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Abstract

In 2008, UT Austin Villa entered a team in the first Nao competition of the
Standard Platform League of the RoboCup competition. The team had previous
experience in RoboCup in the Aibo leagues. Using this past experience, the team
developed an entirely new codebase for the Nao. In 2009, UT Austin combined
forces with Texas Tech University, to form TT-UT Austin Villa'. Austin Villa
won the 2009 US Open and placed fourth in the 2009 RoboCup competition
in Graz, Austria. In 2010 Austin Villa successfully defended our 1st place at
the 2010 US Open and improved to finish 3rd at RoboCup 2010 in Singapore.
Austin Villa reached the quarterfinals at RoboCup 2011 in Istanbul, Turkey
before falling to the eventual champions, B-Human. This report describes the
algorithms used in these tournaments, including the architecture, vision, motion,
localization, and behaviors.

1For brevity we will often refer to our team simply as Austin Villa



1 Introduction

RoboCup, or the Robot Soccer World Cup, is an international research initiative
designed to advance the fields of robotics and artificial intelligence, using the
game of soccer as a substrate challenge domain. The long-term goal of RoboCup
is, by the year 2050, to build a team of 11 humanoid robot soccer players that
can beat the best human soccer team on a real soccer field [7].

RoboCup is organized into several leagues, including both simulation leagues
and leagues that compete with physical robots. This report describes our team’s
entry in the Nao division of the Standard Platform League (SPL)2. All teams
in the SPL compete with identical robots, making it essentially a software com-
petition. All teams use identical humanoid robots from Aldebaran called the
Nao?, shown in Figure 1.

Figure 1: Aldebaran Nao robots competing at RoboCup 2010.

1.1 Austin Villa Nao History

Our team is Austin Villa?, from the Department of Computer Science at The
University of Texas at Austin and the Department of Computer Science at
Texas Tech University. Our team is made up of Professor Peter Stone, graduate
students Samuel Barrett, Katie Genter, Todd Hester, Piyush Khandelwal, and
postdoc Michael Quinlan from UT Austin, and Professor Mohan Sridharan from
TTU.

We started the codebase for our Nao team from scratch in December of
2007. Our previous work on Aibo teams [10, 11, 12] provided us with a good
background for the development of our Nao team. We developed the architecture
of the code in the early months of development, then worked on the robots in
simulation, and finally developed code on the physical robots starting in March
of 2008. Our team competed in the RoboCup competition in Suzhou, China in

2http://www.tzi.de/spl/
3http://www.aldebaran.com/
4http://www.cs.utexas.edu/” AustinVilla



July of 2008. Descriptions of the work for the 2008 tournament can be found
in the corresponding technical report [3].

We continued our work after RoboCup 2008, making progress towards the
US Open and RoboCup in 2009. We finished 1st and 4th respectively in these
two competitions while making significant progress in our soccer playing abili-
ties. The enhancements performed during 2009 can be found in the 2009 team
report [4].

For 2010, we continued making improvements, updating our architecture,
adding a new kick engine, and changing our behaviors and strategies. These
changes led us to victory in the 2010 US Open and 3rd place in RoboCup 2010
in Singapore. A full description of these changes can be found in last year’s
team report [1].

1.2 2011 Contributions

This report describes all facets of our Nao team codebase. For completeness,
this report repeats relevant portions of the 2008-2010 team reports. The major
change for this year was overhauling the localization and opponent tracking
systems to better share information with teammates. The other main changes
for 2011 included a new software architecture, kicking engine, and behavior
simulation.

Section 2 describes our software architecture that allows for easy extendibil-
ity and debugability. Our vision system is described in section 3. Our new
localization system (Section 4) is an unscented Kalman filter (UKF). Section 5
describes our new opponent tracking filter which also uses a UKF. Section 6
describes our motion modules used on the robot, including a new kick engine.
Section 7 briefly describes the behaviors we developed and employed in 2011,
as well as our new behavior simulation. Section 8 describes our soccer results
at RoboCup.

1.3 2010-2011 Relevant Publications

Over the past year our team produced two publications involving RoboCup
and/or the Nao platform [1, 6].

2 Software Architecture

Though based in spirit on our past software architectures used for the Aibos,
the introduction of the Nao prompted us to redesign the software architecture
without having to support legacy code. Previous RoboCup efforts had taught us
that the software should be flexible to allow quick changes but most importantly
it needs to be debugable.

The key element of our design was to enforce that the environment interface,
the agent’s memory, and its logic were kept distinct (Figure 2). In this case logic
encompasses the expected vision, localization, behavior and motion modules.
Figure 3 provides a more in-depth view of how data from those modules interact
with the system.

The design advantages of our architecture are:
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Figure 2: Overview of the Austin Villa software architecture.

Consistency The core system remains identical irrespective of whether the
code is run on the robot, in the simulator or in our debug tool. As a
result, we can test and debug code in any of the 3 environments without
code discrepancies. The robot, simulator and tools each have their own
interface class which is responsible for populating memory.

The robot interface talks to NaoQi and related modules to populate the
perceptions, and then reads from memory to give commands to ALMo-
tion. The simulation interface also communicates with NaoQi. The tool
interface can populate memory from a saved log file or over a network
stream.

Flexibility The internal memory design is show in Figure 3. We can easily plug
& play modules into our system by allowing each module to maintain its
own local memory and communicate to other modules using the common
memory area. By forcing communication through these defined channels
we prevent “spaghetti code” that often couples modules together. For
example, a Kalman Filter localization module would read the output of
vision from common memory, work in its own local memory and then
write object locations back to common memory. The memory module
will take care of the saving and loading of the new local memory, so the
developer of a new module does not have to be concerned with the low
level saving/loading details associated with debugging the code.

Debugability At every time step only the contents of current memory is re-
quired to make the logic decisions. We can therefore save a “snapshot” of
the current memory to a log file (or send it over the network) and then
examine the log in our debug tool and discover any problems. The debug
tool not only has the ability to read and display the logs, it also has the
ability to take logs and process them through the logic modules. As a
result we can modify code and watch the full impact of that change in our
debug tool before testing it on the robot or in the simulator. The log file
can contain any subset of the saved modules, for example saving only per-
cepts (i.e. the image and sensor readings) is enough for us to regenerate
the rest of the log file by passing through all the logic modules (assuming



no changes have been made to the logic code).

It would be remiss not to the mention the main disadvantage of this de-
sign. We implicitly have to “trust” other modules to not corrupt data stored in
memory. There is no hard constraint blocking one module writing data into a
location it shouldn’t, for example localization could overwrite a part of common
memory that should only be written to by vision. We could overcome this draw-
back by introducing read/write permissions on memory, but this would come
with performance overheads that we deem unnecessary.

/ Interface ;

Memory Module Logic Modules
L Common Memory <
Memory L »|  Percepts Memory | ... —> Vision
Writer -« //
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/y Localization
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Memory 1< )
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Figure 3: Design of the Memory module. The gray boxes indicated memory
blocks that are accessed by multiple logic modules. Dotted lines show connec-
tions that are either read or write only (percepts are read only, commands are
write only).

b

To increase the modularity of our logic code, we have split the logic into
three processes:

1. NaoQi: this code runs at 100 hz, is called by naoqi (or a simulator),
and copies the current sensor information to memory and writes out the
current motion commands

2. Motion: this code runs at 100 hz and converts high level commands into
direct commands for the motors

3. Vision: this code runs at 30 hz and processes the incoming imaging and
selects the high level commands

Splitting execution into three processes allows us to restart a crashed process,
though only restarting the vision process is currently supported. Using three



processes required us to store our memory structure in shared memory. In
addition, we use mutex locks to prevent processes from using incomplete infor-
mation. However, the majority of the information is kept separate for each of
the processes, so locking is only required when copying local information into
these shared blocks.

2.1 Languages

The code incorporates both C++ and Lua. Lua is a scripting language that
interfaces nicely with C++ and it allows us to change code without having to
recompile (and restart the binary on the robot). In general most of vision,
localization and motion are written in C++ for performance reasons, but all
control decisions are made in Lua as this gives us the ability to turn on/off
sections at runtime. Additionally the Lua area of the code has access to all the
objects and variable stored in C++ and therefore can be used to prototype code
in any module.

3 Vision

W ]
T

(a) Raw Image (b) Segmented Image (c) Pixel Sub-sampling

Figure 4: The segmentation procedure is shown here. The raw image in Fig.
4(a) is converted to the segmented image using the color table. If we segment
all the pixels, we get the image in Fig. 4(b). In Fig. 4(c), we show an enlarged
portion of the blue box in Fig. 4(b), which shows the true segmented image
with pixel sub-sampling.

The raw images provided by the Nao are in the YUV422 format and have
a 640 by 480 size, giving the images a size of 600 KB. A huge amount of the
processing time in vision is consumed by accessing this image, which amounts
to 8.8 MBps at 15 fps. Since image accesses are the bottleneck of the image
processing system, we can increase frame rate by optimizing the memory ac-
cesses of the vision system. We present two independent techniques that should
be applicable to any color based segmentation system.

The first technique happens at the lowest level of the hardware: cache,
memory, and memory controller. The main idea is to reduce the number of
memory accesses with type casting and to maximize the cache hit rate. When
accessing two neighboring pixels, we burden the memory controller only once
by retrieving a 32-bit value instead of querying four 8-bit pixel channel values
independently. This retrieves information about two adjacent pixels together,
containing the Y channel for both the pixels, and the shared U and V channels.
Thus, the number of memory read requests can be reduced by a factor of 4.



Once the pixels’ YUV values are read, the YUV tuple values are looked up in
the color table, which contains a one-to-one mapping between YUV tuple values
and segmented colors [9]. The second technique reorganizes the color table to
maximize the cache hit rate when querying a sequence of YUV tuples. Since
two adjacent pixels share U and V channels, the order of the color channels in
the color table is maintained as VUY instead of YUV. This reduces cache misses
while segmenting a pair of adjacent pixels, due to their proximity in the color
table. Results from memory optimization are presented in Table 1.

Method Time (ms)
No optimizations 138.616
Color table reorganization 112.867
Color table reorganization & efficient retrieval 96.023

Table 1: The time taken to access and segment one image frame.

Our vision system divides the object detection task into 3 stages, which are
listed below.

1. Blob Formation - The segmented image is scanned using horizontal and
vertical scan lines, and blobs are formed for further processing.

2. Object Detection - The blobs are merged into different objects. In this
paper, we shall primarily limit our discussion to line and curve detection.

3. Transformation - We use the information given by the pose of the robot
to generate ground plane transformations of the line segments detected.

3.1 Blob Formation

LineBlob

(a) HorizontalRunLengths (b) VerticalRunLengths & (c) Enlarged view
& VerticalBlobs HorizontalBlobs

Figure 5: A representative image for the blob formation procedure. An enlarged
view of the blue box in Fig. 5(b) is shown in Fig. 5(c) for clarity. In Fig. 5(c),
the grey lines are the vertical run lengths and the white line is the corresponding
horizontal blob formed.

Our blob formation procedure is similar to previous approaches such as [2]
and is outlined in Fig. 5. The segmented image is scanned using vertical and
horizontal scan lines, effectively sub-sampling the image (Fig. 4(c)). A vertical
scan line is placed every 4 columns and a horizontal scan line every other row,
and only these sub-sampled pixels are segmented (Fig. 4). Our system also



retrieves and segments additional pixels in an ad hoc manner when we are unable
to detect the ball. From these scan lines, we form RunLengths of same colors.
RunLengths are a set of contiguous pixels along a scan line having the same
segmented color value. Fig. 5(a) shows the HorizontalRunLengths generated
using horizontal scan lines, and Fig. 5(b) shows the VerticalRunLengths from
the vertical scan lines. Fig. 5(c) gives an enlarged view into a portion of Fig.
5(b), which shows the individual VerticalRunLengths in grey.

In the next stage we form blobs from these run lengths. Instead of using
the Union-Find procedure as in [2], we simply merge adjacent run-lengths of
the same color on the basis of overlap and width similarity. The main reason
behind using this simpler approach is that it is more geared towards finding
lines, and not a similar blob of color. Note that VerticalRunLengths combine to
form a HorizontalBlob, as shown in Fig 5(c). Similarly HorizontalRunLengths
are combined to form VerticalBlobs (Fig. 5(a)).

For each blob formed, we calculate some information required for further
processing. For a given horizontal blob, we have a start point and an end point,
as shown by the blue circles in Fig. 5(c). This gives us start coordinates (xs, ys)
and end coordinates (z.,y.). We also calculate g5 and . as the start and
finish slope respectively, by calculating slope across a few run lengths. Next we
calculate ¢, which is the rate of change of slope across the blob. Some averaging
is performed to account for noise. A similar set of values are also calculated for
each vertical blob.

3.2 Object Detection

Bl
(a) Raw Image (b) Detected Segments (¢) Transformed Image

Figure 6: For the raw image in Fig. 6(a), the detected objects are shown in Fig.
6(b). The circle is detected in 2 separate segments. The transformation to the
ground plane is shown in 6(c).

3.2.1 Line Segment Detection

In this section, we will primarily talk about our approach to line segment de-
tection, as this forms the basis for our field line and goal detection algorithms.
Vertical blue and yellow line segments serve as candidates for goal posts. Hor-
izontal and vertical white line segments serve as candidates for the lines and
center circles on the field.

We explain our methodology for segment formation in terms of horizontal
blobs, and an equivalent discussion should automatically apply for the vertical
blobs. To construct candidate segments, we make the simplifying assumption
that each line segment, whether it be a straight line or an ellipse (i.e. a projection



Algorithm 1 Line Segment Formation
1: Input: B < Ordered set of Blobs
2: Output: S «+ A set of candidate LineSegments

4: for each Blob b; in B do

5. 5 = new LineSegment

6:  s.initialize(b;) {Initialize A,B,C. Put blob in segment}
7. bestSegment = recurse-check-segment (s, b;, B)

8:  if isAboveThreshold(bestSegment) then

9 for each Blob b in s do

10: B.remove(b)
11: end for

12: S.add(s)

13:  end if

14: end for

15:

16: function recurse-check-segment (s, b;, B)
17: bestSoFar = new LineSegment

18: for each Blob b; in B s.t j > i do

19: if b; ~ s.predictb;.xs then

20: s.update ABC(b;)

21: s.add(bj)

22: current = recurse-check-segment (s, b;, B)
23: if is-better(current, bestSoFar) then

24: bestSoFar = current

25: end if

26: end if

27: end for

28: return bestSoFar
29: end function

of the center circle - Fig. 6(a)), can be represented by the following parabola
for short segments:

y=ar?+br+c (1)
The advantage of this assumption is that it gives simple expressions for the
derivatives of this function. This allows us to reconstruct the curve given a
point on the curve (z1,y1), and the slope and the rate of change of slope at that
point (91, 41):

y=2ax+b, i=2a, which gives (2)
i . _ 2
a= 7, b=y —2ax1, c¢=y —ax]—bx (3)

The procedure for merging the blobs together is presented in Algorithm 1. To
merge these blobs together, we traverse over the set of sorted blobs using a
stack. We initialize a segment (the stack) with a single blob b, and calculate the
parameters a, b and ¢ for that segment, using the values (e, ye, ¥e, §) calculated
for the blob (Alg. 1 Line 6).

Once initialized, we start the recursion process (Alg. 1 Line 7). Using the

current a, b and ¢ values from the segment, we can predict the curve for any



given z (using Eqns. 1 and 2). We then check if any blobs in the global list
match our prediction. Once a match is found, we add that blob to the stack,
recalculate the a, b and ¢ values (using Eqn. 3), and recursively repeat the
procedure.

We backtrack along the stack if we are unable to find a suitable blob to add,
or when all possible options have been explored. While backtracking, we keep
track of the best candidate found in front of every node, in a form of dynamic
programming. Once the entire tree has been explored, the best candidate at the
root node is the most suitable line segment. If it satisfies the threshold for being
a line segment, we add it to the list of candidate line segments and remove all
the blobs in this segment from the overall blob list. The final object detection
is shown in Fig. 6(b).

3.2.2 Ball Detection

Ball detection runs the Union-Find algorithm [2] on orange blobs from the blob
formation procedure to merge them into a set of candidate balls. Our ball
detection method is fairly similar to our approaches in previous years [4, 1],
and a number of heuristics are employed to calculate the probability of each
candidate being the actual ball. Candidates are initially refined by a measure
which calculates their similarity to a circle. The ball distance is then estimated
using the width of the blob, and is used to project the ball in 3D space using
the transformations described in Section 3.3. The height of the candidate then
serves as the second main measure of refinement, as the true ball should be
fairly close to the ground. There are a number of other less significant measures
used to refine the hypotheses. If there are candidates still present after the
refinements, the most probable candidate is detected as the ball.

A major change last year was incorporating the higher resolution image to
see the ball at further distances. This was necessary due to a reduction in the
ball size. We initially attempt to detect the ball from the orange blobs formed
according to our pixel sub-sampling strategy. If no candidate is selected as the
ball, we can optionally retrieve further detail from the image. This is done by
retrieving all pixels adjacent to previously detected orange pixels. We then re-
run the blob formation procedure, to form blobs with a finer grain of accuracy.
This additional detail produces better probability than before while running the
same heuristics for refinement. Due to a high computational cost, this scan is
only run when required, and only if the initial scan fails.

Based on our testing the low resolution scan is able to detect the ball at a
maximum distance of about 2.5 meters, and the high resolution scan can detect
the ball at a maximum distance of about 4.0 meters. These values were observed
with the robot standing still and searching for the ball. With movement, there
may be excessive noise in the image, and it may take multiple scans to detect
the ball.

3.2.3 Robot Detection

Robot detection was written from scratch last year, and is used by our kick
selection engine to avoid kicking the ball into other robots. Robot detection
takes all the pink and blue horizontal blobs detected from the blob formation
procedure. These blobs may be generated from the team identification markers



from the robots, and are taken as possible candidates for the robots. We then
look for white pixels above and below each blob, to ascertain the presence of the
white torso and legs of the robot. Additionally, all blobs that are close together
are merged into a single blob. All refined candidates are treated as detected
robots (Figure 7).

(a) Vision (b) Localization

Figure 7: A red robot being observed in vision and its tracked position in
localization.

One of the main difficulties with robot detection is that the the team iden-
tification markers are difficult to segment, as they quite often lie in the shadow
of the robot’s torso. Additionally they may also be obscured by the hands of
the robot. Because of this reason, we found estimation of the detected robot’s
position based on the intrinsic properties of the color band fairly challenging.
We found a solution to this problem by using the green pixels below the robot
in the segmented image. If the robot was detected correctly, then these green
pixels should represent the ground just below the robot. Using the transforma-
tions from Section 3.3, we can find the position of this region of the ground, and
consequently that of the robot.

3.3 Transformation

For the purpose of localization, it is important to be able to distinguish between
lines and curves. Otherwise, a robot observing the center circle could mistakenly
believe that it is observing the center line or vice versa. Distinguishing between
lines and curves can be difficult in the vision frame because the projections of
lines and circles on the camera image often look fairly similar. The inevitable
noise and incorrectly formed line segments exacerbate the problem.

For the purpose of distinguishing lines from curves, we use transformations.
Based on the current pose of the robot, it is possible to construct a transfor-
mation matrix from a point in the vision frame onto the ground plane [4]. This
transformation is possible because the height and orientation of the camera can
be estimated relative to the ground using the robot’s sensors. Since this ma-
trix is calculated once every frame, we can efficiently transform from the vision
frame to the ground plane.

After obtaining the transformation for each segment, we use a simple metric
for first classifying whether a detected segment is a line or not. We calculate
the angle between the first and second halves of the segment, and classify the
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segment as a curve if this angle is above some threshold. For all curves, we
perform circle fitting by calculating the center and radius using 3 seed points.
We then verify if the circle has roughly the same radius as the center-circle on
the field.

This process is illustrated in Fig. 6. Given the raw image (Fig. 6(a)), we
can apply the vision system to generate the final detected segments (Fig. 6(b)
- note that two segments are detected from the circle). We transform these
segments (Fig. 6(c)) and perform circle fitting on the curves. The green colored
segment shows a curve that was fit to the circle shown in green. The red colored
segment shows a curve which was not detected as a circle, due to an incorrect
projection.

4 Localization

This year, we changed from using Monte Carlo localization (MCL) to using a
multiple model Unscented Kalman Filter (UKF) for localization. The multi-
modal UKF is based on previous work by other SPL teams [8, 5]. Our main
reason for using MCL in the past was that the particles could represent non-
normal distributions over likely locations of the robot on the field. However,
it was computationally inefficient, poor at integrating ball information into lo-
calization, and bad for sharing information between teammates. While a tradi-
tional Kalman filter would not be suited for RoboCup due to to the ambiguous
observations and non-Gaussian belief distributions, the multi-modal unscented
filter addresses these problems. In addition, we can better integrate the ball’s
information in with the robot’s location by using a 7-state filter and easily share
information between robots.

We used a 7 state filter to track both the location of the robot along with
the location and velocity of the ball:

X

Y
0

z(t) = | ballx (4)
bally
ballvelx
| ballvely |

As with all Kalman filters, at each time step, a two-step update is performed:

1. Time Update: Given the belief of z(t — 1), bel(z(t — 1)), and an odometry
update for time ¢, we calculate bel(z~(t)).

2. Measurement Update: Given bel(z~(t)) and the sensor observations for
time ¢, we calculate bel(z(t)).

In a standard Kalman filter, the belief over the 7-dimensional state space
is represented by a 7-dimensional Gaussian. The multiple model version of the
Kalman filter represents the belief by a weighted sum of N Gaussians. Each
Gaussian represents a possible hypothesis of where the robot might be. Each of
the N models has its own state estimate, x;, covariance matrix P;, and weight
(670
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The probability distribution for each model is given by:

1 1 ~\NT p—1 S
bel;(z) = %We( 2(z—2:)" Py (z—24)) (5)
The overall probability distribution is simply the sum over all N of these
distributions. New models are created when the agent makes ambiguous obser-
vations or actions with multiple possible outcomes (e.g. kicks) occur. Models
are merged back together when they are deemed to be similar enough using the
metrics from [8].

4.1 Unique Observations

When a unique observation is made, each of the N models in the Kalman filter
is updated using the standard unscented technique. After all N models are
updated, similar models are merged together, using the approach of [8]. Unlike
a traditional Kalman filter, which requires a linear measurement update, the
unscented Kalman filter deterministically samples points from the distribution
and uses these points to update the mean and covariance of the Gaussian. Two
sigma points are selected on each major axis of the Gaussian. For the 7-state
filter, this results in 14 points, plus the mean of the Gaussian. These 15 sigma
points are updated with the new measurement, similar to the way the particles
in a particle filter would be updated. These updated points can then be used to
compute the new mean and covariance of the Gaussian. In addition to enabling
non-linear updates, this unscented filter also means that no Jacobians are needed
for various updates, instead each point is updated similar to a particle in MCL.
are sampled from the distribution and used to perform a measurement update
on that model.

4.2 Ambiguous Observations

When an ambiguous object, such as a single goal post or a field line, is observed,
the probability density function over the robot’s possible location is no longer
a normal distribution. Instead, there is some likelihood of the observed object
being any of the possible real objects on the field, and thus, likelihood of the
robot being in many different parts of the field. In this case, multiple models
are created to represent this distribution.

When an ambiguous observation is made, for each of the existing N models,
M + 1 copies of this model are made, where M is the number of possible ob-
jects that the ambiguous observation could be. One model is updated for each
possible object that the observation could be, and the last model is updated for
the case that a false observation was made (i.e. an object was detected that
was not really there). Each of these observations are given an equally probable

likelihood: 1

= Qi (6)
Following the approach of [8], new models are thrown out immediately if their
probability is deemed small enough to be an outlier.

Most of the observations that the robot makes on the SPL field are ambigu-
ous observations. There are only four unique observations that can be made:
seeing the entire yellow goal, the entire blue goal, the center circle, or the ball.

@
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Seeing a single goal post, a line, or a line intersection is ambiguous. When
seeing a goal post, there are M = 2 possible objects (left or right post), when
seeing a line, there are M = 11 possible lines, and for line intersections, there are
M = 16 possible objects. As these numbers show, when observing an ambiguous
line or intersection, the number of models maintained can increase significantly.
If the robot is well-localized, often only one of these possible objects is likely.
Therefore, when the robot is confident in its location on the field, the most
likely line or intersection is found and an update is performed as if this was a
unique observation. When the standard deviation of the robot’s location is high
enough, multiple models are created for line and intersection observations as
well. Goal posts are always treated as ambiguous observations. This approach
allows the robot to recover quickly from kidnapping, but be able to maintain
tight confidences on its location even when seeing ambiguous observations while
localized.

4.3 Ball updates

A major reason for our switch to the multiple model UKF was to improve our
ball tracking and information sharing between robots. By using a 7-state filter,
the ball’s location and velocity are tightly integrated with the robot’s location.
The robot shares information about the ball’s location with its teammates by
sharing its estimates of the ball’s location and covariance matrix if it has seen the
ball recently. The robot’s teammates can use this information as a measurement
update to improve their estimate of the ball’s location. In addition to improving
their estimate of the ball’s location, this can help improve the robot’s own
localization. For example, it is often the case that the robot chasing the ball is
staring down at it and rarely has other observations. However, if other robots
are providing the robot with a confident estimate of where the ball is, then it
can use this information along with its observations of the ball to deduce its
own location on the field.

We also take advantage of the multi-modal aspect of the filter when kicking.
Whenever the robot kicks the ball, two models are created for each of the NV
models. One model updates the ball with the velocity that should have been
imparted by the kick and this model’s probability, «, is updated by 0.75. The
second model represents the possibility that the kick failed. In this model, the
robot’s uncertainty about the ball’s location and velocity is increased, but it
is given no velocity. This model is given a probability of 0.25 of the original
model’s probability.

5 Opponent Tracking

When an opponent robot is detected through the vision system, the robot needs
to be able to track the opponent’s location and share it with teammates. This
information about the opponent’s location is critical in making smart strategic
decisions with the ball. Our opponent tracking system is based on the multi-
modal UKF system used for localization and ball tracking. A four state filter is

13



employed using the following state:

oppx
_ oppy
z(t) = oppvelx (7)
oppvely

Here, however, the multiple models are used in a different way. The filter
maintains N filter models, where each model represents an opponent. Each
opponent is represented by only one Gaussian model, rather than a sum of
Gaussians.

When an opponent robot is detected, an update is attempted on each of the
N models in the filter. This observation update incorporates both noise from
the sensor observation and the uncertainties in the robot’s own location from
localization. If the model that best matched the observation is close enough to
meet a set threshold, then that model is updated with the observation. If the
best model’s match does not meet the threshold, then a new model is created at
the location of the observed opponent. Exactly one model is updated for each
opponent observation. When multiple opponent observations are made within
one time step, each one is used to update a different model. This ensures that
multiple observations do not all update a single opponent model and that one
observation is not used to update multiple opponent models.

Teammates share information about the opponents by sharing all of their
opponent models that have been recently updated. They share both the state
and covariance matrix of these models. When receiving this information, the
robots take a similar approach as with the measurement updates. Each model
from a teammate is compared to all of the robot’s current models and the model
with the best match is updated. If that match does not meet a given threshold,
then a new model is created. By sharing opponent information in this way,
team members can successfully avoid and kick around opponent robots without
seeing them, requiring only a well-localized ’spotter’ robot to tell them where
the opponents are.

6 Motion

We used the provided Aldebaran walk engine for our walk, with tuned walk
parameters and joint stiffnesses. In 2011 we re-developed our own kick engine,
allowing us to use multiple kicks in different directions with varying power.

6.1 Kick Engine

Rather than having a large set of static kicks for each situation the robot might
encounter, we instead created a small set of parameterized kicks. Our kick
engine selects the appropriate parameters and then executes the sequence of
actions for a given kick. Our kick engine is designed to provide a wide range of
angles and distances, as well as handle variance in the ball’s starting position.
This reduces the need to align carefully to the ball, which allows the robot to
move the ball faster with less chance of an opponent blocking the kick. The
engine selects the parameters based on the position of the ball and the desired
kick target as described in the following sections. Specifically, the engine can
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handle desired kick angles from 5° to the outside of the kicking leg to 30° to
the inside, and distances ranging from 0.5 meters to 4 meters.

6.1.1 Basic Control

The robot’s kick engine used a state machine with the states described in Ta-
ble 2.

In our tests, separating moving the swing foot back and placing it down
helped stability significantly. Likewise, we found that breaking the pre-kick
alignment into two parts also improved stability. The Check Ball state stores the
current position of the ball, calculated directly from the robot’s camera image
to eliminate the dependence of the kick on the filtering of the ball position.
Furthermore, the head and body pose were fixed for the Check Ball state, so
the robot did not need to filter out the noise from its own movement. Note that
if the kick type does not specify a leg, the leg is chosen in the Check Ball state.
For all of this work, we control the robot’s joints using inverse kinematics. We
also use splines to compute the path for the foot to follow as it moves in the
Kick state.

’ State \ Description ‘

Check Ball Assume a standard position and check the cur-
rent position of the ball

Shift Weight Shift the robot’s weight to the stance foot

Align 1 Begin to lift the swing leg and position it for the
kick

Align 2 Finish lifting and positioning the swing leg for
the kick

Kick Move the swing leg forward to perform the kick

Move Foot Back Move the swing foot back to be in line with the
stance leg

Place Foot Down | Place the swing foot back on the ground

Shift Weight Back | Shift the robot’s weight back to balanced on
both feet

Table 2: States of the kicking engine’s state machine

6.1.2 Variable Ball Position and Angle Control

To handle variable ball positions and kicking at a range of angles, the robot
must control the starting and ending positions of its foot for the kick. The goal
is for the foot to move through the ball at the desired kick angle, with the ball
centered on the foot.

Most of the states defined above are not affected by the ball position, kicking
distance and kicking angle; only the Align 2 and Kick states must be altered
based on these factors. The Align 2 state must move the foot to the back point
of the desired line segment, whereas the Kick state must move the foot to the
forward point of the line segment. In both the Align 2 state and the Kick state,
the actual distance behind/ahead of the ball and to the side of the ball are
determined as functions of the desired kick angle, desired kick distance, and
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actual ball position with respect to the robot. However, we do bound both
the side and back/forward distances of the foot in both the Align 2 state and
the Kick state to avoid singular values in the inverse kinematics and to prevent
clipping of the stance foot. An example of foot placement for a leftward kick is
shown in Figure 8.

Desired Kick Heading

" Swing Foot in
] Kick state

Stance Foot

()

Swing Foot in
Align state

Figure 8: Foot placement during the Align 2 and Kick states.

Note that in the Check Ball state, the robot saves the position of the ball in
the image as a coordinate in pixel values from the camera image. For determin-
ing the positions of the foot, we directly use the ball’s coordinates within the
camera image. Unfortunately, not all of the robots are calibrated the same; as
such, the same commanded angles of the head may result in different positions
on different robots. Therefore, for each robot, we calculated the offset of the
head and used this value to correct the estimate of the position of the ball.

6.1.3 Distance Control

Kicking distance was controlled by changing the interpolation time of the Kick
state, i.e. the time taken to swing the leg forward during the kick. We deter-
mined the relationship between this time and the distance empirically, collecting
distances at seven interpolation times and then averaging over five kicks at each
time. Then, we fit a linear model to the logarithm of the distance, arriving at
the model:

t = —0.13342log(d) + 1.27666

We discovered through experimentation that using times of less than 0.17 sec-
onds had no effect on the kick due to the maximum speed of the joint. We
also found that using times longer than 0.4 seconds did not reliably result in
the robot moving the ball at least 0.5 meters. Hence, all of our kick times were
between 0.17 and 0.4 seconds. It is important to note that the function relating
distances and interpolation times is dependent on the field surface, so it was
necessary to re-calibrate it for the RoboCup competition.

7 Behavior

Our behavior module is made up of a hierarchy of task calls. We call a PLAYSOC-
CER task which then calls a task based on the mode of the robot {ready, set,
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playing, penalized, finished}. These tasks then call sub-tasks such as CHASE-
BALL or GOTOPOSITION.

Our task hierarchy is designed for easy use and debugging. Each task main-
tains a set of state variables, including the sub-task that it called in the previous
frame. In each frame, a task can call a new sub-task or continue running its
previous one. If it does not explicitly return a new sub-task, its previous sub-
task will be run by default. Tasks at the bottom of the hierarchy are typically
the ones that send motor commands to the robot; for example telling it to walk,
kick, or move its head.

Tasks in our system can also call multiple tasks in parallel. This ability is
used mainly to allow separate tasks to run for vision and motion on the robot.
While the robot is running a vision behavior such as a head scan or looking at
an object, the body can be controlled by a separate behavior such as kicking or
walking towards the ball.

One of the benefits of our task hierarchy is its debugability. In addition to
the logs of memory that the robot creates, it also creates a text log that displays
the entire tree of tasks that were called each frame along with all their state
variables. Figure 9 shows an example of one frame of output of the behavior log
in the tool. The information provided in the text log is enough to determine why
the robot chose each particular behavior, making it easy to debug. In addition,
this text log is synchronized with the memory log in the tool, allowing us to
correlate the robot’s behaviors with information from vision, localization, and
motion.

The emphasis in our team behaviors was to get to the ball quickly and be
sure to do the right thing once we got to it. Once the ball was found, the robot
would walk to the ball as quickly as possible. While approaching the ball the
robot would actively choose to scan for objects based on its current location and
uncertainty. When a certain uncertainty threshold was reached the robot would
slightly slow its walk and scan either left, right or both direction in search of
goals or lines. If the robot sees enough information (i.e. both goal posts) it will
exit the active head scan and return to focusing on the ball. Once the robot got
sufficiently close to the ball it would either choose an appropriate kick or circle
the ball, as further described in the remainder of this section.

Highlights of our behavior and kick strategy can be found at http://www.
youtube.com/watch?v=-9gEMOGW1Qg.

7.1 Kick Selection Strategy

We created a kick decision engine that enables the robot to keep the ball away
from the sidelines and to continue moving it towards the opponent’s goal, all
while avoiding opponents. To do this, we check if the result of the kick will
place the ball in a dynamically calculated infundibuliform that forces the robot
to funnel the ball towards the goal. We use this calculated region to select a
preferred kick amongst all possible kicks the robot can make using its variable
kick engine.

In addition to making sure all of our kicks move the ball consistently towards
the opponent’s goal, our second aim was to be quick at the ball. The final steps
of approaching and lining up the ball for a kick can be quite slow, and opponents
can get in the way of the kick if these phases take too long. For this reason,
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PlaySoccer (Comp) Time
attackBall (Comp) Time
.ballDistance = 1019.4510391127
attackState = 2
.ballBearing = -0.088381900373086
ChooseAndKick (Comp]) Time
whichKick =1
Jinit = false
.done = false
.goalframes =10
kickChosen = true
spproachandkick (Comp) Time
~walkStart = 48285
.goalBearing = 0.45668612589337
.done = false
.goalFrames =0
.ballVBearing = 0.19264318483898
.aakstate = 2
alignandkick (Comp) Time
ballk =1
Jeg =10
.seenBall = false
bally = -1
.alignstate =1
numaligns = 0
.done = false

- L [y 1

Figure 9: Example Behavior Log, showing the trace of task calls and their state
variables.

our robots take the first kick allowed by the strategy rather than spending more
time to line up for a stronger, more accurate kick.

Having defined the method for implementing a quick kick with controllable
kick and angle (Section 6.1), we are then presented with the challenge of select-
ing from among all the possible ways in which to kick the ball at any given time.
In this section, we describe our approach to this problem. One of our main ob-
jectives was to minimize the time we spent at and around the ball, while still
maximizing the outcome of each kick. To achieve this we construct a parame-
terized system that allows us to define a valid kick region that ensures that any
kick chosen will result in the ball being moved closer to the opponent’s goal and
away from the sidelines. The robot has a set of possible kicks that can be made
using the kick engine, and determines which ones are valid by determining if
they will likely result in the ball being in the kick region. The potential kicks
are ordered based on distance, and if there are multiple valid kicks, the kick that
goes the farthest is selected. When no valid kicks exist, the robot continues to
approach the ball, which consists of walking up to and circling it, until a viable
kick is found. By following this approach the robot spends the minimum time
approaching the ball, while still guaranteeing that the chosen kick will move the
ball closer to the goal.
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7.1.1 Defining the Kick Region

The kick region defines an area on the field which we deem as wvalid to kick into.
This region ensures that the robot always kicks the ball towards the opponent’s
goal, but away from opponents and the sidelines. An example valid kick region
for a particular ball position is represented by the shaded area in Figure 10. The
principle is that any kick, factoring in the robot’s possible orientation error, that
is predicted to result in the ball staying inside the kick region is a valid kick to
choose from. On the other hand, any kick that will not place the ball in this
region is an inwvalid kick that should not be selected.

The kick region is described by 6 parameters, presented in Table 3 and
visualized in Figure 10. The general concept is that the region allows most kick
options (to keep the ball moving) but funnels the ball towards the goal, therefore
keeping the ball out of the corners of the field. We can define the steepness of
the funnel stem, the width of the funnel, and the opening angle of the funnel’s
mouth. The kick strategy can be changed at any stage during the match. For
example, we can have different strategies depending on the game situation or
even depending on the current field setup.

| Parameter (unit) | Description ‘
Edge Buffer (mm) Creates a non-valid region of this width on each
sideline.
Post Angle (deg) Shapes the valid region such that it narrows to-
wards the target goal with the given angle.
Opening Angle (deg) Defines the valid region as angled outwards from

the robot, i.e. always kick forwards at a mini-
mum of the given angle.

Inside Post Buffer (mm) | Minimum distance inside each goal post that the
robot should aim.

Shooting Radius (mm) Defines a semi-circle in which the robot should
strongly attempt to score, i.e the valid kick re-
gions becomes the area inside the target goal.
Own Goal Radius (mm) | Defines a semi-circle around your own goal in
which no valid kicks should exists, i.e. do not
kick across the face of your own goal.

Table 3: Parameters that define the valid Kick Region

7.1.2 Avoiding Opponents

In addition to making sure that all kicks move the ball towards the opponent’s
goal, the kick region is also used to ensure that the ball is not kicked towards
opponents. All possible kicks are checked with the opponent filter. All kicks
that would go through or stop near an opponent in the filter are invalidated.
Along with using the opponents to invalidate parts of the kick region, we
also use them to calculate the best heading towards the goal. This heading gives
us a possible direction to aim our kick to maximize the chance of scoring by
shooting directly between the keeper and one of the goal posts. We calculate
the bearing to each goal post and the bearing to any opponent between the two
posts. We then calculate the size of the “gap” between the opponent and each
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(a) Kick Region Parameters (b)  Shooting (c) Corner Be-
Radius havior

Figure 10: (a) The parameters that define the kick region and an example of
avoiding opponents. The highlighted area indicates the valid kick region. (b)
Example of the kick region when the ball is inside the shooting radius (the
semi-circle). In this case, the robot will strongly prefer to score a goal; this is
achieved by setting only the area inside the goal as valid kick region. (c) When
the ball is in the corners, we modify the kick region to include an additional
area in front of the goal.

post in degrees. The larger of these two is considered the “large gap” and the
smaller is the “small gap.” Along with the kicks at discretized distances and
headings, two kick choices are added that kick at maximum distance towards
the center of each of the two gaps. If no opponent is detected between the goal
posts, the large gap kick is directed towards the center of the goal, and the small
gap kick is directed to be just inside the near post.

7.1.3 Choosing a Kick

Algorithm 2 shows how the robot decides when and where to kick using the
kick region. The robot has a set of possible kicks it can make, using a small set
of the kick ranges and angles possible with our kick engine. Table 7.1.3 shows
the kick choices that are given to the robot. The first two choices use kick
headings calculated to aim towards the gaps between the goal keeper and the
goal posts. The remaining kicks use discretized headings of —30°, 0°, and 30°
with discretized distances of 0.85, 1.75, and 3.5 meters. The kicks are sorted
based on distances and headings, such that longer kicks are examined first by
the kick selection algorithm.

The robot goes through each of these kicks in order, and checks if they are
valid by checking if the final ball location, including likely heading error, is in the
valid region. For each kick, the robot adds both a positive and negative heading
error to the kick based on the robot’s localization uncertainty and the variance
in the kick itself. These two locations indicate the maximum and minimum
heading that we expect the ball might move. The robot calls check_kick_region
for each of these locations, and it determines if this possible ball location is in
the valid region. If both possible ball locations are valid, then the kick is a valid
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kick, otherwise, it is invalid.

The robot calls approach_ball_arc_to_goal, which walks towards and circles
the ball to face the opponent’s goal. It returns false after a timeout for circling
the ball too long. Upon finding a valid kick, the algorithm stops circling the ball
and executes that kick. If none of the kicks are valid, then the robot continues
its approach until it has a valid kick or the approach times out. It is often the
case that a short kick may be valid while a long kick would put the ball out of
bounds, but had the robot circled the ball more it could have reached an angle
such that a longer kick would have been better. This biases our robot to take
faster, shorter kicks as opposed to longer ones that require more alignment.

Algorithm 2 Kick Strategy
1: b < ball
2: 7 < robot
3: while approach_ball_arc_to_goal(A) do
4: if bgise > Apmax_pISTANCE.-FROM_BALL then

5 continue

6: end if

7. best_kick + —1

8 for kK € K do

9: left < check kick region(R, kg;st, ko, 70,)
10: right < check kick region(R, kgist, ko, —79,)
11: if (left + right) = 2 then

12: best_kick < k

13: break

14: end if

15:  end for

16:  if best_kick > —1 then
17: execute Kpest kick

18: end if

19: end while

20: execute KsgoORT KICK

’ Kick Distance (m) Heading (deg) ‘
Large Gap Kick 3.5 Towards Large Goal Gap
Small Gap Kick 3.5 Towards Small Goal Gap
Long Straight Kick 3.5 0
Long Leftward Kick 3.5 30
Long Rightward Kick 3.5 -30
Medium Straight Kick 1.75 0
Medium Leftward Kick 1.75 30
Medium Rightward Kick | 1.75 -30
Short Straight Kick 0.85 0
Short Leftward Kick 0.85 30
Short Rightward Kick 0.85 -30

Table 4: Possible Kicks
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Figure 11 shows all the possible kicks from one field location. The first two
choices aim for the gap between the keeper and the goal posts. The robot is close
enough to the goal and has low enough localization uncertainty that it believes
that both the left and right possibilities for these kicks will result in scoring.
Therefore, it will determine that both of these kicks are valid and return Kick
0, towards the largest gap between the keeper and goal post. The validity of
the other possible kicks is shown. Some of the kicks are invalid due to going
out of bounds (Kicks 3 and 4), going towards the opponent (Kicks 2 and 5), or
not meeting the opening angle from the robot (i.e. not going forward enough
(Kicks 6 and 9)). In addition to the two scoring kicks, two of the shorter kicks
(Kicks 8 and 10) are valid, but the longer scoring kicks would be preferred.

" =
(a) Kick 0: Long Kick to- (b) Kick 1: Long Kick to-
wards Large Gap. wards Small Gap.
E VA " T f £
+ w + w» .
(¢) Kick 2: Long Straight (d) Kick 3: Long Leftward (e) Kick 4: Long Rightward
Kick. Kick. Kick.
7 7
W W
(f) Kick 5: Medium Straight (g) Kick 6: Medium Left- (h) Kick 7: Medium Right-
Kick. ward Kick. ward Kick.
» —
‘ w * ‘
M W
(i) Kick 8: Short Straight (j) Kick 9: Short Leftward (k) Kick 10: Short Right-
chk Kick. ward Kick.

Figure 11: Example of kick choices from a location on the field. Kicks 0 and 1
are targeted at the gaps around the keeper. Kicks 2 and 5 are invalid because
they would go straight at the keeper. Kicks 3, 4, 6, 7, and 9 go outside the valid
region. Kicks 8 and 10 are valid, but have a lower ranking than valid kicks 0 and
1. Kicks are sorted by length, and the first valid kick is selected. So in this case,
Kick 0 would be selected and the remaining kicks would never be evaluated.
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7.2 Behavior Simulation

Since we did not have enough robots to run full-team scrimmages, we created
a behavior simulation to test our strategies and behaviors. This simulation ran
the team’s behavior code, providing it with the true positions of the robots and
the ball by filling in the positions in memory that would usually be filled in by
localization. In addition, the robots shared team information like they would
in a game, with outgoing packets from one robot being directly copied into the
memory for incoming packets for the other teammates. After the behavior code
was run, the robot was moved based on the walk commands that were output,
and the ball was imparted a velocity for any kick commands that were given.
Noise was added onto the kicks and walks to simulate some of the uncertainty
in the real game. In addition, the simulator tracked player pushing and illegal
defender penalties, and tracked ball movements, out of bounds calls, and goals,
to completely simulate a game.

The simulation could be run in a step-by-step mode where all the information
being used by the robot to make decisions was visualized, such as the information
it received from its teammates, where it thought all the robots and the ball were,
what parts of the field it deemed to be valid kick regions, and the current roles
of all members of the team. Stepping through games in this manner allowed us
to debug and correct issues with role switching, approaching the ball, and kick
decisions.

We could also run the simulation in a "head-less’ mode with no visualizations,
running through many simulated games very quickly. This allowed us to try
different strategy parameters on each team and see if they created significant
differences between the two teams. Finally, we could also alter one team to have
stronger kicks or faster walks and see how this altered the best parameters to
be used when playing with or against such a team.

8 Competition

In 2011, Austin Villa competed in the 15th International RoboCup Competition
in Istanbul, Turkey. Our results are described below. 27 teams entered the com-
petition. Games were played with four robots on each team. The tournament
consisted of two round robin rounds, followed by an elimination tournament
with the top 8 teams. The first round consisted of a round robin with eight
groups of three or four teams each, with the top two teams from each group
advancing. In the second round, there were four groups of four teams each, with
the top two teams from each group advancing. From the quarterfinals on, the
winner of each game advanced to the next round.

All of Austin Villa’s scores are shown in Table 5. In the first round robin,
Austin Villa was in a group with Nao Team Humboldt and the Dutch Nao
Team. Austin Villa defeated Humboldt 6-0 and the Dutch team 5-0 to win the
group. In the second round robin, Austin Villa was placed with the Nao Devils,
Northern Bites, and TJArk. The team defeated the Northern Bites 5-0 before
losing to the Nao Devils 2-4 and then defeating TJArk 3-1, to place second in
the group behind the Nao Devils.

Placing second in the group meant that the Austin Villa faced the two-time
champion B-Human in the quarterfinals. Austin Villa held B-Human to a 5-0
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victory (the smallest goal differential of any of B-Human’s victories), and hence
was knocked out in the quarterfinal round.

| Round [ Opponent [ Score‘
Round Robin 1|Nao Team Humboldt|6-0
Round Robin 1|Dutch Nao Team 5-0
Round Robin 2|Northern Bites 5-0
Round Robin 2|Nao Devils 2-4
Round Robin 2| TJArk 3-1
Quarterfinal B-Human 0-5

Table 5: RoboCup 2011 Results

9 Conclusion

This report described the technical work done by the TT-UT Austin Villa team
for its entry in the Standard Platform League. Our team developed an architec-
ture that consisted of many modules communicating through a shared memory
system. This setup allowed for easy debugability, as the shared memory could
be saved to a file and replayed later for debugging purposes.

The team improved its localization and opponent tracking to enable better
sharing of information between teammates. In addition, the team employed a
new kick engine and utilized a new behavior simulation to improve our decision
making strategies.

The work presented in this report gives our team a good foundation on which
to build better modules and behaviors for future competitions. In particular, our
modular software architecture provides us with the ability to easily swap in new
modules to replace current ones, while still maintaining easy debugability. We
plan to continue our progress on this code base with a faster walk for RoboCup
2012.
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