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Abstract

Reinforcement learning (RL) methods (Sutton & Barto 1998)
have become popular machine learning techniques in recent
years. RL has had some experimental successes and has been
shown to exhibit some desirable properties in theory, but it
has often been found very slow in practice. In this paper
we introduce behavior transfer, a novel approach to speeding
up traditional RL. We present experimental results showing a
learner is able learn one task and then use behavior transfer
to markedly reduce the total training time for a more complex
task.

Introduction
Reinforcement learning (Sutton & Barto 1998) has shown
some success in different machine learning tasks because of
its ability to learn where there is limited prior knowledge
and minimal environmental feedback. However, reinforce-
ment learning often is very slow to produce near-optimal be-
haviors. Many techniques exist which attempt, with more or
less success, to speed up the learning process.

Past research (Selfridge, Sutton, & Barto 1985) has shown
that a learner can train faster on a task if it has first learned on
a simpler variation of the task, referred to as directed train-
ing. In this paradigm the state transition function, which is
part of the environment, can change between tasks. Learn-
ing from easy missions (Asada et al. 1994) is a technique
that relies on human input to modify the starting state of the
learner over time, making it incrementally more difficult for
the learner. Both of these methods reduce the total training
time required to successfully learn the final task. However,
neither allow for changes to the state or action spaces be-
tween the tasks, limiting their applicability. Reward shap-
ing (Colombetti & Dorigo 1993; Mataric 1994) allows one
to bias a learner’s progress through the state space by adding
in artificial rewards to the environmental rewards. Doing so
requires sufficient knowledge about the environment a priori
to guide the learner and must be done carefully to ensure that
unintended behaviors are not introduced. While it is well un-
derstood how to add this type of guidance to a learner (Ng,
Harada, & Russell 1999), we would prefer to allow the agent
to learn faster by training on different (perhaps pre-existing)
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tasks. Using behavior transfer we are able to leverage exist-
ing learned knowledge as well as speed up tasks in domains
where existing schemes to accelerate reinforcement learning
are not applicable.

In this paper we introduce behavior transfer, whereby a
learner trained on one task can learn faster when training
on another task with related, but different, state and action
spaces. Behavior transfer is more general than the previ-
ously referenced methods because it does not preclude the
modification of the transition function, start state, or reward
function. The key technical challenge is mapping a value
function in one representation to a meaningful value func-
tion in another, typically larger, representation. The primary
contribution of this paper is to establish an existence proof
that there are domains in which it is possible to construct
such a mapping and thereby speed up learning via behavior
transfer.

Behavior Transfer Methodology
To formally define behavior transfer we first briefly review
the general reinforcement learning framework that conforms
to the generally accepted notation for Markov decision pro-
cesses (Puterman 1994). There is some set of possible per-
ceptions of the current state of the world, � , and a learner
has some initial starting state, �����	��
����� . When in a particular
state � there is a set of actions � which can be taken. The
reward function � maps each perceived state of the environ-
ment to a single number which is the value, or instantaneous
reward, of the state. � , the transition function, takes a state
and an action and returns the state of the environment after
the action is performed. If transitions are non-deterministic
the transition function is a probability distribution function.
A learner is able to sense � , and typically knows � , but may
or may not initially know � or � .

A policy ���������� defines how a learner interacts with
the environment by mapping perceived environmental states
to actions. � is modified by the learner over time to im-
prove performance, i.e. the expected total reward accumu-
lated, and it completely defines the behavior of the learner
in an environment. In the general case the policy can be
stochastic. The success of an agent is determined by how
well it maximizes the total reward it receives in the long
run while acting under some policy � . An ����� � !#"%$%���&$��('�) ,
�+* , is a policy which does maximize this value (in expecta-
tion). Any reasonable learning algorithm attempts to modify



� over time so that it reaches � * in the limit.
Past research confirms that if two tasks are closely re-

lated the learned policy from one task can be used to pro-
vide a good initial policy for the second task. For ex-
ample, Selfridge (1985) showed that the 1-D pole bal-
ancing task could be made harder over time by shorten-
ing the length of the pole and decreasing its mass; when
the learner was first trained on a longer and lighter pole
it could more quickly learn to succeed in the more dif-
ficult task with the modified transition function. In this
way, the learner is able to refine an initial policy for a
given task:

� ��������� �	� ���	��
������
 ������� ���������� ������� �� ��� � ���	���

where task 1 starts from no initial policy as indicated by
the ��� in the last value of the tuple. Task 2 can then
be defined as

� ��������� � � ��� � 
������
 � ����� ����������� �� � � ���	��
��� ��
 ���
��� � � � ���	���
 . The time it takes to learn ��� � � � ���	���
! �+*�
may be less for

� � � ����� � � ��� � 
������
 � � � � � � ��� � � �� ��� � ���	���
 � than� � � ����� � � ���	� 
������
 � � � � � � � � � � ����� . Note that since ���  � �
and ���  � � , �� �	� � ���	��"
 is a legitimate policy for task 2.

In this paper we consider the more general case where
� ��# ��� , and/or � �$# ��� . To use the policy ��� ��� � ���	���

as the initial policy for the second task, we must trans-
form its value function so that it can be directly ap-
plied to the new state and action space. A behavior
transfer function % � �� will allow us to apply a policy in
a new task

� � � ����� � � ���	��
�����"
 � � � � � � � � � �&% � ��� �	� � ���	 ��
 �'�(�
��� � � � ���	���
 . The policy transform function % needs to mod-
ify the policy so that it accepts the states in the new task as
inputs and allows for the actions in the new task to be out-
puts. A policy generally selects the action which is expected
to accumulate the largest expected total reward and thus the
problem of transforming a policy between two tasks reduces
to transforming the value function. Defining % to do this
correctly is the key technical challenge to enable general be-
havior transfer.

One measure of success in speeding up learning using
this method is that given a policy ��� , the training time
for �� � � � ���	��"
 to reach some performance threshold de-
creases when replacing the initial policy �)� with % � �*�+� .
Let � � !-, � �.��� ���	��
����� � �/� �0� �1� �� be the time it takes to find
a near-optimal policy in the task. If behavior transfer
works, � � !-, � � � ����� � � ���	��
������
 ��� � � � � ��� � �2% � ��� ��� � ���	���
 �2�43
� � !5, � � � ����� � � ���	��
�����"
 � � � � � � � � � � ����� . This criterion is rel-
evant when task 1 is given and is of interest in its own right.

A stronger measure of success is that the training time
for both tasks using behavior transfer is shorter than
the training time to learn the second task from scratch.
In other words, � � !-, � ���6����� ��� ���	��
�����"
 � ����� ����� �/��� ��7� �98
� � !5, � � � ����� � � ���	��
�����"
 � � � � � � � � � �2% � �� �	� � ���	��"
 �'� 3
� � !5, � � � ����� � � ���	��
�����"
 � � � � � � � � � � ����� . This criterion is
relevant when task 1 is created for the sole purpose of
speeding up learning via behavior transfer.

Testbed Domain
To demonstrate the effectiveness and applicability of the be-
havior transfer method (detailed in section 5) we empirically
test it in the RoboCup simulated soccer keepaway domain
using a setup similar to past research (Stone & Sutton 2002;
Kuhlmann & Stone 2004). RoboCup simulated soccer is

well understood as it has been the basis of multiple interna-
tional competitions and research challenges. The multiagent
domain incorporates noisy sensors and actuators, as well as
enforcing a hidden state so that agents can only have a partial
world view at any given time. While there has been previ-
ous work which attempted to use machine learning to learn
the full simulated soccer problem (Andre & Teller 1999;
Riedmiller et al. 2001), the complexity and size of the prob-
lem have so far proven prohibitive. However, many of the
RoboCup subproblems have been isolated and solved using
machine learning techniques, including the task of playing
keepaway.

Keepaway, a subproblem of RoboCup soccer, is the chal-
lenge where one team, the keepers, attempts to maintain pos-
session of the ball on a field while another team, the takers,
attempts to gain possession of the ball or force the ball out
of bounds, ending an episode. Keepers that are able to make
better decisions about their actions are able to maintain pos-
session of the ball longer and thus have have a longer aver-
age episode length. Figure 1 depicts three keepers playing
against two takers. 1

Takers

Keepers

Ball

Figure 1: This diagram
depicts the 13 state vari-
ables used for learn-
ing with 3 keepers and
2 takers. There are
11 distances to players,
the center of the field,
and the ball, as well as
2 angles along passing
lanes.

As more players are added
to the task, keepaway becomes
harder for the keepers be-
cause the field becomes more
crowded. As more takers are
added there are more players to
block passing lanes and chase
down any errant passes. As
more keepers are added, the
keeper with the ball has more
passing options but the average
pass distance is shorter. This
forces more passes and will
lead to more errors because of
the noisy actuators and imper-
fect perception. For this rea-
son keepers in 4 vs. 3 keepaway
(meaning 4 keepers and 3 tak-
ers) take longer to learn an opti-
mal control policy than in 3 vs.

2. The hold time of the best policy for a constant field size
will also decrease when moving from 3 vs. 2 to 4 vs. 3 due
to the added difficulty. This has been discussed in previous
research (Kuhlmann & Stone 2004).

The different keepaway tasks are all problems which may
occur during a real game. Learning on one task and trans-
ferring the behavior to a separate useful task can reduce the
training time. In the keepaway domain, � and � are de-
termined by the current keepaway task and thus differ from
instance to instance. However, � ���	� 
����� , � and � , though for-
mally different, are effectively constant across tasks. When
� and � change, � ���	��
����� , � , and � change by definition.
But in practice, � is always defined as 1 for every time step
that the keepers maintain possession, and � ���	��
����� and � are
always defined by the RoboCup soccer simulation.

1Flash-file demonstrations of the task can be found at
http://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/.



Learning Keepaway
The keepers use episodic SMDP Sarsa( � ) (Sutton & Barto
1998) to learn their task. We use linear tile-coding function
approximation, also known as CMACs, which has been suc-
cessfully used in many reinforcement learning systems (Al-
bus 1981). The keepers choose not from primitive actions
(turn, dash, or kick) but higher-level actions implemented
by the CMUnited-99 team (Stone, Riley, & Veloso 2000). A
keeper without the ball automatically attempts to move to an
open area (the receive action). A keeper in possession of the
ball has the freedom to decide whether to hold the ball or to
pass to a teammate.

Function approximation is often needed in reinforcement
learning so that the learner is capable of generalizing the
policy to perform well on unvisited states. CMACs allow us
to take arbitrary groups of continuous state variables and lay
infinite, axis-parallel tilings over them (see Figure 2). Using
this method we are able to discretize the continuous state
space by using tilings while maintaining the capability to
generalize via multiple overlapping tilings. The number of
tiles and width of the tilings are hardcoded and this dictates
which state values will activate which tiles. The function
approximation is learned by changing how much each tile
contributes to the output of the function approximator. By
default, all the CMAC’s weights are initialized to zero. This
approach to function approximation in the RoboCup soccer
domain is detailed by Stone and Sutton (2002).

Tiling #1

Tiling #2

Dimension #1

D
im
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 #

2

Figure 2: The tile-coding fea-
ture sets are formed from mul-
tiple overlapping tilings. The
state variables are used to de-
termine the activated tile in
each of the different tilings.
Every activated tile then con-
tributes a weighted value to
the total output of the CMAC
for the given state. Note
that we primarily use one-
dimensional tilings but that
the principles apply in the n-
dimensional case.

For the purposes of
this paper, it is impor-
tant to note the state vari-
ables and action possibil-
ities used by the learners.
The keepers’ states com-
prise distances and angles
of the keepers � ��� � � ,
the takers � ��� ��� , and
the center of the play-
ing region C (see Fig-
ure 1). Keepers and tak-
ers are ordered by in-
creasing distance from the
ball. Note that as the
number of keepers n and
the number of takers m
increase, the number of
state variables also in-
crease so that the more
complex state can be fully
described. � must change
(e.g. there are more dis-
tances to players to account for) and � ��� increases as there
are more teammates for the keeper with possession of the
ball to pass to. Full details of the keepaway domain and
player implementation are documented elsewhere (Stone &
Sutton 2002).

Learning 3 vs. 2
On a 25m x 25m field, three keepers are initially placed in
the three corners of the field and a ball is placed near one

of the keepers. The two takers are placed in the fourth cor-
ner. When the episode starts, the three keepers attempt to
keep control of the ball by passing amongst themselves and
moving to open positions. The keeper with the ball has the
option to either pass the ball to one of its two teammates or
to hold the ball. We allow the keepers to learn to choose be-
tween these three choices when in control of the ball. In this
task � =

�
hold, passToTeammate1, passToTeammate2 � . �

is defined by 13 state variables, as shown in Figure 1. When
a taker gains control of the ball or the ball is kicked out of
the field’s bounds the episode is finished. The reward to the
Sarsa( � ) algorithm for the keeper is the number of time steps
the ball remains in play after an action is taken. The episode
is then reset with a random keeper placed near the ball.

All weights in the CMAC function approximator are ini-
tially set to zero and therefore ���
	��� � � ���	��
������
  � � . As train-
ing progresses, the weight values are changed by Sarsa( � )
so that the average hold time of the keepers increases.
Throughout this process, the takers use a static hand-coded
policy to attempt to capture the ball as quickly as possible.
Due to the large amounts of randomness in the environment,
the evaluation of a policy is very noisy.

Learning 4 vs. 3
Holding the field size constant we now add an additional
keeper and an additional taker. � and � are essentially
unchanged from 3 vs. 2 keepaway, but now � =

�
hold,

passToTeammate1, passToTeammate2, passToTeammate3 �
and � is made up of 19 state variables due to the added play-
ers. The 4 vs. 3 task is harder than the 3 vs. 2 task and the
learned average hold times after 20 hours of training from
� ���	� 
�����  � � decrease from roughly 13.6 seconds for 3 vs.
2 to 9.3 seconds for 4 vs. 3.

In order to quantify how fast an agent in 4 vs. 3 learns,
we set a threshold of 9.0 seconds. When a group of four
keepers has learned to hold the ball from the three takers for
an average of 9.0 seconds over 1,000 episodes we say that
the keepers have sufficiently learned the 4 vs. 3 task. By
recording this time over many trials we can measure the ef-
fectiveness of the Sarsa( � ) algorithm in different situations.

Behavior Transfer in Keepaway
To define a % which will correctly transfer behavior from
���
	��� � � � ���	��"
 into ��������	 � ���	��
������
 , the value function utilized
by � needs to handle the new state and action spaces rea-
sonably. In the keepaway domain we are able to intuit the
mappings between actions in the two tasks and states in the
two tasks based on our knowledge of the domain. Our choice
for the mappings is supported by empirical evidence show-
ing that behavior transfer decreases training time. Other do-
mains will not necessarily have such straightforward trans-
forms between tasks of different complexity. Finding a gen-
eral method to specify % is outside the scope of this paper
and will be formulated in future work. One of the main chal-
lenges will be identifying general heuristics for mapping ex-
isting states and actions in the first task to new states and
actions in a second task. Creating a general metric for simi-
larity between state variables and actions in two tasks would



allow us to identify a promising mapping for rho and give an
a priori indication of whether behavior transfer will work in
a particular domain. Our primary contribution in this paper
is demonstrating that there exist domains in which % can be
constructed and then used to successfully increase the learn-
ing rate.

The naive approach of directly copying the CMAC’s
weights to duplicate the value function from �.�
	 �� � � � ���	���

into ��������	 � ���	��
������
 fails because both � and � have changed.
Keeping in mind that � � � �� � , we can see that the
new state vectors which describe the learner’s environment
would not be correctly used, nor would the new actions be
correctly evaluated by ��
	��� � � � ���	 ��
 . In order to use the
learned policy we modify it to handle the new actions and
new state values in the second task so that the CMAC can
reasonably evaluate them.

The CMAC function approximator takes a state vector
and an action and returns the expected total reward. The
learner can evaluate each potential action for the current �
and then use � to choose one. We modify the weights in
the tile coding so that when we input a 4 vs. 3 action the
weights for the activated tiles are not zero but instead are ini-
tialized by � 	��� � � � ���	�� . To accomplish this, we copy weights
from the tiles which would be activated for a similar action
in 3 vs. 2 into the tiles activated for every new action. The
weights corresponding to the tiles that are activated for the
“pass to teammate 2” action are copied into the weights for
the tiles that are activated to evaluate the “pass to teammate
3” action. The modified CMAC will initially be unable to
distinguish between these two actions.

To handle new state variables we follow a similar strat-
egy. The 13 state variables which are present in 3 vs. 2 are
already handled by the CMAC’s weights. The weights for
tiles activated by the six new 4 vs. 3 state variables are ini-
tialized to values of weights activated by similar 3 vs. 2
state variables. For instance, weights which correspond to
“distance to teammate 2” values in the state representation
are copied into the weights for tiles that are used to evaluate
“distance to teammate 3” state values. This is done for all six
new state variables. In this way, the tiles which correspond
to every value in the new 4 vs. 3 state vector have been ini-
tialized to values determined via training in 3 vs 2 and can
therefore be considered in the computation. See Table 1 for
examples of mappings used. Identifying similar actions and
states between two tasks is essential for constructing % and
may prove to be the main limitation when attempting to ap-
ply behavior transfer to different domains.

Having constructed a % which handles the new states and
actions, we can now set % � ���
	��� � � � ���	���
 � = ��������	 � ���	��
��� ��
 .
We do not claim that these initial CMAC weights are cor-
rect (and empirically they are not), but instead that the con-
structed CMAC allows the learner to more quickly discover
a near-optimal policy.

Results and Discussion
To test the effect of loading the 3 vs. 2 CMAC weights into
4 vs. 3 keepers, we run a number of 3 vs. 2 episodes, save
the CMAC weights ( ��
	��� � � � ���	 ��
 ) from a random 3 vs. 2

keeper, and load the CMAC weights into all four keepers2

in 4 vs. 3 so that % � ��
	��� � � � ���	 ��
 �  ���
�����	 � ���	� 
������
 . Then we
train on the 4 vs. 3 keepaway task until the average hold time
for 1,000 episodes is greater than 9.0 seconds. To overcome
the high variance inherent in the environment and therefore
the noise in our evaluation, we run at least 100 independent
trials for each number of 3 vs. 2 training episodes.

Table 2 reports the average time spent training 4 vs. 3 to
achieve a 9.0 second average hold time for different amounts
of 3 vs. 2 training. The middle column reports the time spent
training on the 4 vs. 3 task while the third column shows the
total time taken to train 3 vs. 2 and 4 vs. 3. As can be seen
from the table, spending time training in the simpler 3 vs. 2
domain can cause the time spent in 4 vs. 3 to decrease. This
shows that � � !-, � ��������� � � ���	��
������
 ������� �0��� �&% � ��� �	� � ��� ���
 �'� 3
� � !-, � ��������� � � ���	��
������
 ������� �0��� � � � � .

# of Ave. 4 vs. Ave. total
3 vs. 2 3 time time

episodes (hours) (hours)
0 16.44 16.44

100 13.34 13.53
250 12.45 12.95
500 11.44 12.50

1,000 9.81 11.95
2,000 7.57 12.10
3,000 5.63 12.77
9,000 15.07 43.46

Table 2: Results from learning keepaway
with different amounts of 3 vs. 2 training
time indicate that behavior transfer can re-
duce training time.

Table 2
shows the
potential of be-
havior transfer.
We use a t-test
to determine
that the differ-
ences in the
distributions of
4 vs. 3 training
times and
total training
times when
using behavior
transfer are
statistically
significant (p
3 ���������
	

) when compared to training 4 vs. 3 from scratch.
Not only is the time to train the 4 vs. 3 task decreased when
we first train on 3 vs. 2, but the total training time is less
than the time to train 4 vs. 3 from scratch. We can therefore
conclude that in the keepaway domain training first on a
simpler task can increase the rate of learning enough that
the total training time is decreased.

We would like to be able to determine the opti-
mal amount of time needed to train on an easier task
to speed up a more difficult task. It is apparent that
there is some number of 3 vs. 2 episodes which would
minimize � � !5, � � � ����� � � ���	��
������
 ��� � � �0��� �&% � ��� �	� � ��� ���
 �'� .
This value may be distinct from the value which
would minimize � � !5, � ��������� �	� ��� � 
������
 ������� �0���1� ����� 8
� � !-, � � � ����� � � ���	��
������
 ��� � � �0��� �&% � ��� �	� � ��� ���
 �'� . While it
is not critical when considering the 4 vs. 3 task because
many choices produce near optimal results, finding these
values becomes increasingly difficult as well as increasingly

2We do so under the hypothesis that the policy of a single keeper
represents all of the keepers’ learned knowledge. Though in theory
the keepers could be learning different policies that interact well
with one another, so far there is no evidence that they do. One pres-
sure against such specialization is that the keepers’ start positions
are randomized. In earlier informal experiments, there appeared to
be some specialization when each keeper started in the same loca-
tion every episode.



4 vs. 3 state variable related 3 vs. 2 state variable� � � � � � 	 ���/� � � � � � � 	 ���/�� � � � ����� ���/� � � � � � � 	 ���/�
Min(

� � � � � � 	 � �� � , � � � � � � 	 � � � � , � � � � � � 	 ���
	 � ) Min(
� � � � � � 	 � ��	� , � � � � � � 	 � � � � )

Min(
� � � � ����� � ���+� , � � � � ����� � � � � , � � � � ����� ���
	 � ) Min(

� � � � � � 	 � ��	� , � � � � � � 	 � � � � )
Table 1: This table describes part of the  transform from states in 3 vs. 2 keepaway to states in 4 vs. 3 keepaway. We denote the distance
between a and b as ����������������� . Relevant points are the center of the field � , keepers ��� - �! , and takers "#� - "%$ . Keepers and takers are ordered
in increasing distance from the ball and state values not present in 3 vs. 2 are in bold.
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Figure 3: The learning curves for five representative keepers in the
4 vs. 3 keepaway domain when learning from scratch (dotted lines)
have similar initial hold times when compared to five representative
learning curves generated by transferring behavior from the 3 vs. 2
task (solid lines). The learners which have benefited from behavior
transfer are able to more quickly learn the 4 vs. 3 task.

important when we scale up to larger tasks, such as 5 vs. 4
keepaway. Determining these training thresholds for tasks
in different domains is currently an open problem and will
be the subject of future research.

Interestingly, when the CMACs’ weights are loaded into
the keepers in 4 vs. 3, the initial hold times of the keepers do
not differ much from the keepers with uninitialized CMACs,
as shown in Figure 3. However, the information contained
in the CMACs’ weights prime the 4 vs. 3 keepers to more
quickly learn their task. As the figure suggests, the 4 vs.
3 keepers which have loaded weights from 3 vs. 2 players
learn at a faster rate than those 4 vs. 3 players that are train-
ing from scratch. This outcome suggests that the learned be-
havior is able to speed up the rate of reinforcement learning
on the novel domain even though the knowledge we transfer
is of limited initial value.

It is interesting that the required 4 vs. 3 training time
for 9,000 episodes of 3 vs. 2 is greater than that of 1,000
episodes of 3 vs. 2. We posit this is due to overtraining; 4 vs.
3 must spend time “unlearning” some of the 3 vs. 2 specific
knowledge before 4 vs. 3 can reach the hold time threshold.
It makes intuitive sense that the 3 vs. 2 training would first
learn policies that incorporate basic behaviors. We hypothe-
size that these simpler behaviors transfer well over to 4 vs. 3,
but that more intricate behaviors learned after longer train-
ing periods are not as useful in 4 vs. 3 because they are more
task dependent.

To test the sensitivity of the % function, we tried modify-
ing it so that instead of copying the weights for the state vari-
ables for � 	 into the new 4 vs. 3 � � (see Table 1), we instead
copy the � � state variable to this location. Now � ���� 	 � ���	��
�����
will evaluate the state variables for the closest and furthest
keeper teammates to the same value instead of the two fur-
thest teammates. Similarly, instead of copying weights cor-
responding to � � into the � 	 location, we copy weights from
� � . Training on 1,000 3 vs. 2 episodes and using % �'&�( � � �*) (
to train in 4 vs. 3, the total training time increased to 13.82
hours. Although this % �+&,( � � �-) ( outperforms training from
scratch (with a statistical significance of p 3 0.004), the to-
tal training time is 10%-20% longer compared to using % .
Choosing non-optimal mappings between actions and states
when constructing % seems to have a detrimental, but not
necessarily disastrous, effect on the training time.

Initial results in scaling to 5 vs. 4 keepaway show that be-
havior transfer will work for this task as well. The average
time for 5 vs. 4 keepaway to reach a hold time of 7.5 sec-
onds on the same 25m x 25m field is 18.01 hours. However,
if we train 4 vs. 3 from scratch for 1,000 episodes and set
% � � �����	 � � ���	�� � = �/. �� � � ���	��
����� , the average training time for 5
vs. 4 is reduced to 13.12 hours and the total training time is
reduced to 14.98 hours. The difference in the total training
times is statistically significant (p 310 � ��� � . ). We anticipate
that behavior transfer will further reduce the total training
time necessary to learn 5 vs. 4 as we tune the number 4 vs.
3 episodes as well as incorporate 3 vs. 2 training.

Related Work
The concept of seeding a learned behavior with some ini-
tial simple behavior is not new. There have been approaches
to simplifying reinforcement learning by manipulating the
transition function, the agent’s initial state, and/or the re-
ward function. Directed training (Selfridge, Sutton, & Barto
1985) is a technique to speed up learning whereby a human
is allowed to change the task by modifying the transition
function � . Using this method a human supervisor can grad-
ually increase the difficulty of a task while using the same
policy as the initial control for the learner. For instance, bal-
ancing a pole may be made harder for the learner by decreas-
ing the mass or length of the pole. The learner will adapt to
the new task faster using a policy trained on a related task
than if learning from scratch.

Learning from easy missions (Asada et al. 1994) allows a
human to change the start state of the learner, � ��� � 
����� , mak-
ing the task incrementally harder. Starting the learner near
the exit of a maze and gradually allowing the learner to start
further and further from the goal is an example of this. This



kind of direction allows the learner to spend less total time
learning to perform the final task.

Another successful idea, reward shaping (Colombetti &
Dorigo 1993; Mataric 1994), also contrasts with behavior
transfer. In shaping, learners are given an artificial problem
which will allow the learner to train faster than on the ac-
tual problem which has different environmental rewards, � .
Behavior transfer differs in intent in that we aim to transfer
behaviors from existing, relevant tasks which can have dif-
ferent state and action spaces rather than creating artificial
problems which are easier for the agent to learn. Further-
more, behavior transfer does not preclude the modification
of the transition function, the start state, or the reward func-
tion and can therefore be combined with the other methods
if desired.

Learned subroutines have been successfully transfered in
a hierarchical reinforcement learning framework (Andre &
Russell 2002). By analyzing two tasks, subroutines may be
identified which can be directly reused in a second task that
has a slightly modified state space. The learning rate for the
second task can be substantially increased by duplicating the
local sub-policy. This work can be thought of as another
example for which % has been successfully constructed, but
in a very different way.

Another related approach (Guestrin et al. 2003) uses lin-
ear programming to determine value functions for classes
of similar agents. Using the assumption that T and R are
similar among all agents of a class, class-based value sub-
functions are inserted into agents in a new world which has
a different number of objects (and thus different state and
action spaces). Although no learning is performed in the
new world, the previously learned value functions may still
perform better than a baseline handcoded strategy. However,
as the authors themselves state, the technique will not per-
form well in heterogeneous environments or domains with
“strong and constant interactions between many objects (e.g.
Robocup).” Our work is further differentiated as we continue
learning in the second domain after performing % . While
the initial performance in the new domain may be increased
after loading learned value functions compared to learning
from scratch, we have found that a main benefit is an in-
creased learning rate.

Conclusions
We have introduced the behavior transfer method of speed-
ing up reinforcement learning and given empirical evidence
for its usefulness. We have trained learners using reinforce-
ment learning in related tasks with different state and action
spaces and shown that not only is the time to learn the final
task reduced, but that the total training time is reduced using
behavior transfer when compared to learning the final task
from scratch.
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