Multistep Inverse is Not All You Need

Alexander Levine¹, Peter Stone^{1,2}, and Amy Zhang¹

1: The University of Texas at Austin. 2: Sony Al. Correspondence to alevine0@cs.utexas.edu

1. Ex-BMDP Model (Efroni et al., 2022)

- Observation $x \in X$ can be factored into latent states:
 - Endogenous state $s \in S$, discrete, evolves deterministically
 - Exogenous state $e \in \mathcal{E}$, stochastic, indep. of actions (*noise*)

2. Representation Learning under Ex-BMDP Framework

- Task: learn encoder φ to map $x \in X$ to $s \in S$.
- Existing Methods:
 - Efroni et al. (2022a, 2022b), Mhammedi (2023): *finite-horizon* setting, learn separate encoders φ_t at each t.
 - Lamb et al. (2022): *infinite-horizon setting* with *no resets*
 - Bounded diameter assumption: ∀ s,s' ∈ S, d(s,s') ≤ D

3. Multistep Inverse (Lamb et al., 2022)

• **AC-State:** predict a_t given φ(x_t), φ(x_{t+k}), k:

$$\mathcal{L}_{\text{AC-State}}(\phi_{\theta}) := \min_{\substack{f \ k \sim \{1, ..., D\} \ (x_{t}, a_{t}, x_{t+k})}} \mathbb{E}$$

$$-\log(f_{a_{t}}(\phi_{\theta}(x_{t}), \phi_{\theta}(x_{t+k}); k))$$

$$\{\theta\}^{*} := \{\theta^{**} | \theta^{**} = \arg\min_{\substack{\theta \in \{\theta\}^{*}}} \mathcal{L}_{\text{AC-State}}(\phi_{\theta})\}$$

$$\theta^{*} := \arg\min_{\substack{\theta \in \{\theta\}^{*}}} \|\text{Range}(\phi_{\theta})\|$$

• Must show that learned φ won't conflate two different states s, s' \in S:

Proof Sketch (re-framed):

For $a,b \in S$, let W(a,b) be the min. k such that $\exists c \in S$, such that a and b can both be reached from c in exactly k steps. Compare $P(a_t \mid s_t = c, s_{t+k} = a)$ vs. $P(a_t \mid s_t = c, s_{t+k} = b)$. These distributions have disjoint support. Otherwise W(a,b) < k. Therefore φ must distinguish a,b.

Flawed implicit assumption: W(a,b) ≤ D.

4. Multistep Inverse Is Not All You Need

- AC-State can *fail* if *either*:
 - ∃a,b ∈ S: W(a,b) > D:

Latent Dynamics are periodic, so ∃a,b ∈ S: W(a,b) = ∞:

5. ACDF: A Fix for Multistep Inverse

$$\mathcal{L}_{\text{ACDF}}(\phi_{\theta}) := \min_{f} \underset{k \sim \{1, \dots, D'\}}{\mathbb{E}} \underset{(x_{t}, a_{t}, x_{t+k})}{\mathbb{E}} - \log(f_{a_{t}}(\phi_{\theta}(x_{t}), \phi_{\theta}(x_{t+k}); k))$$

$$+ \min_{g} \underset{(x_{t}, a_{t}, x_{t+1})}{\mathbb{E}} - \log(g_{\phi_{\theta}(x_{t+1})}(\phi_{\theta}(x_{t}), a_{t})).$$

- D is replaced by D', which is any upper bound on finite W(a,b)
 - **Theorem**: If W(a,b) is finite, then $W(a,b) \le 2D^2 + D$
 - Tight up to constant multiplicative factor
 - In practice, maximum number of steps is hyperparameter, K.
- Added *latent forward model* g: predict $\phi(x_{t+1})$ given $\phi(x_t)$ and a_t .
- Theorem: Encoders which minimize ACDF loss encode a correct endogenous latent representation.
- AC-State + D' + Forward model = ACDF.

6. Results

Tabular Setting:

- To compare AC-State and ACDF with no error from function approximation or optimization.
- Measured success rate for learning correct encoder under tabular dynamics, for varying numbers of training samples and max. number of steps K of multistep-inverse dynamics prediction.

Endogenous Dynamics T	Exogenous Noise \mathcal{T}_{e}	AC-State Success Rate
L/R e L/R e L/R L/R E	p=.75 p=.75 p=.25 0 p=.25	Env. steps: 200 400 800 1600 3200 Env. steps: 200 400 800 1600 3200 K=1 0% 0% 0% 0% 0% 0% 0% 100%
L/R C	(None)	Env. steps: 1000 2000 4000 8000 16000 K=10 0% 0% 0% 0% 0% 0% 0% 0% 0% K=13 0% 0% 0% 0% 0% 0% 0% K=16 0% 0% 0% 0% 0% 0% 0% 0% K=19 0% 0% 2% 0% 0% 0% K=19 0% 0% 2% 0% 0% 0% K=22 0% 0% 0% 18% 80% K=25 0% 0% 0% 0% 18% 80% K=28 0% 0% 0% 0% 4000 8000 16000 Env. steps: 1000 2000 4000 8000 16000 K=10 0% 2% 0% 0% 0% K=13 0% 12% 22% 64% 96% K=13 0% 12% 22% 96% 100% 100% K=19 0% 12% 88% 100% 100% K=22 0% 0% 68% 100% 100% K=25 0% 0% 0% 42% 98% 100% K=25 0% 0% 0% 32% 98% 100%
$\begin{array}{c c} L/R \\ \hline b \\ L/R \\ \hline \end{array}$ $\begin{array}{c} L/R \\ \hline \end{array}$	p=.75 $p=.75$ $p=.25$ $p=.25$	Env. steps: 100 200 400 800 1600 K=1
L R b L R C L a L R ("Control": D' ≤ D; Aperiodic)	p=.75 $p=.75$ $p=.25$ $p=.25$ $p=.25$	Env. steps: 100 200 400 800 1600 K=1 0% 0% 0% 0% 0% 0% K=2 74% 100% 100% 100% 100% K=3 24% 70% 100% 100% 100% K=4 4% 19% 74% 97% 100% K=5 0% 0% 44% 92% 100% Env. steps: 100 200 400 800 1600 K=1 98% 100% 100% 100% 100% K=2 91% 100% 100% 100% 100% K=3 68% 100% 100% 100% 100% K=4 18% 88% 100% 100% 100% K=5 4% 50% 98% 100% 100%

Function Approximation Setting:

- Gridworld-like maze navigation task and network architecture from released code of Lamb et al. (2022).
- Compared original maze environment to a *periodic* variant of the environment, and original AC-State loss function to ACDF.
- Evaluation based on success of encoder for open-loop planning.

	Baseline/AC-State	Baseline/ACDF	Periodic/AC-State	Periodic/ACDF
Success Rate	20/20 training runs	20/20 " "	1/20 " "	19/20 " "

7. Future Work

- Sample-complexity guarantees:
 - Neither AC-State nor ACDF have sample-complexity guarantees.
 - While sample-efficient algorithms have been proposed for finite-horizon Ex-BMDPs (Efroni et al. 2022a, 2022b; Mhammedi 2023), a method which such guarantees has not yet been proposed in the reset-free setting.
- State generalization/structured states:
 - Existing Ex-BMDP algorithms assume that *every possible* endogenous latent state is frequently visited during training.
 - There is a need to efficiently learn latent dynamics with combinatorial structure.

References

- Yonathan Efroni, Dylan J Foster, Dipendra Misra, Akshay Krishnamurthy, and John Langford. Sample-efficient reinforcement learning in the presence of exogenous information. COLT. 2022a.
- Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Provably filtering exogenous distractors using multistep inverse dynamics. ICLR. 2022b.
- Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster, Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of control-endogenous latent states with multi-step inverse models. TMLR. 2022.
- Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. Representation learning with multi- step inverse kinematics: An efficient and optimal approach to rich-observation rl. ICML. 2023.