D-Shape: Demonstration Shaped Reinforcement Learning via Goal-Conditioning

Caroline Wang¹, Garrett Warnell¹, ², Peter Stone¹, ³

¹The University of Texas at Austin, ²Army Research Laboratory, ³Sony AI
Motivation

• Reinforcement learning (RL) can autonomously discover optimal behavior from a reward function

…But can be sample inefficient
Motivation

• Imitation learning (IL) methods can learn behaviors from demonstrations with high sample efficiency

…but usually assumes multiple, optimal, state-action demonstrations
Challenges of Combining RL and IL

- IL objective: divergence minimization from demonstration distribution [1, 2]

- RL objective: cumulative task reward

Suboptimal demonstrations \Rightarrow Potential conflict between IL and RL objectives!

Can we improve sample efficiency of reinforcement learning with minimal demonstration knowledge, while preserving optimality guarantees?

We assume access to a single, suboptimal, state-only demonstration trajectory.
Background

- Markov decision process \(M = (S, A, P, r_{task}(s, a, s'), \gamma) \)
 - Horizon \(H \)
 - Objective: \(E_{\pi}[\sum_{t=0}^{H-1} \gamma^t r_{task}] \)

- Imitation from observation [1]: assumes access to state-only demonstrations

\[
D^e = \{s^e_t\}_{t=1}^H
\]

Background

- Potential-based reward shaping (PBRS) [1]:
 - Learning is conducted in modified MDP, where
 \[M = (S, A, P, R' := r_{\text{task}} + F, \gamma) \]
 - Policy invariance
 \[F(s, s') = \gamma \phi(s') - \phi(s). \]

- Goal-conditioned RL (GCRL) [2, 3]:
 - Given a goal-reaching task, objective is to learn a goal-conditioned policy \(\pi(\cdot | [s, g]) \) that can reach any goal \(g \) drawn from goal set \(G \)
 - Reward function is typically sparsely informative
 - E.g. \(r^g_t = 1_{s_t=g} \)

D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory

\[
\pi(s_t)
\]

\[
\pi([s_t, s^e_t])
\]
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory

$$\pi(s_t)$$
$$\pi(hs_t, se_t)$$

$$r^{task}_3, s_3$$
$$s^e_3$$
$$s_0$$

demo
$$\tau \sim \pi^t$$
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory

\[r_t^{goal} = r_t^{task} + F_t^{goal} \]

\[F_t^{goal}([s_t, g_t, [s_{t+1}, g_{t+1}]]) = \gamma \phi([s_{t+1}, g_{t+1}]) - \phi([s_t, g_t]) \]

\[\phi([s_t, g_t]) = d(s_t, g_t) \]
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory

\[r_{2}^{\text{goal}} = r_{2}^{\text{task}} + F_{2}^{\text{goal}} \]

\[F_{2}^{\text{goal}} ([s_2, s_2^e], [s_3, s_3^e]) = \gamma d([s_3, s_3^e]) - d([s_2, s_2^e]) \]
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory

\[r_2^{goal} = r_2^{task} + F^{goal} \]

\[F^{goal}([s_2, g], [s_3, g']) = \gamma d([s_3, g']) - d([s_2, g]) \]
D-Shape: Shaping reinforcement learning with a suboptimal demonstration trajectory

Method Summary
• Demonstration states as goals
• Goal-reaching potential reward
• Goal relabelling with achieved states (Hindsight Experience Replay) [1]

Policy invariance guarantee

Theorem 1: An optimal goal-conditioned policy learned by D-Shape can be optimally executed with any sequence of goals.

Experimental Setting

- Goal-based $s \times s$ gridworld, $s \in [10, 20, 30]$
- Baselines:
 - Q-learning [1]
 - SBS [2]
 - RIDM [3]
 - RL+ Manhattan distance reward
- Demonstrations: optimal, suboptimal
- Desiderata:
 - sample efficiency
 - convergence to optimal returns

1. D-Shape improves sample efficiency

- World Size 10
- World Size 20
- World Size 30

Returns vs. Timesteps for different world sizes.
1. D-Shape improves sample efficiency
1. D-Shape improves sample efficiency
1. D-Shape improves sample efficiency
D-Shape State Visitation
2. Learning with suboptimal demonstrations

Suboptimality Type I: demonstration trajectory goes to incorrect goal state
2. Learning with suboptimal demonstrations

Suboptimality Type I: demonstration trajectory goes to incorrect goal state
2. Learning with suboptimal demonstrations

Suboptimality Type I: demonstration trajectory goes to incorrect goal state
2. Learning with suboptimal demonstrations

Suboptimality Type I: demonstration trajectory goes to incorrect goal state
2. Learning with suboptimal demonstrations

Suboptimality Type I: demonstration trajectory goes to incorrect goal state
Conclusions

● D-Shape accelerates reinforcement learning given access to a single state-only demonstration

● Future work:
 ○ Extending method to multiple demonstrations
 ○ Learned distance metrics for continuous state-action spaces
 ○ Exploring other GCRL techniques for RL + IL
Thanks for listening!

Caroline Wang
caroline.l.wang@utexas.edu

Peter Stone
pstone@cs.utexas.edu

Garrett Warnell
garrett.a.warnell.civ@army.mi

https://arxiv.org/abs/2210.14428
Related Works

- **RL+IL**
 - Constructing rewards with demonstrations
 - Plan based reward shaping w/demos: Brys et al. 2015; Suay et al. 2016; Wu et al. 2021.
 - Optimizing only the task reward:
 - Initializing with demonstration information: Hester et al. 2018; Taylor et al. 2011.
- **Accelerating goal-conditioned RL with demonstrations**
 - Nair et al. 2018; Paul et al. 2019.
Citations (Related Work)