

DM²: Decentralized Multi-Agent Reinforcement Learning via Distribution Matching

Caroline Wang*¹

Ishan Durugkar*¹

Elad Liebman*²

Peter Stone^{1, 3}

1

¹ The University of Texas at Austin
 ² SparkCognition Research, ³ Sony AI
 AAAI 2023

*Equal contribution

- Multi-agent reinforcement learning (MARL) is challenging agents learning simultaneously makes the environment nonstationary
- Strategies:
 - Fully centralized learning

- Multi-agent reinforcement learning (MARL) is challenging agents learning simultaneously makes the environment nonstationary
- Strategies:
 - Fully centralized learning
 - Centralized training, decentralized execution (CTDE)^[1]

- Multi-agent reinforcement learning (MARL) is challenging agents learning simultaneously makes the environment nonstationary
- Strategies:
 - Fully centralized learning
 - Centralized training, decentralized execution (CTDE)^[1]
 - Decentralized learning + communication^[2]

Sunehag et al., Value Decomposition Networks for Cooperative Multiagent learning, AAMAS 2018.
 Jaques et al., Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning, ICML 2019.

- Multi-agent reinforcement learning (MARL) is challenging agents learning simultaneously makes the environment nonstationary
- Strategies:
 - Fully centralized learning
 - Centralized training, decentralized execution (CTDE) ^[1]
 - Decentralized learning + communication^[2]

Sunehag et al., Value Decomposition Networks for Cooperative Multiagent learning, AAMAS 2018.
 Jaques et al., Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning, ICML 2019.

share model components or require communication

How can we foster team cooperation in the decentralized learning scenario w/o explicit communication?

<u>Fully decentralized learning</u>: no shared model components or communication between agents during training or execution

- Search-and-rescue robotics
- Autonomous driving
- Scalability
- Parallelism

DM²: a MARL algorithm that enables cooperation in the decentralized setting w/o explicit communication

Expert Team Demo

Contributions

- Propose DM², a decentralized MARL algorithm based on independent distribution matching to encourage coordination
- Theoretical analysis shows
 - Conditions under which DM² converges
 - Expert policies are a Nash equilibrium for mixed task and

distribution matching reward

• Empirical validation in StarCraft II tasks

Background: Stochastic Games

- Stochastic game^[1] $\langle K, \mathcal{S}, \mathcal{A}, \rho_0, \mathcal{T}, R, \gamma
 angle$
 - Number of agents K
 - State space ${\cal S}$
 - Action space $\mathcal{A}\equiv A^K$
 - Initial state distribution $ho_0:\Delta(\mathcal{S})$
 - Transition function $\mathcal{T}:\mathcal{S} imes A_0 imes\cdots imes A_{K-1}\mapsto\Delta(\mathcal{S})$
 - Reward function $R_i: \mathcal{S} imes A_0 imes \cdots imes A_{K-1} \mapsto \mathbb{R}$
 - Discount factor γ
- Per-agent policy $\pi_i: \mathcal{S} \mapsto \Delta(A_i)$

Background: Distribution Matching

- Approach to imitation learning (IL) ^[1, 2]
- The per agent state-action visitation distribution

$$ho_{\pi_i,\pi_{i-}}(s,a_i):=\ (1-\gamma)\pi_i(a_i|s)\sum_{t=0}^{\infty}\gamma^t P(s_t=s|\pi_i,\pi_{i-})$$

...should match the **per expert** state-action visitation distribution $ho_{\pi_{E_i},\pi_{E_i^-}}(s,a_i)$

[1] Schaal, Learning from demonstration, NeurIPS 1997[2] Ho and Ermon, Generative adversarial imitation learning, NeurIPS 2016

Background: Distribution Matching

• Approach to imitation learning (IL) ^[1, 2]

[1] Schaal, Learning from demonstration, NeurIPS 1997[2] Ho and Ermon, Generative adversarial imitation learning, NeurIPS 2016

Background: Distribution Matching

• Approach to imitation learning (IL) ^[1, 2]

[1] Schaal, Learning from demonstration, NeurIPS 1997[2] Ho and Ermon, Generative adversarial imitation learning, NeurIPS 2016

Theoretical Analysis

- Individual distribution matching leads to agent policies converging to compatible expert policies
- Expert policies also constitute

 a Nash equilibrium under a
 mixed task and distribution
 matching reward

DM²: Decentralized MARL via Distribution Matching

Algorithm 1: DM^2 (Decentralized MARL via			
distribution matching)			
Input: Number of agents K, expert demonstrations			
$\mathcal{D}_0, \ldots, \mathcal{D}_K$, environment <i>env</i> , number of			
epochs N , number of time-steps per epoch M ,			
reward mixture coefficient c			
1 for $k = 0,, K - 1$ do			
2 Initialize discriminator parameters ϕ_k ;			
3 Initialize policy parameters θ_k ;			
4 end			
5 for $n = 0, 1, \dots, N - 1$ do			
6 Gather $m = 1, \dots, M$ steps of data			
(s^m, a^m, r^m_{env}) from env ;			
7 for $k = 0,, K - 1$ do			
8 Sample M states from demonstration \mathcal{D}_k ;			
9 Update discriminator D_{ϕ}^k ;			
10 Get GAIL reward $r_{k,\text{GAIL}}^m = -\log D_{k,\phi}(s^m)$			
for $m = 1,, M;$			
11 Set agent reward $r_{k,mix}^m = r_{env}^m + r_{k,GAIL}^m * c;$			
12 Update agent policy π_{θ}^k with data			
$(s_m, \boldsymbol{a}_m, r_{k,mix}^m)$ for $m = 1, \dots, M;$			
13 end			
14 end			
Output: K agent policies π_{θ}			

Experimental Setting

- StarCraft II Multi-Agent Challenge^[1] tasks
 - 5m vs 6m (5v6)
 - 3s vs 4z (3sv4z)
- Baselines w/environment reward alone
 - IPPO (decentralized)
 - QMIX^[2] (CTDE)
 - R-MAPPO^[3] (CTDE)
- Distribution Matching Baseline: DM² w/SIL ^[4]

[1] Samvelyan et al., The StarCraft Multi-Agent Challenge, AAMAS 2019.

[2] Rashid et al., Qmix: Monotonic Value Function Factorisation for Deep Multi-agent Reinforcement Learning, ICML 2018.

[3] Yu et al., The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games, ArXiv 2021.

[4] Oh et al., Self-Imitation Learning, ICML 2018.

Experimental Setting

- MARL algorithm: Independent PPO (IPPO)^[1]
- Demonstrations from K experts
 - State-only demonstrations sampled from saved IPPO and QMIX checkpoints
- Per-agent reward function:

$$r_{i,mix} = r_{env} + r_{i,GAIL} * c$$

[1] Yu et al., The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games, ArXiv 2021.

1. Sample efficiency of DM² vs baselines

2. Coordination of expert demonstrations

Demonstrations could be **concurrently** sampled from **jointly trained** expert policies

concurrent

nonconcurrent

	concurrent	nonconcurrent
joint	DM ²	ablation
notjoint	ablation	ablation

2. Coordination of expert demonstrations

19

DM²: Decentralized Multi-Agent Reinforcement Learning via Distribution Matching

Caroline Wang caroline.l.wang@utexas.edu

Elad Liebman eliebman@sparkcognition.com

Ishan Durugkar ishand@cs.utexas.edu

Peter Stone pstone@cs.utexas.edu