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Abstract— By combining classical planning methods with
large language models (LLMs), recent research such as LLM+P
has enabled agents to plan for general tasks given in natural
language. However, scaling these methods to general-purpose
service robots remains challenging: (1) classical planning algo-
rithms generally require a detailed and consistent specification
of the environment, which is not always readily available; and
(2) existing frameworks mainly focus on isolated planning tasks,
whereas robots are often meant to serve in long-term continuous
deployments, and therefore must maintain a dynamic memory
of the environment which can be updated with multi-modal
inputs and extracted as planning knowledge for future tasks. To
address these two issues, this paper introduces L3M+P (Lifelong
LLM+P), a framework that uses an external knowledge graph
as a representation of the world state. The graph can be
updated from multiple sources of information, including sensory
input and natural language interactions with humans. L3M+P
enforces rules for the expected format of the absolute world
state graph to maintain consistency between graph updates.
At planning time, given a natural language description of a
task, L3M+P retrieves context from the knowledge graph and
generates a problem definition for classical planners. Evaluated
on household robot simulators and on a real-world service
robot, L3M+P achieves significant improvement over baseline
methods both on accurately registering natural language state
changes and on correctly generating plans, thanks to the
knowledge graph retrieval and verification.

I. INTRODUCTION

Large language models (LLMs) have proven to be very
promising natural language (NL) interfaces in a variety of
domains, including Robotics [1]. However, their lack of
grounding in the physical world prevents them from being
used effectively as direct planners in “agentic” systems [2].
A large body of work has thus been motivated toward
grounding LLM-based agents to bridge the gap between
human-friendly interfaces and consistent, accurate planning
[3], [4], [5], [6], [7], [8].

However, applying these recent advancements to general-
purpose service robots remains difficult. A primary challenge
is that these robots are meant to serve their function over
an extended period of time, and any actions they take must
be grounded in a dynamic, real-world environment. We can
consider the following two cases to see why an LLM alone
is insufficient for interfacing with a service robot, and an
external structured memory is required.

Suppose a human in the environment informs the service
robot on events that have taken place in the environment.
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These events affect the state of the environment, in turn
affecting future planning performed by the service robot.
An LLM-only solution might keep track of these events
by accumulating them into a report and feeding this report
as context to the LLM whenever a planning query is pro-
cessed. However, the report can grow arbitrarily long, so
this approach is prone to model hallucination, which can
significantly affect the accuracy of the agent [9]. As such,
the LLM-based agent must have an external memory.

Of course, it is unreasonable to expect a human to report
every event that takes place in an environment. Specifically,
a service robot can be expected to consume not only human
dialogue but also sensor input to gain knowledge about the
environment. Solutions already exist for traditional knowl-
edge representation in service robots that can be updated
based on sensor input [10], [11], [12]. In order to use robot
perception alongside human dialogue, an LLM must be able
to interact with a unified memory that is compatible with a
traditional knowledge representation system.

This motivation leads us to develop the L3M+P frame-
work for augmenting existing research on grounded LLM-
based agents with a dynamic, structured memory. L3M+P
interfaces with this memory as follows.

1) It uses a LLM-based natural language interface for
updating the memory given NL descriptions of envi-
ronment updates.

2) It integrates with robot perception so the memory can
be updated based on sensory input.

3) It retrieves relevant information from the memory that
can be used as context within an existing LLM-based,
grounded planner.

The rest of this paper is organized as follows: Section II
provides preliminary information for the modules in L3M+P.
Section III introduces the formalisms used in this paper.
Section IV explains the implementation of each component
of L3M+P. Section V discusses experiments and results.
Finally, Section VI highlights recent work related to L3M+P.

II. BACKGROUND

A. Planning with Language Models

LLM+P [4] is a framework for combining LLMs with clas-
sical planning to bridge the gap between NL task descriptions
and symbolic planners. These planners operate using the
planning domain definition language (PDDL), a commonly-
used language to formalize environments and tasks [13],
[14]. A PDDL domain defines the state-action space through
(a) a set of predicates that can fully represent a state and (b)
a set of actions for manipulating the current state. A PDDL
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Fig. 1: L3M+P enables a household robot to keep a dynamic memory of verbal interactions and other sensory inputs and
plan for long-horizon natural language tasks. Top: robot interactions with the environment and users for a sequence of tasks.
Bottom: task planning and memory updates.

problem specifies a set of initial predicates (representing the
initial state) and a set of goal conditions (identifying one
or more goal states). Given an initial state description, a
task description, and a domain, LLM+P prompts an LLM
to generate a PDDL problem that a symbolic planner can
use along with the domain to generate a plan.

L3M+P extends LLM+P by removing the requirement for
a description of the initial state and instead maintaining the
current state in a knowledge base that can be used to extract
information relevant to a given planning task.

B. Knowledge Graphs

Knowledge graphs [15] are representations that organize
information into graph structures, where nodes represent
entities and edges represent relationships between entities. A
knowledge graph can be constructed from various sources,
including structured databases, unstructured text, or other
forms of data.

Similar to traditional databases, graph databases also
generally support structured querying, such as through the
Cypher query language [16].

The relationship between a pair of nodes in a knowledge
graph is commonly referred to as a triplet of subject, predi-
cate, and object. We work with the following triplet forms:

• (subject, relationship, object)
• (subject, property, boolean)

L3M+P uses a knowledge graph to represent the world
state for a general-purpose robot.

C. Retrieval-Augmented Generation

Many applications of LLMs involve answering domain-
specific queries. One approach for adapting a pretrained
model to this purpose is to fine-tune the model on domain-
specific knowledge [17]. However, this method can be expen-
sive and is not versatile to changes in knowledge. Retrieval-
augmented generation (RAG) is a method for augmenting
language models with external knowledge sources [18].
Context from an external knowledge source is retrieved based
on a user-prompt and fed alongside the original prompt to the
language model in order to provide the model with sufficient
information to answer the prompt.

Our framework has a RAG component which retrieves the
relevant edges from a knowledge graph and feeds them as
context for the LLM to handle state changes and plan queries.

III. PROBLEM STATEMENT

Our framework aims to solve two distinct but interdepen-
dent types of problems: keeping the robot’s world state up-to-
date, and generating plans based on the current world state.

A. World State Update

The first problem is to enable the robot to register updates
that take place in the environment at any time during its
operation. An update is provided either through natural
language or through perception, and could represent a single
event, multiple events, or even partial knowledge of events.

Formally, the input to an update problem U is the tuple
⟨S, st, ut⟩:

• S is a finite, discrete set of states that represent all
possible world states.

• st ∈ S is the robot’s knowledge at time t. st is itself the
tuple ⟨Vt, Et⟩, where Vt is a set of entities (vertices) in
the environment and Et is a set of relationships (edges)
between the entities at time t.

• ut is some verbal/sensory input describing an update
taking place at time t.

Example World State Update Problem

State Change: Gary went to Alexander’s bedroom and
placed the red pen on the table.

Correct Output:
REMOVE: (red pen, in person hand, gary),
(gary, person in room, jessica bedroom)
ADD: (gary, person in room,
alexander bedroom), (red pen, placed at table,
alexander bedroom table)

Explanation: Gary moved from Jessica’s bedroom
to Alexander’s bedroom. The red pen was placed on the
table, leaving Gary’s hand.

A correct solution to the problem U is the state st+1 ∈ S
that accurately represents the world state after registering the
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Fig. 2: (a) L3M+P keeps its knowledge graph consistent with the real world by receiving sensory input as well as descriptions
of changes to the environment from humans. Both sources are used to update the knowledge graph to reflect an up-to-date
representation of the environment. Verification is only necessary for Natural Language (NL) updates to guard against LLM
hallucinations. (b) L3M+P uses the external knowledge graph to gather relevant context about the state of the environment
to integrate with LLM+P for planning without requiring an explicit description of initial state for every planning query.

update ut. If we assume that entities are not added/removed
from the environment, the problem can be simplified to only
output the change in the relationships ⟨E−

t , E+
t ⟩, where we

interpret Et+1 = Et − E−
t + E+

t , so st+1 = ⟨Vt, Et+1⟩.
B. Plan Generation

The second problem is to generate a plan to solve a given
task. Formally, the input to the planning problem P is the
tuple ⟨S, st, gt,A, f⟩:

• S is again the state space.
• st ∈ S is again the robot’s knowledge at time t.
• gt is an NL description of a task to be completed by

the robot at time t.
• A is a set of symbolic actions.
• f : S × A → S is the underlying state transition

function. f takes the current state and an action and
outputs the resulting state.

Example Plan Generation Problem

Task: Turn off the faucet in the bathroom.

Correct Output:
1) (move to room robot living room bathroom)
2) (turn off faucet bathroom sink bathroom
robot)

Explanation: The robot has to move from the living room
to the bathroom. It can then turn off the faucet.

A solution to the planning problem P is a sequential plan
π = ⟨a1, a2, . . . , aN ⟩ with ai ∈ A.

IV. METHOD

We now describe how L3M+P solves the two problems
defined above, as shown in Fig. 2.

A. Knowledge Graph Retrieval

To represent the state of the environment, L3M+P employs
a knowledge graph (KG) that functions as a direct memory
base for the agent. Nodes in the graph represent environment
entities and edges represent relationships between them.

KG triplets directly correspond to PDDL predicates. As
such, the KG is a full representation of the current state
s ∈ S. Importantly, we assume a PDDL domain that specifies
predicates representing the environment state and actions the
agent can take is provided. This assumption is reasonable
since creating the PDDL domain is a one-time investment,
after which the agent acts autonomously over the long-term.

L3M+P retrieves relevant KG nodes and edges as context
for update/plan queries. Current RAG pipelines often supply
a list of entities in the environment and prompt the LLM
to select relevant ones based on a user prompt. Then, from
the list of relevant entities, all triplets incoming/outgoing to
each entity are extracted at a certain maximum depth. The
retrieved triplets serve as context for the downstream task.

When objects are described with attributes, an LLM may
struggle to select correct entities by name. We propose a



Algorithm 1 Search-Based Retrieval Algorithm

Input: Vt, Et, entities and relationships in the knowledge
graph at timestep t

Input: ut or gt, the verbal update or plan query
Output: Vr, relevant entities

1: Prompt the LLM to extract a query graph < Vq, Eq >,
of ungrounded entities and relationships, from ut or gt

2: Compute the semantic similarity matrix S between Vq

and Vt

3: Sort the entities in Vq by their highest similarity scores
4: Moptimal ← DFS(S, Vq, Eq, Vt, Et, {}, {})
5: Vr ← entities mapped by Moptimal

Algorithm 2 Subgraph Matching Algorithm (DFS)

Input: S, node similarity matrix
Input: Vq, Eq, Vt, Et

Input: M,M+, current mapping and the best mapping
found

Input: cutoff , a parameter for node similarity cutoffs
Output: Moptimal, mapping from Vq to Vt with the highest

subgraph similarity score
1: if All nodes in Vq are mapped by M then
2: if mapping score(M) > mapping score(M+) then
3: return Moptimal ←M
4: end if
5: return Moptimal ←M+

6: end if
7: vq ← pop front of Vq

8: Find all entity candidates vc ∈ Vt that S[vq, vc] >
cutoff ×maxv(S[vq, v])

9: for each candidate vc do
10: Add mapping vq → vc to M
11: M+ ← DFS(S, Vq, Eq, Vt, Et,M,M+)
12: Pop mapping vq → vc from M
13: end for
14: return Moptimal ←M+

search-based retrieval method (Algorithm 1) to precisely
locate entities matching the description. First, the algorithm
prompts the LLM to generate a query graph with entities and
their inferred relations from the NL query, and then searches
for the most similar grounded KG sub-graph. Algorithm 2
(DFS) is inspired by recent scene graph approaches sup-
porting single-node queries [19], [20], employing depth-first
search to find entities relevant for state updates or tasks.

B. Updates to Knowledge Graph

L3M+P dynamically updates the knowledge graph when
the agent is provided with external changes in the environ-
ment (shown in Fig. 2a). The updated knowledge graph can
enable re-planning a current task right away or solving other
tasks (e.g. question answering). The agent can be alerted
of these changes in two manners: (1) the robot receives
sensory inputs, or (2) a human describes an event in the
environment to the agent in natural language. We assume the

robot has a perception system that converts observations into
a representation (e.g. scene graphs) to update corresponding
sub-graphs in the KG [12], [19], and we show an example
of such a system in the robot demo. As such, in this section
we focus on NL descriptions of updates to the environment.

Any descriptions of environment changes must be reflected
in the KG to maintain a consistent memory. Given a descrip-
tion, L3M+P follows Algorithm 3. In summary, L3M+P

1) Retrieves a relevant subgraph from the KG (line 1)
2) Prompts the LLM to generate KG updates given the

retrieved subgraph and the update description (line 5)
3) Uses the domain PDDL to type check and syntactically

verify the generated graph updates (line 7)
4) Retries if the verifier fails (line 9)
5) Applies the LLM-generated graph updates when veri-

fication succeeds (lines 10 and 11)
L3M+P does not insert new entities into the knowledge graph
from NL updates. The knowledge graph only tracks the
instances of concrete objects seen by the robot.

Algorithm 3 NL Knowledge Graph Updates

Input: ⟨Vt, Et⟩, the current knowledge graph at time t
Input: ut, the NL update at time t
Output: Et+1, the updated KG edges (the updated graph is
⟨Vt, Et+1⟩)

1: Erel
t ← retriever(Vt, Et, ut) {Retrieve a relevant set of

edges from the KG}
2: Eirrel

t ← Et − Erel
t

3: prompt← [Vt, E
rel
t , ut]

4: repeat
5: output ← LLM(prompt) {Prompt the LLM to

generate a KG update}
6: E+

t , E−
t ← parse(output)

7: errors← verify(E+
t , E−

t , Et, Vt)
8: prompt← prompt+ [errors]
9: until errors = ∅ {Re-prompt LLM until generated

update is valid}
10: Erel

t+1 ← Erel
t − E−

t + E+
t

11: Et+1 ← Eirrel
t + Erel

t+1

12: return Et+1

C. Planning

L3M+P uses a modified version of LLM+P to perform
planning (shown in Fig. 2b). Unlike LLM+P, the user does
not provide the full description of the environment. Instead,
L3M+P queries the KG to gain sufficient detail for solving
a given task (shown in Algorithm 4). In summary, L3M+P

1) Retrieves a relevant subgraph from the KG (line 1)
2) Prompts the LLM to generate the :goal block for

the PDDL problem given the retrieved subgraph, the
PDDL domain, and the task description (line 2)

3) Constructs a PDDL problem with the generated
:goal block and using the retrieved subgraph as the
:init block (line 3)



Algorithm 4 Planning

Input: ⟨Vt, Et⟩, the current knowledge graph at time t
Input: gt, the NL description for a task to complete at time

t
Input: D, the PDDL domain
Output: π = ⟨a1, a2, . . . , an⟩, a sequential plan to accom-

plish the given task
1: Erel

t ← retriever(Vt, Et, gt) {Retrieve a relevant set of
edges from the KG}

2: goal ← LLM(Vt, E
rel
t , D, gt) {Prompt the LLM to

generate a :goal block for the given task}
3: P ← {Vt, E

rel
t , goal} {Generate a corresponding PDDL

problem (Erel
t populates the :init block)}

4: π ← planner(D,P )
5: return π

4) Passes the fully constructed PDDL problem to a sym-
bolic planner alongside the provided PDDL domain to
generate a plan (line 4)

V. EXPERIMENTS

We design experiments to address the following questions:
1) Does RAG improve KG update accuracy compared to

providing the full KG context to the LLM? That is,
does RAG enable smaller prompts to prevent halluci-
nations, or does the lack of full context worsen perfor-
mance? (It provides a significant improvement)

2) How much does the verifier improve (or degrade) graph
update accuracy? (It gives a decent improvement)

3) Does accurate KG state translate to correct plans, and
does incorrect KG state translate to failed plans? (Yes)

4) Does leveraging verbal updates in L3M+P improve the
success rates of a service robot in solving tasks? (Yes)

To answer these questions, we present three types of
experiments. Sec. V-A evaluates how L3M+P updates the KG
based on NL state updates as well as generates plans based
on a continuously updating KG. This text-based simulation
assumes that updates occur at discrete time steps between
tasks. Sec. V-B presents the results in an embodied simulator
where the plan of the current task must be adapted to both
verbal and sensory updates.1 Sec. V-C demonstrates a robot
successfully helping users in a home setting where correct
KG updates are required to plan current and future tasks.

A. Text-Based Simulation

Since the agent is meant to function as a general-purpose
service robot, we introduce an open-ended, text-based house-
hold simulator where items are randomly generated, humans
randomly manipulate the environment, and random tasks are
periodically presented to an agent. The household consists of
a diverse set of items (e.g. tables, fridges, sinks, books, food
items, dishes, lights, TVs, phones) distributed across various
rooms (e.g. kitchen, living room, bedrooms). Humans in the

1The implementation of the simulation experiments is available at
https://github.com/krishagarwal/l3m-p.git

Method State Changes Plans

S - 67.5

R− 71.5 72.5

R−
V 71 72.5

R+ 77.5 80

R+
V 92.5 85

RS 96 87.5

RS
V (ours) 98 90

TABLE I: Final state change and plan success rate % (↑)
after running the seven agent variants on the simulation.

household move objects, interact with faucets/lights, answer
phones, etc. The agent is tasked with returning items to
certain locations, washing dishes, providing items to humans
(like food or drink), etc. Random tasks allow testing the
capabilities of the agent in a domain-agnostic environment.

The simulation provides the agent with an NL description
of each environment update and an NL description of each
planning task. Since this experiment is focused on testing the
update and planning capabilities of L3M+P, the simulation
directly invokes these functions rather than having the agent
infer what function to use. The agent is also provided a
domain PDDL file, which, as justified in Section IV, is
reasonable for realistic use cases. To measure accuracy, the
simulation maintains a ground-truth KG after each state
update and plan execution to compare against L3M+P’s
proposed KG, and a ground-truth problem PDDL file is also
created to generate a ground-truth plan that can be validated
against any agent-generated plans. We report success rates
for state changes (matching updates in the ground-truth KG)
and plans (goal satisfaction in the ground-truth problem).

We test the following seven variants of the agent against
the same simulation:

1) S: The agent receives the full initial KG but does not
receive state updates. This is a baseline to measure the
sparsity of the instantiated environment/tasks to better
compare relative performance of the other ablations.

2) R−: The agent receives the full KG as context when
performing state updates (no RAG).

3) R−
V : The agent receives the full KG as state change

context (no RAG). State updates are verified against
the domain PDDL.

4) R+: RAG is used to extract relevant context from the
KG that fits in the LLM context window to perform
state updates.

5) R+
V : RAG is performed as above. State change verifi-

cation is performed.
6) RS : Search-based RAG is performed to extract KG

context.
7) RS

V (a.k.a L3M+P): Search-based RAG is performed
as above. State change verification is performed.

To execute these experiments, we use OpenAI’s GPT-4o
language model. We also utilize the SIW-THEN-BFSF planner
provided by LAPKT [21] as the planner in all experiments.

https://github.com/krishagarwal/l3m-p.git


Example of a Failed State Change and a Resulting
Incorrect Plan Produced by R−

State Change: Jessica turned off the overhead light in the
laundry room.

Prompt: State Change + Full KG Context + Determine
which of the relations should be removed and what new
relations should be added...

GPT-4o (generated KG update):
REMOVE: (laundry room light, in room,
laundry room)
ADD: empty

Task: The water and electricity bills are high. Can you
turn off all lights and faucets?

Retrieved KG context (:init block):
...(laundry room light, light on, true)

Prompt: Task + Full KG Context + Provide the
goal block for a problem PDDL file...

GPT-4o (generated :goal block):
(:goal (and (forall (?a - light) (not
(light on ?a))) (forall (?b - sink) (not
(faucet on ?b)))))

Plan:
...(turn off light laundry room light)

Here are our findings:
1) Based on Table I, RAG reduces model hallucinations to

significantly increase update accuracy. Without RAG,
state updates succeed or fail inconsistently, as evi-
denced by R− having a higher success rate than R−

V .
2) Syntactically verifying LLM-generated state changes

also improves state update accuracy (at least in abla-
tions with RAG). As evidenced by the outliers in Fig-
ure 3, few cases exist where re-prompting is invoked
and extra tokens are consumed. KG context generally
informs the LLM on proper KG triplet syntax, but ver-
ification serves as a stronger guarantee of correctness.

3) Plan-generation is highly sensitive to knowledge graph
accuracy. The sparsity of the instantiated environment
allows the S baseline to still achieve 67.5% plan-
generation accuracy. Even with 71.5% state update
accuracy, R− only marginally improves on plan-
generation to 72.5% accuracy. In most failure in-
stances, the LLM-generated PPDL :goal is accurate,
but the planner produces an inaccurate plan or fails
to generate one due to an inaccurate KG state (which
forms the PDDL problem :init). This leads to plans
that (a) only partially solve the task or (b) cannot be
executed due to inconsistency with the environment.

4) L3M+P is not perfect: the usual cause of failure is
when KG retrieval does not include all relevant context
for a given NL update or plan, so the LLM produces
hallucinated output from insufficient information.

5) RAG enables a cost savings: As shown in Figure 3,

RAG uses fewer tokens to process successful state
changes. On average, RS

V uses 67.6% fewer total
input/output tokens compared to R− to process NL
state changes (including tokens used to perform RAG).

6) RAG enables a time savings: In Figure 4, RS
V shows

a speedup when comparing (a) combined RAG and
planner time for RS

V , against (b) only planner time with
the full KG as the :init (ground truth). The average
speedup is 12.5x for correctly-generated plans.

Example of a Successful State Change and
Resulting Plan Produced by RS

V

State Change: Kathleen placed the red pen on the
3rd level of the shelf in Jerry’s bedroom.

Prompt: State Change + Retrieved KG Context
+ Determine which of the relations should be
removed and what new relations should be added...

GPT-4o (generated KG update):
REMOVE: (red pen, in hand, kathleen)
ADD: (red pen, placed at shelf,
jerry bedroom shelf), (red pen,
on shelf level, shelf level 3)

Task: Place the red pen on the 5th level of the
shelf in Alexander’s bedroom.

Retrieved KG context (:init block):
(red pen, placed at shelf,
jerry bedroom shelf)
(red pen, on shelf level,
shelf level 3)...

Prompt: Task + Retrieved KG Context +
Provide the goal block for a problem PDDL file...

GPT-4o (generated :goal block):
(:goal (and (on shelf level
bisque pen shelf level 5)
(placed at shelf bisque pen
alexander bedroom shelf)))

Plan:
...
(place at shelf red pen
alexander bedroom shelf the agent
alexander bedroom shelf level 5)

B. Embodied Interactive Simulation

We compare task completion rates of L3M+P that incorpo-
rate both updates versus relying solely on robot perception
in a variety of home tasks in the embodied AI simulator
AI2-THOR [22]. Scenes are selected from the ProcTHOR-
10k dataset [23]. The output of a robot perception system
is simulated by providing the semantic properties of the
currently visible objects. Initial states and goal conditions
are generated randomly for the following tasks: pick and
place, wash dishes, clean bed, discard broken objects, and
refrigerate food. State changes are scheduled randomly and
can be categorized as either a reset (e.g. washed dishes
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getting dirty again), an addition (e.g. new dishes becoming
dirty), or a relocation (e.g. dirty dishes are moved from their
last known locations). For each condition, 20 task instances
are generated. L3M+P re-plans when receiving verbal up-
dates, and the visual-only variant re-plans when execution
failures occur, indicating the environment is different from
its knowledge at the last planning time. The results reported
in Table II show much higher success rates when L3M+P
leverages verbal interactions. While visual-only performance
could be improved by active perception behaviors to update
knowledge, using verbal updates does not delay the task. Due
to simulation uncertainties, some communicated updates do
not align with the actual effects, leading to L3M+P failures.

C. Robot Demonstration

We present a robot demonstration in a scenario that builds
upon the motivating example in Fig. 1. In the first task,
Person A requests an apple. Initially, the robot plans to
retrieve one from the fridge but instead picks up an apple
spotted on the kitchen counter. Shortly after, Person B asks

Success
Rate % (↑)

Task Type

Pick &
Place

Wash
Dishes

Clean
Bed

Discard
Broken

Keep
Cold

L3M+P 65 85 90 70 65

Visual Only 15 0 5 10 55

TABLE II: Task completion rates on the 5 types of tasks by
using L3M+P versus the variant with only visual updates.

for a container to hold cereal. The robot has seen a mug on
the table next to person A in the first task. However, before
picking it up, Person A informs the robot that the mug is not
empty. The robot then selects a bowl instead and retrieves the
cereal from the previously scanned kitchen counter. Further
details are available in this supplementary video.

VI. RELATED WORK

Several frameworks have been proposed for LLM-based
planning and reasoning [3], [24], [25], [7], [8]. While these
frameworks demonstrate LLM potential for plan generation,
they may overestimate the extent to which language model-
ing translates to robust reasoning. Additionally, these works
only focus on planning and do not attempt to design end-to-
end solutions where the agent must both gather information
about the environment and use that information to plan.

Some recent frameworks address planning in dynamic
environments. LLM-DP [5] maintains a set of known in-
formation and a set of beliefs about the environment, both
gradually updated as the agent makes observations. The
beliefs are fed as context to an LLM to generate a PDDL
world specification and goal for a classical planner. However,
not only was this system was exclusively tested in Alfworld
[26], a text-based environment that only hosts a very specific
problem domain, LLM-DP assumes that state changes are
only caused by the agent and does not maintain knowledge
of the environment across different planning tasks.

Statler [6] maintains and updates a world state used as
a persistent memory for an LLM agent. The current state,
stored in a JSON-like format, is used as context for planning
tasks and is updated based on performed actions. Like LLM-
DP, Statler is unable to account for external changes to the
environment. Additionally, a specific world-state format must
be curated for different domains. Even if the world-state
representation were made domain-agnostic, the system would
break down in complex environments with many objects and
relations, increasing the likelihood of LLM hallucination.

Recent work has also explored memory storage for
general-purpose LLM agents. A-MEM [27] uses a flexible
graph structure to organize information, populating nodes
with atomic notes and assigned tags to dynamically insert
inter-node links based on similarity. A-MEM is an orthogonal
approach to L3M+P for using a graph to maintain an agent
memory–while A-MEM uses a graph to loosely connect
related information for more accurate retrieval, L3M+P uses
a graph to explicitly represent relationships, and the benefits
of accurate retrieval are a result of the graph structure.

Furthermore, Generative Agents [28] offers an approach
to mimic human behavior with LLM agents in open-ended
environments using dynamic memory, reflection, and plan-
ning. The agent records experiences over extended periods in
a NL memory stream, and retrieves this information to gen-
erate context-aware actions. This work addresses a separate
problem from L3M+P, which is to enable creative behavior
in agents. As such, Generative Agents uses a loosely-defined
memory, while L3M+P uses a structured and verified KG that
is grounded in the real world to guarantee correctness.

https://www.youtube.com/watch?v=Hs7GKJb55fA


VII. CONCLUSION

We propose L3M+P, a framework that extends LLM
and planning systems to support lifelong deployments of
general-purpose service robots. L3M+P maintains a dynamic
memory base that is continuously updated based on various,
multi-modal sources of information about the environment,
and remains in a consistent format that is queried for writing
planning specifications. At planning time, relevant context
from this memory is extracted to generate accurate specifica-
tions about the environment and task, which can then be fed
to classical planners. Using an external memory base allows
representing the world state of fairly complex environments
in a domain-agnostic manner, and context retrieval prevents
issues with limited context windows/hallucinations. In future
work, the system could be enhanced to detect when re-
planning is necessary in environments with frequent updates.
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