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• Strategies:

– Fully centralized learning

Motivation:

• Multi-agent reinforcement learning (MARL) is challenging — 
agents learning simultaneously makes the environment 
nonstationary
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• Strategies:
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How can we foster team cooperation in the decentralized 
learning scenario w/o explicit communication?

Fully decentralized learning: no shared model components or 
communication between agents during training or execution 
– Search-and-rescue robotics
– Autonomous driving
– Scalability
– Parallelism
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DM2: a MARL algorithm 
that enables 
cooperation in the 
decentralized setting 
w/o explicit 
communication
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Contributions
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• Propose DM2, a decentralized MARL algorithm based on 

independent  distribution matching to encourage coordination

• Theoretical analysis shows

– Conditions under which DM2 converges

– Expert policies are a Nash equilibrium for mixed task and 

distribution matching reward

• Empirical validation in StarCraft II tasks



Background: Stochastic Games

• Stochastic game[1]

– Number of agents 
– State space
– Action space
– Initial state distribution
– Transition function
– Reward function
– Discount factor  

• Per-agent policy

9[1] Littman, Markov Games as a Framework for Multi-agent Reinforcement Learning, ICML 1994.



Background: Distribution Matching 

• Approach to imitation learning (IL) [1, 2]

• The per agent state-action visitation distribution

…should match the per expert state-action visitation 
distribution

10
[1] Schaal, Learning from demonstration, NeurIPS 1997
[2] Ho and Ermon, Generative adversarial imitation learning, NeurIPS 2016
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Theoretical Analysis
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1. Individual distribution 
matching leads to agent 
policies converging to 
compatible expert policies

2. Expert policies also constitute 
a Nash equilibrium under a 
mixed task and distribution 
matching reward
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• StarCraft II Multi-Agent Challenge[1] tasks
– 5m vs 6m (5v6)
– 3s vs 4z (3sv4z)

• Baselines w/environment reward alone
– IPPO (decentralized)
– QMIX[2] (CTDE)
– R-MAPPO[3] (CTDE)

• Distribution Matching Baseline: DM2 w/SIL [4]

[1] Samvelyan et al., The StarCraft Multi-Agent Challenge, AAMAS 2019.
[2] Rashid et al., Qmix: Monotonic Value Function Factorisation for Deep Multi-agent Reinforcement Learning, ICML 2018.
[3] Yu et al., The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games, ArXiv 2021.
[4] Oh et al., Self-Imitation Learning, ICML 2018.
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Experimental Setting

• MARL algorithm: Independent PPO (IPPO)[1]

• Demonstrations from K experts
– State-only demonstrations sampled from saved IPPO and QMIX 

checkpoints

• Per-agent reward function:
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[1] Yu et al., The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games, ArXiv 2021.



1. Sample efficiency of DM2 vs baselines
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2. Coordination of expert demonstrations
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Demonstrations could be concurrently sampled from jointly trained 
expert policies

DM2 ablation 
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2. Coordination of expert demonstrations

DM2 ablation (1)

ablation(2) ablation (3) 
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