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Abstract

Supply Chain Management involves planning for the procurement of materials,
assembly of finished products from these materials, and distribution of products
to customers. The Trading Agent Competition Supply Chain Management scenario
(TAC SCM) provides a competitive benchmarking environment for developing and
testing agent-based solutions to supply chain management. Autonomous software
agents must perform the above tasks while competing against each other as com-
puter manufacturers: each agent must purchase components such as memory and
hard drives from suppliers, manage a factory where computers are assembled, and
negotiate with customers to sell computers. In this chapter, we describe TacTex-
06, the winning agent in the 2006 TAC SCM competition. TacTex-06 operates by
making predictions about the future of the economy, such as the prices that will be
offered by component suppliers and the level of customer demand, and then planning
its future actions in order to maximize profits. A key component of TacTex-06 is the
ability to adapt these predictions based on the observed behavior of other agents.
Although the agent is described in full, particular emphasis is given to agent com-
ponents that differ from the previous year’s winner, TacTex-05, and the importance
of these components is demonstrated through controlled experiments.

1 Introduction

In today’s industrial world, supply chains are ubiquitous in the manufacturing
of many complex products. Traditionally, supply chains have been created
through the interactions of human representatives of the various companies
involved. However, recent advances in autonomous agent technologies have

Email addresses: dpardoe@cs.utexas.edu (David Pardoe),
pstone@cs.utexas.edu (Peter Stone).

Preprint submitted to Elsevier Science 28 May 2007



sparked an interest, both in academia and in industry, in automating the
process (Kumar, 2001) (Sadeh et al., 2001) (Chen et al., 1999). Creating a
fully autonomous agent for supply chain management is difficult due to the
large number of tasks such an agent must perform. In general, the agent must
procure resources for, manage the assembly of, and negotiate the sale of a
completed product. To perform these tasks intelligently, the agent must be
able to plan in the face of uncertainty, schedule the optimal use of its resources,
and adapt to changing market conditions.

One barrier to supply chain management research is that it can be difficult
to benchmark automated strategies in a live business environment, both due
to the proprietary nature of the systems and due to the high cost of errors.
The Trading Agent Competition Supply Chain Management (TAC SCM) sce-
nario provides a unique testbed for studying and prototyping supply chain
management agents by providing a competitive environment in which inde-
pendently created agents can be tested against each other over the course of
many simulations in an open academic setting. A particularly appealing fea-
ture of TAC is that, unlike in many simulation environments, the other agents
are real profit-maximizing agents with incentive to perform well, rather than
strawman benchmarks.

In a TAC SCM game, each agent acts as an independent computer manu-
facturer in a simulated economy. The agent must procure components such
as CPUs and memory; decide what types of computers to manufacture from
these components as constrained by its factory resources; bid for sales con-
tracts with customers; and decide which computers to deliver to whom and
by when.

In this chapter, we describe TacTex-06, the winner of the 2006 TAC SCM
competition. In particular, we describe the various components that make up
the agent and discuss how they are combined to result in an effective supply
chain management agent. Emphasis is given to those components that dif-
fer from the previous year’s winner, TacTex-05, and the importance of these
components is demonstrated through controlled experiments. The remainder
of the chapter is organized as follows. We first summarize the TAC SCM sce-
nario, and then give an overview of the design of TacTex-06. Next, we describe
in detail the individual components: three predictive modules, two decision-
making modules that attempt to identify optimal behavior with respect to the
predictions, and two methods of adapting to opponent behavior based on past
games. Finally, we examine the success of the complete agent, through both
analysis of competition results and controlled experiments.
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Fig. 1. The TAC SCM Scenario (Collins et al., 2005).

2 The TAC Supply Chain Management Scenario

In this section, we provide a summary of the TAC SCM scenario. Full details
are available in the official specification document (Collins et al., 2005).

In a TAC SCM game, six agents act as computer manufacturers in a simu-
lated economy that is managed by a game server. The length of a game is
220 simulated days, with each day lasting 15 seconds of real time. At the
beginning of each day, agents receive messages from the game server with in-
formation concerning the state of the game, such as the customer requests for
quotes (RFQs) for that day, and agents have until the end of the day to send
messages to the server indicating their actions for that day, such as making
offers to customers. The game can be divided into three parts: i) component
procurement, ii) computer sales, and iii) production and delivery as expanded
on below and illustrated in Figure 1.

2.1 Component Procurement

The computers are made from four components: CPUs, motherboards, mem-
ory, and hard drives, each of which come in multiple varieties. From these
components, 16 different computer configurations can be made. Each compo-
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nent has a base price that is used as a reference point by suppliers making
offers.

Agents wanting to purchase components send requests for quotes (RFQs) to
suppliers indicating the type and quantity of components desired, the date
on which they should be delivered, and a reserve price stating the maximum
amount the agent is willing to pay. Agents are limited to sending at most 5
RFQs per component per supplier per day. Suppliers respond to RFQs the
next day by offering a price for the requested components if the request can
be satisfied. Agents may then accept or reject the offers.

Suppliers have a limited capacity for producing components, and this capacity
varies throughout the game according to a random walk. Suppliers base their
prices offered in response to RFQs on the fraction of their capacity that is
currently free. When determining prices for RFQs for a particular component,
a supplier simulates scheduling the production of all components currently
ordered plus those components requested in the RFQs as late as possible.
From the production schedule, the supplier can determine the remaining free
capacity between the current day and any future day. The price offered in
response to an RFQ is equal to the base price of the component discounted by
an amount proportional to the fraction of the supplier’s capacity free before
the due date. Agents may send zero-quantity RFQs to serve as price probes.
Due to the nature of the supplier pricing model, it is possible for prices to be
as low when components are requested at the last minute as when they are
requested well in advance. Agents thus face an interesting tradeoff : they may
either commit to ordering while knowledge of future customer demand is still
limited (see below), or wait to order and risk being unable to purchase needed
components.

To prevent agents from driving up prices by sending RFQs with no intention
of buying, each supplier keeps track of a reputation rating for each agent
that represents the fraction of offered components that have been accepted by
the agent. If this reputation falls below a minimum acceptable purchase ratio
(75% for CPU suppliers, and 45% for others), then the prices and availability of
components are affected for that agent. Agents must therefore plan component
purchases carefully, sending RFQs only when they believe it is likely that they
will accept the offers received.

2.2 Computer Sales

Customers wishing to buy computers send the agents RFQs consisting of the
type and quantity of computer desired, the due date, a reserve price indicating
the maximum amount the customer is willing to pay per computer, and a
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penalty that must be paid for each day the delivery is late. Agents respond
to the RFQs by bidding in a first-price auction: the agent offering the lowest
price on each RFQ wins the order. Agents are unable to see the prices offered
by other agents or even the winning prices, but they do receive a report each
day indicating the highest and lowest price at which each type of computer
sold on the previous day.

Each RFQ is for between 1 and 20 computers, with due dates ranging from 3
to 12 days in the future, and reserve prices ranging from 75% to 125% of the
base price of the requested computer type. (The base price of a computer is
equal to the sum of the base prices of its parts.)

The number of RFQs sent by customers each day depends on the level of
customer demand, which fluctuates throughout the game. Demand is broken
into three segments, each containing about one third of the 16 computer types:
high, mid, and low range. Each range has its own level of demand. The total
number of RFQs per day ranges between roughly 80 and 320, all of which
can be bid upon by all six agents. It is possible for demand levels to change
rapidly, limiting the ability of agents to plan for the future with confidence.

2.3 Production and Delivery

Each agent manages a factory where computers are assembled. Factory opera-
tion is constrained by both the components in inventory and assembly cycles.
Factories are limited to producing roughly 360 computers per day (depending
on their types). Each day an agent must send a production schedule and a
delivery schedule to the server indicating its actions for the next day. The pro-
duction schedule specifies how many of each computer will be assembled by
the factory, while the delivery schedule indicates which customer orders will be
filled from the completed computers in inventory. Agents are required to pay
a small daily storage fee for all components in inventory at the factory. This
cost is sufficiently high to discourage agents from holding large inventories of
components for long periods.

3 Overview of TacTex-06

Given the detail and complexity of the TAC SCM scenario, creating an effec-
tive agent requires the development of tightly coupled modules for interacting
with suppliers, customers, and the factory. The fact that each day’s decisions
must be made in less than 15 seconds constrains the set of possible approaches.
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TacTex-06 is a fully implemented agent that operates within the TAC SCM
scenario. We present a high-level overview of the agent in this section, and full
details in the sections that follow.

3.1 Agent Components

Figure 2 illustrates the basic components of TacTex-06 and their interaction.
There are five basic tasks a TAC SCM agent must perform:

(1) Sending RFQs to suppliers to request components;
(2) Deciding which offers from suppliers to accept;
(3) Bidding on RFQs from customers requesting computers;
(4) Sending the daily production schedule to the factory;
(5) Delivering completed computers.

We assign the first two tasks to a Supply Manager module, and the last three to
a Demand Manager module. The Supply Manager handles all planning related
to component inventories and purchases, and requires no information about
computer production except for a projection of future component use, which
is provided by the Demand Manager. The Demand Manager, in turn, handles
all planning related to computer sales and production. The only information
about components required by the Demand Manager is a projection of the
current inventory and future component deliveries, along with an estimated
replacement cost for each component used. This information is provided by
the Supply Manager.

We view the tasks to be performed by these two managers as optimization
tasks: the Supply Manager tries to minimize the cost of obtaining the compo-
nents required by the Demand Manager, while the Demand Manager seeks to
maximize the profits from computer sales subject to the information provided
by the Supply Manager. In order to perform these tasks, the two managers
need to be able to make predictions about the results of their actions and
the future of the economy. TacTex-06 uses three predictive models to assist
the managers with these predictions: a predictive Supplier Model, a predictive
Demand Model, and an Offer Acceptance Predictor.

The Supplier Model keeps track of all information available about each sup-
plier, such as TacTex-06 ’s outstanding orders and the prices that have been
offered in response to RFQs. Using this information, the Supplier Model can
assist the Supply Manager by making predictions concerning future compo-
nent availability and prices.

The Demand Model tracks the customer demand in each of the three market
segments, and tries to estimate the underlying demand parameters in each

6



deliveries

component

use

projected

inventory

and costs

S
u
p
p
l
i
e
r
s

C
u
s
t
o
m
e
r
s

Supplier

Model

Demand Manager

bid on customer RFQs

produce and deliver computers

Offer

Acceptance

Predictor

Supply Manager

plan for component purchases

negotiate with suppliers

Demand

Model

TacTex

component RFQs

and orders

offers and

deliveries

computer RFQs

and orders

offers and

projected

Fig. 2. An overview of the main agent components

segment. With these estimates, it is possible to predict the number of RFQs
that will be received on any future day. The Demand Manager can then use
these predictions to plan for future production.

When deciding what bids to make in response to customer RFQs, the Demand
Manager needs to be able to estimate the probability of a particular bid being
accepted (which depends on the bidding behavior of the other agents). This
prediction is handled by the Offer Acceptance Predictor. Based on past bidding
results, the Offer Acceptance Predictor produces a function for each RFQ that
maps bid prices to the predicted probability of winning the order.

The steps taken each day by TacTex-06 as it performs the five tasks described
previously are presented in Table 1.

4 The Demand Manager

The Demand Manager handles all computation related to computer sales and
production. This section describes the Demand Manager, along with the De-
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• Record information received from the server and update prediction modules

• The Supply Manager takes the supplier offers as input and performs the following:

· decide which offers to accept
· update projected future inventory
· update replacement costs

• The Demand Manager takes customer RFQs, current orders, projected inventory,
and replacement costs as input and performs the following:

· predict future customer demand using the Demand Model
· use the Offer Acceptance Predictor to generate acceptance functions for RFQs
· schedule production several days into the future
· extract the current day’s production, delivery, and bids from the schedule
· update projected future component use

• The Supply Manager takes the projected future component use as input and
performs the following:

· determine the future deliveries needed to maintain a threshold inventory
· use the Supplier Model to predict future component prices
· decide what RFQs need to be sent on the current day

Table 1
Overview of the steps taken each day by TacTex-06.

mand Predictor and the Offer Acceptance Predictor upon which it relies.

4.1 Demand Model

When planning for future computer production, the Demand Manager needs
to be able to make predictions about future demand in each market segment.
For example, if more RFQs are expected for high range than low range com-
puters, the planned production should reflect this fact. The Demand Model is
responsible for making these predictions.

In order to explain its operation, further detail is required about the customer
demand model. The state of each demand segment (high, mid, and low range
computers) is represented by parameters Qd and τd (both of which are internal
to the game server). Qd represents the expected number of RFQs on day d,
and τd is the trend in demand (increasing or decreasing) on day d. The actual
number of RFQs is generated randomly from a Poisson distribution with Qd as
its mean. The next day’s demand, Qd+1, is set to Qdτd, and τd+1 is determined
from τd according to a random walk.

To predict future demand, the Demand Manager estimates the values of Qd

and τd for each segment using an approach first used by the agent DeepMaize
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in 2003 (Kiekintveld et al., 2004). Basically, this is a Bayesian approach that
involves maintaining a probability distribution over (Qd, τd) pairs for each
segment. The number of RFQs received each day from the segment represents
information that can be used to update this distribution, and the distribution
over (Qd+1, τd+1) pairs can then be generated based on the game’s demand
model. By repeating this last step, the expected value of Qi can be determined
for any future day i and used as the number of RFQs predicted on that day.
Full details of the approach are available in (Kiekintveld et al., 2004). 1

4.2 Offer Acceptance Predictor 2

In order to bid on customer RFQs, the Demand Manager needs to be able to
predict the orders that will result from the offers it makes. A simple method
of prediction would be to estimate the winning price for each RFQ, and as-
sume that any bid below this price would result in an order. Alternatively, for
each RFQ the probability of winning the order could be estimated as a func-
tion of the current bid. This latter approach is the one implemented by the
Offer Acceptance Predictor. For each customer RFQ received, the Offer Ac-
ceptance Predictor generates a function mapping the possible bid prices to the
probability of acceptance. (The function can thus be viewed as a cumulative
distribution function.) This approach involves three components: a particle
filter used to generate initial predictions, an adaptive means of revising the
predictions to account for the impact of an RFQ’s due date, and a learned
predictor that predicts how the prices of computers will change in the future.

A visual inspection of each day’s winning prices for each type of computer in a
typical completed game suggests that these prices tend to follow a normal dis-
tribution. To estimate these distributions during a game, the Offer Acceptance
Predictor makes use of a separate particle filter (specifically a Sampling Impor-
tance Resampling filter (Arulampalam et al., 2002)) for each computer type.
A particle filter is a sequential Monte Carlo method that tracks the chang-
ing state of a system by using a set of weighted samples (called particles) to
estimate a posterior density function over the possible states. The weight of
each particle represents its relative probability, and particles and weights are
revised each time an observation (conditioned on the current state) is received.
In this case, each of the 100 particles used per filter represents a normal distri-
bution (indicating the probability that a given price will be the winning price
on the computer) with a particular mean and variance. At the beginning of
each game, weights are set equally and each particle is assigned a mean and

1 The DeepMaize team has released their code for this approach: http:

//www.eecs.umich.edu/~ckiekint/downloads/DeepMaize_CustomerDemand_

Release.tar.gz
2 This section presents a significant addition to the previous agent, TacTex-05
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Fig. 3. Average prices at which one type of computer sold during one game of the
2006 finals. One standard deviation above and below the average is shown.

variance drawn randomly from a distribution that is generated by analyzing
the first day prices from a large data set of past games. (The source of this
data set will be described below.) Each succeeding day, a new set of particles
is generated from the old. For each new particle to be generated, an old par-
ticle is selected at random based on weight, and the new particle’s estimate
of mean and variance are set to those of the old particle plus small changes,
drawn randomly from the distribution of day-to-day changes seen in the data
set of past games. The new particles are then reweighted, with the weight of
each particle set to the probability of the previous day’s price-related observa-
tions occurring according to the distribution represented. These observations
consist of the reported highest and lowest winning prices and the acceptance
or rejection of each offer made to a customer for the given type of computer.
Finally, the weights are normalized to sum to one. The distribution of winning
prices predicted by the particle filter is simply the weighted sum of the individ-
ual particles’ distributions, and from this distribution the function mapping
each possible bid price to a probability of acceptance can be determined.

These functions are then modified using values we call day factors, which are
designed to measure the effect of the due date on offer acceptance. The due
dates for RFQs range from 3 to 12 days in the future, and a separate day factor
is learned for each day in this range. Each day factor is set to the ratio of actual
orders received to orders expected based on the linear heuristic, for all recent
offers made. When an offer is made on an RFQ, the Offer Acceptance Predictor
computes the probability of an order by multiplying the initial prediction by
the corresponding day factor. The day factors therefore serve both as a means
of gauging the impact of due dates on computer prices and as a mechanism for
ensuring that the number of orders received is roughly the number expected.
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In order to maximize revenue from the computers sold, the Demand Manager
needs to consider not only the prices it will offer in response to the current
day’s RFQs, but also what computers it will wish to sell on future days. In fact,
the Demand Manager plans ahead for 10 days and considers future as well as
current RFQs when making offers, as will be described in the next section. It
is therefore important for the Offer Acceptance Predictor to be able to predict
future changes in computer prices. To illustrate why this is important, Figure 3
shows the prices at which one type of computer sold during a single game of
the 2006 finals. For each day, points representing one standard deviation above
and below the average price are plotted. On most days, there is clearly little
variance between the winning prices, but prices often change drastically over
the course of a few days. This fact suggests that it may be even more valuable
to be able to predict future changes in price than to predict the distribution
of winning prices on a single day. By simply selling a computer a few days
earlier or later, it might be possible for the Demand Manager to significantly
increase the price it obtains.

To make these predictions of price changes, the Offer Acceptance Predictor
performs machine learning on data from past games. Each training instance
consists of 31 features representing data available to the agent during the
game, such as the date, estimated levels of customer demand and demand
trend, and current and recent computer prices. The label for each instance
is the amount by which the average price changes in ten days. Once the Of-
fer Acceptance Predictor has learned to predict this quantity, it can predict
the change in average price for any day between zero and ten days in the
future through linear interpolation. No effort is made to predict changes in
the shape of the distribution, i.e., the variance. Thus, to generate an offer
acceptance function for a future RFQ, the Offer Acceptance Predictor simply
shifts the predicted distribution over winning prices up or down depending on
the predicted change in average price, and bases the acceptance function on
this modified distribution.

In order to train the price change predictor, a learning algorithm and source
of training data must be chosen. After experimenting with various algorithms
from the WEKA machine learning package (Witten & Frank, 1999), we se-
lected additive regression with decision stumps, an iterative method in which
a decision stump is repeatedly fit to the residual from the previous step. (M5
regression trees gave nearly identical performance, but the models generated
were significantly larger.) For training data, we could have used data from
games in the competition, but instead we ran a large number of games of our
own using both variations of TacTex-06 and other agents taken from the TAC
Agent Repository 3 , a collection of agents provided by the teams involved in
the competition. Doing so allowed us to generate separate training and testing

3 http://www.sics.se/tac/showagents.php
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data sets for various combinations of six agents, which we then used to test
whether predictors trained on data from games with one set of agents would
generalize to games involving a different set of agents. In particular, for four
different groups of six agents, we ran 40 games, and we generated training
data using 30 games and testing data with the other 10. We then trained a
separate predictor on each training set. Fortunately, generalization was good:
for each of the four testing data sets, all four predictors were reasonably ac-
curate. In other words, in order to predict price changes in a game with a
particular group of agents, it was not absolutely necessary to have trained on
data specific to those agents. We thus chose to train a single predictor on the
entire set of data from these games, and use the same predictor throughout
the competition 4 .

4.3 Demand Manager

The Demand Manager is responsible for bidding on customer RFQs, producing
computers, and delivering them to customers. All three tasks can be performed
using the same production scheduling algorithm. As these tasks compete for
the same resources (components, completed computers, and factory cycles),
the Demand Manager begins by planning to satisfy existing orders, and then
uses the remaining resources in planning for RFQs. The latest possible due
date for an RFQ received on the current day is 12 days in the future, meaning
the production schedule for the needed computers must be sent within the
next 10 days. The Demand Manager thus always plans for the next 10 days
of production. Each day, the Demand Manager i) schedules production of
existing orders, ii) schedules production of predicted future orders, and then
iii) extracts the next day’s production and delivery schedule from the result.
The production scheduling algorithm, these three steps, and the means of
predicting production beyond 10 days are described in the following sections.

4.3.1 Production Scheduling Algorithm

The goal of the production scheduler is to to take a set of orders and determine
the 10-day production schedule that maximizes profit, subject to the available
resources. The resources provided are:

4 In our post-competition analysis, we found that this was a reasonable decision
given the limited number of games that would have been available during the com-
petition to use for training. In more recent work, however, we explore methods of
making use of both sources of data (games from the competition and games run on
our own) and show that improvements in predictor accuracy are possible (Pardoe
& Stone, 2007).
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• A fixed number of factory cycles per day;
• The components in inventory;
• The components projected to be delivered; and
• Completed computers in inventory.

The profit for each order is equal to its price (if it could be delivered) minus
any penalties for late delivery and the replacement costs for the components
involved as specified by the Supply Manager.

The scheduling algorithm used by the Demand Manager is a greedy algorithm
that attempts to produce each order as late as possible. Orders are sorted by
profit, and the scheduler tries to produce each order using cycles and com-
ponents from the latest possible dates. If any part of the order cannot be
produced, the needed computers will be taken from the existing inventory of
completed computers, if possible. The purpose of scheduling production as
late as possible is to preserve resources that might be needed by orders with
earlier due dates. A record is kept of what production took place on each day
and how each order was filled.

It should be noted that the scheduling problem at hand lends itself to the use
of linear programming to determine an optimal solution. We initially exper-
imented with this approach, using a linear program similar to one designed
for a slightly simplified scenario by (Benisch et al., 2004a). However, due to
the game’s time constraints (15s allowed per simulated day), the need to use
the scheduler multiple times per day (and in a modified fashion for bidding on
customer RFQs, as described below), and the fact that the greedy approach is
nearly optimal (observed in our own experiments and confirmed by (Benisch
et al., 2006a)), we chose to use the greedy approach.

4.3.2 Handling Existing Orders

The Demand Manager plans for the production of existing orders in two steps.
Before starting, the production resources are initialized using the values pro-
vided by the Supply Manager. Then the production scheduler is applied to
the set of orders due in one day or less. All orders that can be taken from
inventory (hopefully be all of them to avoid penalties) are scheduled for deliv-
ery the next day. The production scheduler is next applied to the remaining
orders. No deliveries are scheduled at this time, because there is no reward for
early delivery.

4.3.3 Bidding on RFQs and Handling Predicted Orders

The goal of the Demand Manager is now to identify the set of bids in response
to customer RFQs that will maximize the expected profit from using the re-
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maining production resources for the next 10 days, and to schedule production
of the resulting predicted orders. The profit depends not only on the RFQs be-
ing bid on on the current day, but also on RFQs that will be received on later
days for computers due during the period. If these future RFQs were ignored
when selecting the current day’s bids, the Demand Manager might plan to use
up all available production resources on the current RFQs, leaving it unable
to bid on future RFQs. One way to address this issue would be to restrict
the resources available to the agent for production of the computers being bid
on (as in Benisch et al., 2004a). Instead, the Demand Manager generates a
predicted set of all RFQs, using the levels of customer demand predicted by
the Demand Model, that will be received for computers due during the period,
and chooses bids for these RFQs at the same time as the actual RFQs from
the current day.

Once the predicted RFQs are generated, the Offer Acceptance Predictor is
used to generate an acceptance prediction function for every RFQ, both real
and predicted. The acceptance prediction functions for predicted RFQs are
shifted based on the price changes predicted, as described in Section 4.2. The
Demand Manager then considers the production resources remaining, the set
of RFQs, and the set of acceptance prediction functions and simultaneously
generates a set of bids on RFQs and a production schedule that produces
the expected resulting orders, using the following modification of the greedy
scheduler.

If we were considering only a single RFQ and had no resource constraints, the
expected profit resulting from a particular bid price would be:

Expected profit = P (order|price) ∗ (price − cost) (1)

The optimal bid would be the value that maximized this quantity.

Computing the expected profit from a set of bids when resource constraints
are considered is much more difficult, however, because the profit from each
RFQ cannot be computed independently. For each possible set of orders in
which it is not possible to fill all orders, the profit obtained depends on the
agent’s production and delivery strategy. For any nontrivial production and
delivery strategy, precise calculation of the expected profit would require sep-
arate consideration of a number of possible outcomes that is exponential in
the number of RFQs. If we were guaranteed that we would be able to fill all
orders, we would not have this problem. The expected profit from each RFQ
could be computed independently, and we would have:

Expected profit =
∑

i ǫ all RFQs

P (orderi|pricei) ∗ (pricei − costi) (2)

Our bidding heuristic is based on the assumption that the expected number
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of computers ordered for each RFQ will be the actual number ordered. In
other words, we pretend that it is possible to win a part of an order, so that
instead of winning an entire order with probability p, we win a fraction p of an
order with probability 1. This assumption greatly simplifies the consideration
of filling orders, since we now have only one set of orders to consider, while
leaving the formulation of expected profit unchanged. As long as it is possible
to fill the partial orders, (2) will hold, where the probability term now refers
to the fraction of the order won. It would appear that this approach could
lead to unfilled orders when the agent wins more orders than expected, but
in practice, this is not generally a problem. Most of the RFQs being bid on
are the predicted RFQs that will be received on future days, and so the agent
can modify its future bidding behavior to correct for an unexpectedly high
number of orders resulting from the current day’s RFQs. TacTex-06 indeed
tends to have very few late or missed deliveries using this bidding strategy.

By using this notion of partial orders, we can transform the problem of bid
selection into the problem of finding the most profitable set of partial orders
that can be filled with the resources available, and we can solve this problem
using the greedy production scheduler. All bids are initially set to be just above
the reserve price, which means we begin with no orders. The scheduler then
chooses an RFQ and an amount by which its bid will be lowered, resulting in
an increased partial order for that RFQ. The scheduler simulates filling this
increase by scheduling its production as described previously. This process is
repeated until no more production is possible or no bid can be reduced without
reducing the expected profit.

Because we are working with resource constraints, the goal of the greedy pro-
duction scheduler at each step is to obtain the largest possible increase in
profit using the fewest possible production resources. At each step, the sched-
uler considers each RFQ and determines the bid reduction that will produce
the largest increase in profit per additional computer. The scheduler then se-
lects the RFQ for which this value is the largest. In many cases, however, the
most limited resource is production cycles, and not components. In such cases,
the increase in profit per cycle used is a better measure of the desirability of a
partial order than the increase in profit per additional computer, so we divide
the latter quantity by the number of cycles required to produce the type of
computer requested by the RFQ and use the resulting values to choose which
RFQ should be considered next. We consider cycles to be the limiting factor
whenever the previous day’s production used more than 90% of the available
cycles.

The range of possible bid prices is discretized for the sake of efficiency. Even
with fairly fine granularity, this bidding heuristic produces a set of bids in
significantly less time than the 15 seconds allowed per simulated game day.
The complete bidding heuristic is summarized in Table 2.
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• For each RFQ, compute both the probability of winning and the expected profit
as a function of price

• Set the bid for each RFQ to be just above the reserve price

• Repeat until no RFQs are left in the list of RFQs to be considered:

· For each RFQ, find the bid lower than the current bid that produces the largest
increase in profit per additional computer ordered (or per additional cycle re-
quired during periods of high factory utilization)

· Choose the RFQ and bid that produce the largest increase.
· Try to schedule production of the partial order resulting from lowering the bid.

If it cannot be scheduled, remove the RFQ from the list.
· If the production was scheduled, but no further decrease in the bid will lead to

an increase in profit, remove the RFQ from the list.

• Return the final bid for each RFQ.

Table 2
The bidding heuristic.

4.3.4 Completing Production and Delivery

After applying the production scheduler to the current orders and RFQs, the
Demand Manager is left with a 10-day production schedule, a record of how
each order was filled, and a set of bids for the actual and predicted RFQs. The
bids on actual RFQs can be sent directly to customers in their current form,
and computers scheduled for delivery can be shipped. The Demand Manager
then considers modifications to the production schedule to send to the factory
for the next day. If there are no cycles remaining on the first day of the 10-
day production schedule, the first day can be sent unchanged to the factory.
Otherwise, the Delivery Manager shifts production from future days into the
first day so as to utilize all cycles, if possible.

4.3.5 Production Beyond 10 Days

The components purchased by the Supply Manager depend on the component
use projected by the Demand Manager. If we want to allow the possibility
of ordering components more than 10 days in advance, the Demand Man-
ager must be able to project its component use beyond the 10-day period for
which it plans production. One possibility we considered was to extend this
period and predict RFQs farther into the future. Another was to predict future
computer and component prices by estimating our opponents’ inventories and
predicting their future behavior. Neither method provided accurate predic-
tions of the future, and both resulted in large swings in projected component
use from one day to the next. The Demand Manager thus uses a simple and
conservative prediction of future component use.
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The Demand Manager attempts to predict its component use for the period
between 11 and 40 days in the future. Before 11 days, the components used in
the 10-day production schedule are used as the prediction, and situations in
which it is advantageous to order components more than 40 days in advance
appear to be rare. The Demand Model is used to predict customer demand
during this period, and the Demand Manager assumes that it will win, and
thus need to produce, some fraction of this demand. This fraction ranges from
zero during times of low demand to 1/6 during times of moderate or high
demand, although the Demand Manager will not predict a higher level of
component use than is possible given the available factory cycles. While this
method of projecting component use yields reasonable results, improving the
prediction is a significant area for future work.

5 The Supply Manager

The Supply Manager is responsible for purchasing components from suppliers
based on the projection of future component use provided by the Demand
Manager, and for informing the Demand Manager of expected component
deliveries and replacement costs. In order to be effective, the Supply Manager
must be able to predict future component availability and prices. The Supplier
Model assists in these predictions.

5.1 Supplier Model

The Supplier Model keeps track of all information sent to and received from
suppliers. This information is used to model the state of each supplier, allow-
ing predictions to be made. The Supplier Model performs three main tasks:
predicting component prices, tracking reputation, and generating probe RFQs
to improve its models.

5.1.1 Price Prediction

To assist the Supply Manager in choosing which RFQs to send to suppliers,
the Supplier Model predicts the price that a supplier will offer in response
to an RFQ with a given quantity and due date. The Supplier Model requires
an estimate of each supplier’s existing commitments in order to make this
prediction.

Recall that the price offered in response to an RFQ requesting delivery on
a given day is determined entirely by the fraction of the supplier’s capacity
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that is committed through that day. As a result, the Supplier Model can
compute this fraction from the price offered. If two offers with different due
dates are available, the fraction of the supplier’s capacity that is committed in
the period between the first and second date can be determined by subtracting
the total capacity committed before the first date from that committed before
the second. With enough offers, the Supplier Model can form a reasonable
estimate of the fraction of capacity committed by a supplier on any single
day.

For each supplier and supply line, the Supply Manager maintains an estimate
of free capacity, and updates this estimate daily based on offers received. Using
this estimate, the Supplier Model is able to make predictions on the price a
supplier will offer for a particular RFQ.

5.1.2 Reputation

When deciding which RFQs to send, the Supply Manager needs to be careful
to maintain a good reputation with suppliers. Each supplier has a minimum
acceptable purchase ratio, and the Supply Manager tries to keep this ratio
above the minimum. The Supplier Model tracks the offers accepted from each
supplier and informs the Supply Manager of the quantity of offered compo-
nents that can be rejected from each supplier before the ratio falls below the
minimum.

5.1.3 Price Probes

The Supply Manager will often not need to use the full five RFQs allowed each
day per supplier line. In these cases, the remaining RFQs can be used as zero-
quantity price probes to improve the Supplier Model’s estimate of a supplier’s
committed capacity. For each supplier line, the Supplier Model records the
last time each future day has been the due date for an offer received. Each
day, the Supply Manager informs the Supplier Model of the number of RFQs
available per supplier line to be used as probes. The Supplier Model chooses
the due dates for these RFQs by finding dates that have been used as due
dates least recently.

5.2 Supply Manager

The Supply Manager’s goal is to obtain the components that the Demand
Manager projects it will use at the lowest possible cost. This process is divided
into two steps: first the Supply Manager decides what components will need
to be delivered, and then it decides how best to ensure the delivery of these
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components. These two steps are described below, along with an alternative
means of obtaining components.

5.2.1 Deciding What to Order

The Supply Manager seeks to keep the inventory of each component above a
certain threshold. This threshold (determined experimentally) is 800, or 400
in the case of CPUs, and decreases linearly to zero between days 195 and 215.
Each day the Supply Manager determines the deliveries that will be needed
to maintain the threshold on each day in the future. Starting with the current
component inventory, the Supply Manager moves through each future day,
adding the deliveries from suppliers expected for that day, subtracting the
amount projected to be used by the Demand Manager for that day, and making
a note of any new deliveries needed to maintain the threshold. The result is a
list of needed deliveries that we will call intended deliveries. When informing
the Demand Manager of the expected future component deliveries, the Supply
Manager will add these intended deliveries to the actual deliveries expected
from previously placed component orders. The idea is that although the Supply
Manager has not yet placed the orders guaranteeing these deliveries, it intends
to, and is willing to make a commitment to the Demand Manager to have these
components available.

Because prices offered in response to short term RFQs can be very unpre-
dictable, the Supply Manager never makes plans to send RFQs requesting
delivery in less than five days. (One exception is discussed later.) As discussed
previously, no component use is projected beyond 40 days in the future, mean-
ing that the intended deliveries fall in the period between five and 40 days in
the future.

5.2.2 Deciding How to Order

Once the Supply Manager has determined the intended deliveries, it must
decide how to ensure their delivery at the lowest possible cost. We simplify
this task by requiring that for each component and day, that day’s intended
delivery will be supplied by a single order with that day as the due date. Thus,
the only decisions left for the Supply Manager are when to send the RFQ and
which supplier to send it to. For each individual intended delivery, the Supply
Manager predicts whether sending the RFQ immediately will result in a lower
offered price than waiting for some future day, and sends the RFQ if this is
the case.

In order to make this prediction correctly, the Supply Manager would need
to know the prices that would be offered by a supplier on any future day.
Although this information is clearly not available, the Supplier Model does
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have the ability to predict the prices that would be offered by a supplier for
any RFQ sent on the current day. To enable the Supply Manager to extend
these predictions into the future, we make the simplifying assumption that the
price pattern predicted on the current day will remain the same on all future
days. In other words, if an RFQ sent on the current day due in i days would
result in a certain price, then sending an RFQ on any future day d due on day
d+i would result in the same price. This assumption is not entirely unrealistic
due to the fact that agents tend to order components a certain number of
days in advance, and this number generally changes slowly. Essentially, we are
saying, “Given the current ordering pattern of other agents, prices are lowest
when RFQs are sent x days in advance of the due date, so plan to send all
RFQs x days in advance.”

The resulting procedure followed by the Supply Manager is as follows. For each
intended delivery, the Supplier Model is asked to predict the prices that would
result from sending RFQs today with various due dates requesting the needed
quantity. A price is predicted for each due date between 5 and 40 days in the
future. (Each price is then modified slightly according to a heuristic that will
be presented in the next section.) If there are two suppliers, the lower price is
used. If the intended delivery is needed in i days, and the price for ordering i
days in advance is lower than that of any smaller number of days, the Supply
Manager will send the RFQ. Any spare RFQs will be offered to the Supplier
Model to use as probes.

The final step is to predict the replacement cost of each component. The
Supply Manager assumes that any need for additional components that results
from the decisions of the Demand Manager will be felt on the first day on which
components are currently needed, i.e., the day with the first intended delivery.
Therefore, for each component’s replacement cost, the Supply Manager uses
the lowest price found when considering the first intended delivery of that
component, even if no RFQ was sent.

For each RFQ, a reserve price somewhat higher than the expected offer price
is used. Because the Supply Manager believes that the RFQs it sends are the
ones that will result in the lowest possible prices, all offers are accepted. If the
reserve price cannot be met, the Supplier Model’s predictions will be updated
accordingly and the Supply Manager will try again the next day.

5.2.3 Waiting to Order in Certain Cases 5

When prices are lower for long term orders than short term orders, the Supply
Manager faces an interesting tradeoff. Waiting to order an intended delivery
in the short term is expected to increase costs, but by waiting the agent might

5 This section presents a significant addition to the previous agent, TacTex-05
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gain a clearer picture of its true component needs. For example, if customer
demand suddenly drops, the agent may be better off if it has waited to order
and can avoid unnecessary purchases, even if prices are somewhat higher for
those components the agent does purchase. Using the ordering strategy of the
previous section, however, the Supply Manager would always choose to place
long term orders no matter how small the expected increase in cost would be
if it waited.

A number of experiments using the previous version of the agent, TacTex-05,
suggest that agent performance would improve if the Supply Manager were
to postpone ordering in such situations (Pardoe & Stone, 2006). One possible
way of ensuring this behavior would be to modify the current strategy so that
instead of sending a request as soon as the predicted price is at its lowest point,
the request is only sent when it is believed to be unlikely that a reasonably close
price can still be obtained. In TacTex-06, the Supply Manager implements an
approximation of this strategy using a straightforward heuristic: predictions
of offer prices are increased by an amount proportional to the distance of the
requested due date. In particular, the predicted price for a requested due date
d days away, 5 ≤ d ≤ 40, is multiplied by 1 + xd, where xd = 0.1 ∗ (d− 5)/35.
Predicted prices are thus increased between zero and ten percent, values chosen
through experimentation. As a result, the Supply Manager will wait to order
when long term prices are only slightly lower than short term prices.

5.2.4 2-Day RFQs

As mentioned previously, the prices offered in response to RFQs requesting
near-immediate delivery are very unpredictable. If the Supply Manager were
to wait until the last minute to send RFQs in hopes of low prices, it might
frequently end up paying more than expected or be unable to buy the compo-
nents at all. To allow for the possibility of getting low priced short-term orders
without risk, the Supply Manager sends RFQs due in 2 days, the minimum
possible, for small quantities in addition to what is required by the intended
deliveries. If the prices offered are lower than those expected from the normal
RFQs, the offers will be accepted.

The size of each 2-day RFQ depends on the need for components, the rep-
utation with the supplier, and the success of past 2-day RFQs. Because the
Supply Manager may reject many of the offers resulting from 2-day RFQs, it
is possible for the agent’s reputation with a supplier to fall below the accept-
able purchase ratio. The Supplier Model determines the maximum amount
from each supplier that can be rejected before this happens, and the quantity
requested is kept below this amount.

The Supply Manager decides whether to accept an offer resulting from a 2-day
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RFQ by comparing the price to the replacement cost and the prices in offers
resulting from normal RFQs for that component. If the offer’s price is lower
than any of these other prices, the offer is accepted. If the quantity in another,
more expensive offer is smaller than the quantity of the 2-day RFQ, then that
offer may safely be rejected.

The 2-day RFQs enable the agent to be opportunistic in taking advantage of
short-term bargains on components without being dependent on the availabil-
ity of such bargains.

6 Adaptation over a Series of Games

The predictions made by the predictive modules as described above are based
only on observations from the current game. Another source of information
that could be useful in making predictions is the events of past games, made
available in log files kept by the game server. During the final rounds of the
TAC SCM competition, agents are divided into brackets of six and play a
number of games (16 on the final day of competition) against the same set
of opponents. When facing the same opponents repeatedly, it makes sense
to consider adapting predictions in response to completed games. TacTex-06
makes use of information from these games in its decisions during two phases
of the game: buying components at the beginning of the game (impacting
mainly the behavior described in Section 5.2), and selling computers at the
end of the game (impacting the behavior in Section 4.2). In both cases, only
past games within a bracket are considered, and default strategies are used
when no game logs are yet available. We chose to focus on these areas for
two reasons. Behavior during these two phases varies significantly from one
agent to another, possibly due to the fact that these phases are difficult to
reason about in general and may thus be handled using special-case heuristic
strategies by many agents. At the same time, each agent’s behavior remains
somewhat consistent from game to game (e.g. many agents order the same
components at the beginning of each game). This fact is critical to the success
of an adaptive strategy – the limited number of games played means that it
must be possible to learn an effective response from only a few past games.

6.1 Initial Component Orders

At the beginning of each game, many agents place relatively large component
orders (when compared to the rest of the game) to ensure that they will be
able to produce computers during the early part of the game. Prices for some
components may also be lower on the first day than they will be afterwards,
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depending on the due date requested. Determining the optimal initial orders
to place is difficult, because no information is made available on the first day
of the game, and prices depend heavily on the orders of other agents.

TacTex-06 addresses this issue by analyzing component costs from past games
and deciding what components need to be requested on the first two days in
order to ensure a sufficient supply of components early in the game and to
take advantage of low prices. The process is very similar to the one described
in Section 5.2, except that predictions of prices offered by suppliers are based
on past games. First, the components needed are identified, then the decision
of which components should be requested is made, and finally the RFQs are
generated.

The Supply Manager begins by deciding what components will be needed.
On the first day, when no demand information is available (customers begin
sending RFQs on the second day), the Supply Manager assumes that it will be
producing an equal number of each type of computer, and projects the compo-
nents needed to sustain full factory utilization for 80 days. On the second day,
the Supply Manager projects future customer demand as before and assumes
it will receive orders for some fraction of RFQs over each of the next 80 days.
The projected component use is converted into a list of intended deliveries as
before. (The Supply Manager makes no projections beyond the first 80 days
because we have not observed instances where it would be worthwhile to order
components so far in advance.)

Next, the Supply Manager must decide which components should be requested
on the current day (the first or second day of the game). As in Section 5.2.2,
the Supply Manager must determine which intended deliveries will be cheapest
if they are requested immediately. At the beginning of the game, the Supplier
Model will have no information to use in predicting prices, and so information
from past games is used. By analyzing the log from a past game and modeling
the state of each supplier, it is possible to determine the exact price that
would have been offered in response to any possible RFQ. Predictions for the
current game can be made by averaging the results from all past games. When
modeling the states of suppliers, RFQs and orders from TacTex-06 are omitted
to prevent the agent from trying to adapt to its own behavior. If the initial
component purchasing strategies of opponents remain the same from game to
game, these average values provide a reasonable means of estimating prices.

At the beginning of the game, the Supply Manager reads in a table from a
file that gives the average price for each component for each pair of request
date and due date. Using this table, the Supply Manager can determine which
intended deliveries will cost less if requested on the current day than on any
later day. Intended deliveries due within the first 20 days are always requested
on the first day, however, to avoid the possibility that they will be unavailable
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later. If opponents request many components on the first day of the game but
few on the second, the prices offered in response to RFQs sent on the second
day will be about the same as if the RFQs had been sent on the first day.
Since information about customer demand is available on the second day of
the game but not the first, it might be beneficial to wait until the second day
to send RFQs. For this reason, the Supply Manager will not send a request
for an intended delivery if the price expected on the second day is less than
3% more than the price expected on the first.

Once the Supply Manager has decided which intended deliveries to request, it
must decide how to combine these requests into the available number of RFQs
(five, or ten if there are two suppliers). In Section 5.2.2, this problem did not
arise, because there were typically few requests per day. On the first two days,
it is possible for the number of intended deliveries requested to be much larger
than the number of RFQs available. Intended deliveries will therefore need to
be combined into groups, with delivery on the earliest group member’s delivery
date. The choice of grouping can have a large impact on the prices offered.
When there is only one supplier, the Supply Manager begins by dividing the 80
day period into five intervals, defined by six interval endpoints, with a roughly
equal number of intended deliveries in each interval. Each interval represents
a group of intended deliveries that will have delivery requested on the first
day of the interval. One at a time, each endpoint is adjusted to minimize the
sum of expected prices plus storage costs for those components delivered early.
When no more adjustments will reduce the cost, the Supply Manager sends
the resulting RFQs. When there are two suppliers, ten intervals are used, and
intervals alternate between suppliers.

6.2 Endgame Sales

Near the end of each game, some agents tend to run out of inventory and stop
bidding on computers, while other agents tend to have surplus computers,
possibly by design, that they attempt to sell up until the last possible day. As
a result, computer prices on the last few days of the game are often either very
high or very low. When end-game prices will be high, it can be beneficial to
hold on to inventory so as to sell it at a premium during the last days. When
prices will be low, the agent should deplete its inventory earlier in the game.
TacTex-06 adapts in response to the behavior of its competitors in past games
by adjusting the predictions of the Offer Acceptance Predictor (Section 4.2)
during the last few days of each game.

TacTex-06’s endgame strategy is essentially to reserve only as many comput-
ers for the final few days as it expects to be able to sell at high prices. In
particular, from day 215 to 217, the Demand Manager will always respond to
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a customer RFQ (if it chooses to respond) by offering a price slightly below
the reserve. For RFQs received on these days, the probability predicted by
the Offer Acceptance Predictor is set to the fraction of computers that would
have sold at the reserve price on that day in past games. When the Demand
Manager plans for a period of production that includes one of these days,
these acceptance probabilities will hopefully result in an appropriate number
of computers being saved for these three days.

7 2006 Competition Results

Out of 21 teams that participated in the final round of the 2006 TAC SCM
competition, held over three days at AAMAS 2006, six advanced to the fi-
nal day of competition. After 16 games between these agents, TacTex-06 had
the highest average score, $5.9 million, followed closely by PhantAgent with
$4.1 million and DeepMaize with $3.6 million 6 . Both PhantAgent and Deep-
Maize were much improved over their 2005 counterparts, and would very likely
have beaten the previous year’s champion, TacTex-05, if it had competed un-
changed. It thus appears that the improvements present in TacTex-06 were
an important part of its victory. Although it is difficult to assign credit for
an agent’s performance in the competition to particular components, we can
make some observations that support this hypothesis.

Figure 4 shows the average, over all 16 games on the final day of the competi-
tion, of the profit earned per game day for the top three agents. Daily profit is
computed by determining what computers were delivered to customers each
day and which components in inventory went into those computers, and then
subtracting costs from revenue. TacTex-06 clearly had the highest daily profits
over the first 70 days of the game, and after this point profits were roughly
equal for all three agents. The difference in profits appears to be accounted
for by higher revenue per computer. During the first 70 days of each game,
TacTex-06 sold about as many computers as PhantAgent and DeepMaize while
paying roughly the same costs for components, but TacTex-06 almost always
had a much higher average sales price for each type of computer. After day
70, TacTex-06 still had somewhat higher average computer prices, but these
were offset by higher component costs than the other two agents paid.

The ability of TacTex-06 to sell computers at higher prices appears to be due
to its attempt to predict future changes in computer prices and react accord-
ingly. During the competition, TacTex-06 could often be seen building up its
inventory of completed computers before prices rose or selling off its inventory
as prices peaked, while such behavior among other agents was less visible.

6 Competition scores are available at http://www.sics.se/tac/scmserver
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Fig. 4. Daily profits for the top three agents on the final day of the 2006 competition,
averaged over all 16 games.

This behavior can explain not only the fact that TacTex-06 sold computers at
higher prices, but also the fact that the advantage was especially large in the
first portion of each game. To see why, consider Figure 3. For this particular
game and computer type, prices began very high, then fell rapidly before re-
covering somewhat. This pattern is actually very common. Agents begin with
no components or computers in inventory, and the supply of computers is
thus much smaller than the demand in the beginning of each game. As agents
obtain components and begin selling computers, prices usually drop rapidly.
Due to the rapid changes in computer prices and the predictability of this
pattern, the attempts by TacTex-06 to predict and exploit changes in prices
are particularly effective in this period of the game.

To get a clearer picture of how the improvements in TacTex-06 contribute to
its performance, we perform a series of controlled experiments in the following
section.

8 Experiments

We now present the results of controlled experiments designed to measure
the impact of individual components of TacTex-06 on its overall performance.
In each experiment, two versions of TacTex-06 compete: one unaltered agent
that matches the description provided previously, and one agent that has been
modified in a specific way. Each experiment involves 30 games. The other four
agents competing — Mertacor, DeepMaize, MinneTAC, and PhantAgent (all
versions from 2005) — are taken from the TAC Agent Repository. (Experi-
ments against different combinations of agents appear to produce qualitatively
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similar results.)

Experimental results are shown in Table 3. Each experiment is labeled with
a number. The columns represent the averages over the 30 games of the total
score (profit), percent of factory utilization over the game (which is closely
correlated with the number of computers sold), revenue from selling comput-
ers to customers, component costs, and the percentage of games in which the
altered agent outscored the unaltered agent. In every experiment, the differ-
ence between the altered and unaltered agent is statistically significant with
99% confidence according to a paired t-test.

The first row, experiment 0, is provided to give perspective to the results of
other experiments. In experiment 0, two unaltered agents are used, and all
numbers represent the actual results obtained. In all other rows, the numbers
represent the differences between the results of the altered agent and the
unaltered agent (from that experiment, not from experiment 0). In general,
the results of the unaltered agents are close to those in experiment 0, but there
is some variation due to differences between games (e.g. customer demand),
and due to the effects of the altered agent on the economy.

8.1 Supply Price Prediction Modification

As described in Section 5.2.3, the Supply Manager slightly increases the predic-
tions of prices that will be offered for components by an amount proportional
to the number of days before the requested due date. This addition to TacTex-
06 is designed to cause the agent to favor short term component orders over
long term orders if the difference in price is small. In experiment 1, an agent
that does not use this technique is tested. Compared to the unaltered agent,
this agent has increased component purchases and factory utilization, but the
increase in revenue is not enough to offset the higher costs, and the final score
is lower than that of the unaltered agent. It appears that the unaltered agent
is able to avoid purchasing unprofitable components in some cases by waiting
longer to place its orders.

8.2 Offer Acceptance Predictor

We now consider the impact of the improvements to the Offer Acceptance
Predictor described in Section 4.2. In experiment 2, the altered agent always
predicts that future computer prices will remain unchanged. Not surprisingly,
the result is a large decrease in revenue and score. The decrease in score is
almost twice as large as the margin of victory for TacTex-06 in the 2006 com-
petition ($1.8 million), adding more weight to the claim of Section 7 that the
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Exp. # Description Score Util. Revenue Costs Win %

0 no changes $7.28M 83% $104.7M $94.5M -

1 no component price prediction increase -1.42 +3% +3.51 +4.79 23%

2 no computer price change prediction -3.51 -1% -4.50M -.70M 0%

3 no particle filter -1.97 -7% -10.05M -8.03M 0%

4 no particle filter or prediction -3.93 -6% -10.99M -6.83M 0%

5 heuristic price change prediction -1.74 0% -1.14M -.64M 13%

Table 3
Experimental results. In each experiment, one altered version of TacTex-06 and one
unaltered version compete in 30 games, along with four additional agents. Columns
represent the total score, percent of factory utilization, revenue from customers,
component costs, and how often the altered agent outscored the unaltered agent.
Numbers represent millions of dollars. In experiment 0, provided to place other
experiments’ results in perspective, no alteration is made to TacTex-06, and num-
bers represent the actual results. In all other experiments, numbers represent the
difference between the altered and unaltered agent. In each experiment, the differ-
ence between the altered and unaltered agent is statistically significant with 99%
confidence according to a paired t-test.

prediction of future price changes played a large role in the winning perfor-
mance.

In experiment 3, the particle filter used to generate predictions of offer accep-
tance is replaced with a simpler heuristic that was used in TacTex-05. This
heuristic used linear regression over the results of the past five days’ offers
to generate a linear function used for offer acceptance predictions and was
originally used by the agent Botticelli in 2003 (Benisch et al., 2004a). The ex-
periment shows that the particle filter approach is an improvement over this
heuristic. The large drop in factory utilization in the altered agent is surpris-
ing. Experiment 4 shows the result when the changes of experiments 2 and
3 are combined: the agent makes no predictions of future price changes and
uses the linear heuristic instead of the particle filter. The score is only slightly
worse than in experiment 2, suggesting that the benefits of using the particle
filter are more pronounced when price changes are predicted. It is possible
that the more detailed and precise predictions of offer acceptance generated
from the particle filter are necessary for the agent to effectively make use of
the predictions of future price changes.

In experiment 5, the learned predictor of price changes is replaced with a
heuristic that performs linear regression on the average computer price over
the last ten days, and extrapolates the trend seen into the future to predict
price changes. Although the heuristic’s predictions are reasonably accurate,
the performance of the altered agent is about midway between that of the
unaltered agent and that of the agent from experiment 2 that makes no pre-
dictions at all, demonstrating the value of learning an accurate predictor.
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9 Related Work

Outside of TAC SCM, much of the work on agent-based supply chain man-
agement has focused on the design of architectures for distributed systems in
which multiple agents throughout the supply chain must be able to communi-
cate and coordinate (Sadeh et al., 2001) (Fox, Barbuceanu, & Teigen, 2000).
These systems may involve a static supply chain or allow for the dynamic for-
mation of supply chains through agent negotiation (Chen et al., 1999). Other
work has focused on general solutions to specific subproblems such as pro-
curement or delivery. TAC SCM appears to be unique in that it represents a
concrete domain in which individual agents must manage a complete supply
chain in a competitive setting.

A number of agent descriptions for TAC SCM have been published presenting
various solutions to the problem. At a high level, many of these agents are
similar in design to TacTex-06: they divide the full problem into a number
of smaller tasks and generally solve these tasks using decision theoretic ap-
proaches based on maximizing utility given estimates of various values and
prices. The key differences are the specific methods used to solve these tasks.

The problem of bidding on customer RFQs has been addressed with a wide
variety of solutions. SouthamptonSCM (He et al., 2006) takes a fuzzy reason-
ing approach in which a rule base is developed containing fuzzy rules that
specify how to bid in various situations. PSUTAC (Sun et al., 2004) takes a
similar knowledge-based approach. DeepMaize (Kiekintveld et al., 2004) per-
forms a game-theoretic analysis of the economy to decide which bids to place.
RedAgent (Keller, Duguay, & Precup, 2004) uses a simulated internal market
to allocate resources and determine their values, identifying bid prices in the
process. The approach described in this chapter, where probabilities of offer
acceptance are predicted and then used in an optimization routine, is also
used in various forms by several other agents. CMieux (Benisch et al., 2006b)
makes predictions using a form of regression tree that is trained on data from
past games, Foreseer (Burke et al., 2006) uses a form of online learning to
learn multipliers (similar to the day factors used in TacTex-06) indicating the
impact of various RFQ properties on prices, and Botticelli (Benisch et al.,
2004a) uses the heuristic described in Section 8.2.

Like TacTex-06, many agents use some form of greedy production scheduling,
but other, more sophisticated approaches have been studied. These include
a stochastic programming approach, in which expected profit is maximized
through the use of samples generated from a probabilistic model of possible
customer orders (Benisch et al., 2004b), and an approach treating the bidding
and scheduling problems as a continuous knapsack problem (Benisch et al.,
2006a). In the latter case, an ǫ-optimal solution is presented which is shown
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to produce results similar to the greedy approach of TacTex-06 but in signifi-
cantly less time for large problems.

Attention has also been paid to the problem of component procurement, al-
though much of it has focused on an unintended feature of the game rules
(eliminated in 2005) that caused many agents to purchase the majority of
their components at the very beginning of the game (Kiekintveld, Vorobey-
chik, & Wellman, 2005). Most agents now employ approaches that involve
predictions of future component needs and prices and are somewhat similar
to the approach described in this chapter. These approaches are often heuris-
tic in nature, although there are some exceptions; NaRC (Buffett & Scott,
2004) models the procurement problem as a Markov decision process and uses
dynamic programming to identify optimal actions.

Although several agents make efforts to adapt to changing conditions during
a single game, such as MinneTAC (Ketter et al., 2005) and Southampton-
SCM (He et al., 2005), to our knowledge methods of adaptation to a set of
opponents over a series of games in TAC SCM have not been reported on by
any other agent. (Such adaptation has been used in the TAC Travel compe-
tition, however, both during a round of competition (Stone et al., 2001), and
in response to hundreds of previous games (Stone et al., 2003).)

10 Conclusions and Future Work

In this chapter we described TacTex-06, a supply chain management agent
consisting of predictive, optimizing, and adaptive components. We analyzed
its winning performance in the 2006 TAC SCM competition, and found evi-
dence that the strategy of exploiting predicted changes in computer prices to
increase revenue played a significant role in this performance. Controlled ex-
periments verified the value of a number of improvements made to TacTex-05,
the previous winner.

A number of areas remain open for future work. There is room for improvement
in many of the predictions, possibly though additional uses of learning. Also,
by looking farther ahead when planning offers to customers, it may be possible
for the agent to better take advantage of the predicted changes in future
prices. In addition, there is the question of what would happen if several
agents attempted to utilize such a strategy for responding to price changes,
and what the proper response to this situation would be.

The most important area for improvement, in both TacTex-06 and other TAC
SCM agents, is likely increasing the degree to which agents are adaptive to
ensure robust performance regardless of market conditions. While developing
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TacTex-06, we had the opportunity to carefully tune agent parameters (such
as inventory thresholds) and to test various agent modifications during several
rounds of competition and in our own experiments with the available agent
binaries. In addition, we were able to implement learning-based approaches
that took advantage of data from past games. When developing agents for real-
world supply chains, such sources of feedback and experience would be reduced
in quantity or unavailable. Although it would still be possible to test agents in
simulation, the market conditions encountered upon deployment might differ
significantly from the simulated conditions. Designing agents that can adapt
quickly given limited experience is therefore a significant part of our future
research agenda.

Ultimately, this research drives both towards understanding the implications
and challenges of deploying autonomous agents in supply chain management
scenarios, and towards developing new machine-learning-based complete au-
tonomous agents in dynamic multiagent domains.
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