods and results presented in this paper lay 
the foundation for significant advances in human learning-focused robotic interaction control.

Methods
Task environments. Two distinct task environments are presented and used for the assessment of human 
behavior in the exoskeleton. These tasks are designed in particular to satisfy two conditions: (1) to be dynamic 
and novel to participants; and (2) to provide sufficient challenge for the study of learning.

Reach Ninja. Inspired by the popular phone game Fruit  Ninja39, we present a dynamic reaching game, “Reach 
Ninja”33. The game tracks the movement of an object held in the player’s hand through their webcam (right 
image in Fig. 2a), and the position is presented on the screen as a circular red marker called the cursor (left 
image in Fig. 2a). During the game, other circular markers (targets), either blue or black in color, appear on the 
screen, entering from the bottom edge with randomly chosen initial velocities and radii. The player’s goal is to 
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capture these targets using the red marker, through their hand motion, to maximize their score. The targets are 
acted upon by a gravitational force, resulting in a predictable projectile motion. The blue targets are assigned a 
positive score depending on their size (smaller size gives a larger score) and velocity (faster gives a larger score), 
with the maximum possible score from a positive target being 30. The black targets are assigned a fixed negative 
score of − 10 independent of size and speed. Two versions of the game are used, a timed version where the task 
is played for 40 s, and an episodic version with only a fixed number of markers.

To make the task more challenging, we introduce two further dynamic interactions (1) partial feedback, where 
the red cursor is displayed on the screen only briefly, while the hand tracking and game continue normally; and 
(2) a virtual magnetic field around the red marker to repel the positive targets and attract the negative targets. 
The task difficulty may be modulated using these two interactions. Additionally, we use two versions of this task, 
a timed one in study 1 (where participants play for 40 s each attempt), and an episodic one in study 2 (where 
participants only see 3 blue and 2 black markers in a given attempt).

The Reach Ninja task is found to be highly dynamic and supports the study of learning due to its challenging 
and novel nature. However, the task presents certain additional challenges that make it difficult to capture 
learning in as much detail as needed for the current research goal. First, the task is inherently variable, making 
it difficult to compare across different participants and even different attempts by the same participant. Second, 
the fast, dynamic, and variable movements needed for the task make it impossible to identify attempts that are 
not characterized as successes. We address these two challenges in a second, virtual reality (VR) based task.

Virtual simplified Kendama. The Kendama, a Japanese bowl-and-ball toy, has gained popularity similar to the 
yo-yo due to its dynamic and challenging nature and the available range of difficulties. The task is simplified 
to a wide bowl with a ball attached to it through a string (Fig. 2e). The goal of the task is to swing the ball into 
the cup using the string’s dynamics. The toy satisfies the task requirements to be suitable for our study on the 
effects of motor training and robot intervention on learned movement behaviors (dynamicity and learnability). 
A virtual reality version of the Kendama task is designed using Unreal Engine (Epic Games, Cary, NC). The 
learner dons the Harmony exoskeleton and the Oculus Rift headset (Oculus VR, Menlo Park, CA, Fig. 1a). The 
Oculus Touch Controller is attached to the end of the robot end-effector and serves as the source of motion for 
the virtual Kendama.

Like the Reach Ninja task, the Kendama task is inherently dynamic and novel to most participants due to low 
familiarity with the toy. However, the original Kendama big cup (Oozara) task is fairly challenging to complete 
with a real Kendama and even harder in the virtual environment. To ensure learnability, we reduce the complexity 
of the task by replacing the Kendama handle and cup with a large bowl (Fig. 2e). As a result, the task is easier but 
still sufficiently dynamic so that it is not trivially easy.

Although the Virtual Kendama task is still dynamic and stochastic it offers some advantages over Reach Ninja. 
Specifically, as there is a single and clear task goal, this task allows comparison across different attempts as well 
as across different participants. Second, as the task is typically performed in a single swift motion, identification 
of an attempt is straightforward and allows analysis of movements regardless of whether they were identified 
as successes.

Harmony exoskeleton. The Harmony exoskeleton is a bi-manual upper-limb rehabilitation  robot5 
(Fig.  1b). Each arm of the exoskeleton has seven degrees of freedom: (i) shoulder elevation/depression ( θ1 ), 
(ii) shoulder protraction/retraction ( θ2 ), (iii) shoulder abduction/adduction ( θ3 ), (iv) shoulder internal/external 
rotation ( θ4 ), (v) shoulder flexion/extension ( θ5 ), (vi) elbow flexion/extension ( θ6 ), and (vii) forearm pronation/
supination ( θ7 ). Torque sensors at each joint are used to control the robot using impedance  control6. In the grav-
ity assist mode of the robot, also referred to as the transparent mode, the motors compensate for the weight of the 
robot’s links without compensating for its inertia. The robot passively follows the wearer’s movements, and the 
resulting environment gives the wearer a sense of mild resistance (similar to moving their arm in water). During 
run-time, we measure joint angles, joint velocities, and joint torques at each of the seven degrees of freedom. A 
soft cuff is strapped to the wearer’s upper arm and attached to the robot’s upper arm and the wearer holds the 
exoskeleton handle. This physical human–robot interaction setup is shown to allow good agreement between the 
movement of the wearer and the robot end effector and joint  angles6,40.

Study designs. Three human-subject studies are presented in this article. The first two are conducted with 
the Reach Ninja task while the third is conducted with the Virtual Kendama task. The first study is conducted 
over video conference and does not include the exoskeleton robot. The supplementary video includes clips of 
participants in all three studies. All experimental protocols are approved by the Institutional Review Board at the 
University of Texas at Austin. Note that all participants in the following studies are right-handed. Participants 
provide informed consent prior to the experiment, and all COVID-19 safety guidelines are followed as required 
by the university. Participants whose images are used to describe the experimental protocols in this paper also 
gave informed consent for the same.

Study 1: Reach Ninja, no robot. 10 subjects (6 male, 4 female, aged 27.1± 2.92 ) participate in the  study33. Each 
participant plays 40 attempts of the timed version of the target Reach Ninja game (Fig. 2a). The target game, 
including the magnetic field and partial feedback effects, is used to probe the players’ performance at the start, 
end, and during the experiment. By turning off one of the two interventions, we define two possible source 
tasks, Partial Feedback Source Task (PFST), and Magnetic Field Source Task (MFST). To study the effect of these 
source tasks on performance, 5 of the 10 participants (referred to as the curriculum group) are trained on a 
rudimentary curriculum. The curriculum is ordered as follows: attempts 1–4 are pre-training probe tasks (same 
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as the target task); attempts 5–14 are the PFST (magnetic field off); session 15 is a probe task; attempts 16–25 are 
MFST (partial feedback off); attempts 26–36 are the target task; and attempts 37–40 are the post-training probe 
tasks (Fig. 2c). The remaining 5 participants (referred to as the control group) only practice the target task for all 
40 attempts. This experiment has been approved by the Institutional Review Board at the University of Texas at 
Austin under protocol number 2020-07-0156.

Study 2: Reach Ninja, with robot. A total of 16 participants (6 female, 10 male, aged 24.4 ± 3.03) are randomly 
assigned to one of two  groups35, similar to Study 1. For the ‘targeted practice’ group, training consists of repeti-
tive practice of the target task, whereas for the ‘ordered practice’ group, tasks of varying difficulty levels are prac-
ticed with the goal of improving performance on the same target. The targeted and ordered groups are designed 
to match the control and curriculum groups in study 1 respectively (Fig. 2d). All participants are right-handed 
and performed the task with their non-dominant (left) arm while wearing the Harmony exoskeleton (Fig. 2b). 
Prior to its use, the Harmony exoskeleton’s link sizes are adjusted to match robot and body joint locations. At the 
start of the experiment, each participant dons the Harmony exoskeleton and the tracking object is attached to 
the end of the exoskeleton handle.

The participant first completes four episodes of a mirrored familiarization task to get accustomed to the robot 
and game environment. The participant then completes 8 episodes of the target task referred to as the pre-training 
episodes followed by 308 training episodes. For the ordered practice group, these episodes are ordered as 100 
partial feedback source task (PFST) episodes, 4 probe task episodes, 100 magnetic field source task (MFST) 
episodes, 4 probe task episodes, and 100 target task episodes. Participants in the targeted group practice the same 
target task for all of the 308 training episodes. The total in-game training duration has been roughly matched to 
the training duration in study 1 using data from pilot experiments.

Following training, the participant repeats 8 episodes of the target task, referred to as the post-training 
episodes. To facilitate comparison before and after training, target marker initializations are matched for pre-
training and post-training episodes, i.e. the first pre-training is the same as the first post-training episode, and 
so on. These seeds are randomly selected for each participant before the start of the experiment. This experiment 
protocol has been approved by the Institutional Review Board at the University of Texas at Austin (STUDY 1215).

Study 3: Virtual Kendama, with robot. 21 participants (16 male, 5 female aged 21.9 ± 3.6) perform a 2-day 
human-subject study with the simplified virtual Kendama task (Fig. 2e). Participants are recruited on the basis 
of low-to-no familiarity ( <= 2 on a Likert scale) with the Kendama task. Each participant attends two sepa-
rate experimental sessions, each for a duration of 1 h. Prior to its use, the Harmony exoskeleton’s link sizes are 
adjusted to match robot and body joint locations. Participants are familiarized with the robot-VR environment 
through random manipulation of a bowl-and-string simulation without the ball attached at the end.

At the start of each session, the participant is asked to employ a specific strategy, either side-swing or front-
swing. The order of the strategy for a given participant is randomized. The researcher conducting the experiment 
ensures the use of the prescribed strategy throughout the experiment. The participant attempts to swing the ball 
and catch it in the bowl a total 200 times with breaks at increments of 50 attempts (Fig. 2h). At least 1 day’s gap 
is maintained between two consecutive sessions to allow for the learned behavior to wash out.

Data analysis. Data is collected from the task as well as the exoskeleton in studies where the exoskeleton 
is included. For the Reach Ninja task, data is recorded at a variable frame rate depending on how well the host 
computer is able to run the game. On average the frame rate is at or higher than 15 Hz. For the Kendama task, 
data is collected from Unreal Engine’s logger at a variable frame rate, usually above 60 Hz. For the Reach Ninja 
and Harmony experiment, data is collected from the exoskeleton at 20 Hz, whereas for the Kendama task, the 
collection rate is increased to 1000 Hz. All data is stored in comma-separated text files, and parsed and processed 
using Matlab (Mathworks, Natick, MA). Piecewise cubic Hermite interpolating polynomial Interpolation is used 
to increase the signal frequency from 20 to 1000 Hz in all cases.

Kinematic coordination from harmony exoskeleton. Principal component analysis (PCA) is a dimension-
ality reduction method used to analyze multivariate  data41. Following its success in elucidating kinematic 
 coordinations22,28,32,42, this method is chosen to reduce dimensionality in the joint-angle data collected from the 
Harmony exoskeleton. We identify the principal orthogonal components of the data using singular value decom-
position. Next, the percentage of variance in the data that is captured by each principal component is quantified 
and the components are ordered in decreasing order of variance explained. The first n principal components that 
describe a total majority of the variance (say 90%) are considered to be the primary components and the remain-
ing are discarded. The contributions of each principal component give a sense of linear coordination between 
the robot’s joints. We refer to these principal components as the principal kinematic coordinations. Further, 
when these components are identified for successful movements, they are referred to as successful kinematic 
coordinations.

For the Reach Ninja task, a successful movement is identified as a 0.5s window centered on a positive target 
capture. For the Kendama task, the start of an attempt for the Kendama task is identified as a velocity peak which 
is followed by the movement of the ball towards the cup. Success is automatically identified by checking if the 
distance between the ball and the cup decreases to below a threshold and remains there for at least 1 s.

Kinematic coordination distance. Bockemuhl et al.28 used PCA to identify joint angle coordination behaviors 
in catching movements performed by healthy humans. To compare the principal component subspaces from 
different movements, the authors define a distance metric that measures the amount of rotation required to go 
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from one principal component subspace to the other. However, this  metric28 is only applicable to comparisons 
between two subspaces with the same number of principal components. Instead, we require a measure of the 
minimum rotation required to align at least one axis of the two subspaces being compared. Thus, we perform a 
pairwise comparison of each principal component from two different principal component subspaces (matrices 
U and V) using their dot product to get the sine of the angle ( φ ) between them. This results in a distance matrix 
of size m× n where m and n are the number of principal components required to define the first and second 
subspace respectively. The minimum value in this matrix is calculated as

where i ∈ (1,m), j ∈ (1, n) . DPF ,PX , referred to as the principal kinematic coordination distance, represents the 
minimum distance between any pair of vectors between the two subspaces PF and PX . As the principal vectors 
are orthonormal, two different vectors in U that are equidistant from V, must necessarily be at a distance of 
sin(45◦) from V.

Statistical analysis. Repeated measures ANOVA is used for statistical evaluation of the results. In each 
case a p-value below α = 0.05 is considered to be significant and allows for the rejection of the null hypothesis 
in favor of the alternative hypothesis. The specific alternative hypotheses are presented below.

Effect of training and exoskeleton on learning of Reach Ninja task. Extrinsic performance measurements for the 
Reach Ninja task in study 1 and study 2 are used for this analysis. The two factors in the two-way repeated meas-
ures ANOVA are attempt type (pre-training versus post-training) within subjects, and training environment 
(no-robot versus with-robot) between subjects. The following hypotheses refer to either of the two extrinsic 
metrics, final score percentage and mean speed.

Effect of training on learning of Virtual Kendama task. The following hypotheses consider the number of suc-
cesses in 50 consecutive attempts as the success rate of performing the Virtual Kendama task. The initial block is 
comprised of the first 50 attempts while the learned block refers to the last 50 attempts. The hypotheses referring 
to change within a given factor level looks at the change from initial to learned behavior for all data correspond-
ing to that factor level (session number or strategy type).

Distance from reference successful behavior. Harmony exoskeleton’s kinematic position data from study 2 and 
study 3 is used in this analysis. The final successful attempt for each participant is considered their reference 
behavior. This reference behavior is compared to all successful behaviors in pre-training (for Reach Ninja) or 
initial block (for Virtual Kendama) attempts and all the remaining successes in post-training (Reach Ninja) or 
learned block (Virtual Kendama) attempts. One-way repeated measures ANOVA is used for study 2, and two-
way repeated measures ANOVA is used for study 3. The null hypothesis checks for a change in the kinematic 
coordination distance from the reference learned behavior from the initial block to the learned block across all 
participants and sessions.

(1)DPF ,PX = mini,jsin(φi,j) = mini,j
√

(1− (ui · vi)2,

(H1)Ha1 : Pre − training �= Post − training .

(H2)Ha2 : No− robot �= With− robot.

(H3)Ha3 : Performance ChangeNo−robot �= Performance ChangeWith−robot .

(H4)Ha4 : Initial �= Learned.

(H5)Ha5 : Front �= Side.

(H6)Ha6 : ChangeFront �= ChangeSide .

(H7)Ha7 : SessionA �= SessionB.

(H8)Ha8 : ChangeSessionA �= ChangeSessionB.

(H9)Ha9 : (Pre − training)KCD �= (Post − training)KCD

(H10)Ha10 : (Initial)KCD �= (Learned)KCD

(H11)Ha11 : (SessionA)KCD �= (SessionB)KCD

(H12)Ha12 : Change in SessionAKCD �= Change in SessionBKCD
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Distance from constructed subject-specific reference learned behavior. Harmony exoskeleton’s kinematic posi-
tion data from study 3 is used for this analysis. All the successful attempts in the learned block of a given ses-
sion are time-shifted so the peak of the task-space movement in the frontal plane is aligned. The resulting 
joint-angle signals are averaged in time to generate a reference learned kinematic behavior in the form of a 
7 joint × T timesteps matrix. Applying PCA on this reference averaged behavior and extracting the compo-
nents required to describe at least 90% of the data, we define the reference learned kinematic coordination 
behaviors for each participant. This learned behavior is compared against all attempts in the initial block and 
the unsuccessful attempts of the learned block of a given session for each participant. Note that the successes in 
the learned block are omitted to avoid bias of comparison to the averaged reference behavior. Two independ-
ent 2-way repeated measures ANOVA are used for the statistical analysis for each study, where attempt type 
(pre-training versus post-training) is compared against session type (session A and session B) and strategy type 
(front-swing versus side-swing). Since all participants performed two sessions of the task, one with each strategy, 
each of these factors is within-subjects. However, of the 21 participants, 13 performed the side swing strategy on 
in their first session whereas 8 performed the front swing strategy in their second session. The null hypothesis 
checks for a change in the kinematic coordination distance from the reference learned behavior from the initial 
block to the learned block across all participants and sessions.

Distance from constructed strategy-specific reference learned behavior. Harmony exoskeleton’s kinematic posi-
tion data from study 3 is used for this analysis. All the successful movements in the last 10 attempts of the first 
session are time-shifted so the peak of the task-space movement in the frontal plane is aligned. These joint-angle 
signals are averaged across all participants using the same strategy to generate a reference strategy-specific kin-
ematic behavior in the form of a 7 joint × T timesteps matrix. We define the reference strategy-specific coordi-
nation as the first principal component of this averaged startegy-specific behavior determined using PCA. This 
strategy-specific behavior is compared against all attempts in the initial block and the attempts of the learned 
block not included in the construction of the reference behavior for expert participants. Note that expert partici-
pants are defined as those who achieve at least 10 successes in their learned block (20% success rate). A 2-way 
repeated measures ANOVA is used for the statistical analysis where attempt type (initial versus learned) is a 
within-subject factor and strategy type (front-swing versus side-swing) is a between-subject factor. We identify 
5 side-swing experts and 6 front-swing experts. The null hypothesis checks for a change in the kinematic coordi-
nation distance from the reference learned behavior from the initial block to the learned block across all expert 
participants in their respective first sessions.

For post-hoc analysis, we also use a directional paired t-test within a strategy. Specifically, this test checks whether 
the mean of the initial group distance is higher than the mean of the learned group distance to strategy-specific 
coordinations.

Data Availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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