Multistep Inverse is Not All You Need
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1. Ex-BMDP Model (Efroni et al., 2022) 5. ACDF: A Fix for Multistep Inverse
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- Disreplaced by D’, which is any upper bound on finite W(a,b)
* Theorem: If W(a,b) is finite, then W(a,b) < 2D2 + D
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.  Tight up to constant multiplicative factor
@ G @ * In practice, maximum number of steps is hyperparameter, K.
 Added latent forward model g: predict d(xt+1) given d(xt) and a.
* Observation x € X can be factored into latent states: e Theorem: Encoders which minimize ACDF loss encode a correct
« Endogenous state s € S, discrete, evolves deterministically endogenous latent representation.
« Exogenous state e € &, stochastic, indep. of actions (noise) e AC-State + D’ + Forward model = ACDF.

2. Representation Learning under

Ex-BMDP Framework s O esults

« To compare AC-State and ACDF with no error from function

R R
L approximation or optimization.
@ @ - Measured success rate for learning correct encoder under tabular
L dynamics, for varying numbers of training samples and max.

encoder based

59 dynamics Learns controiabe cynamics model number of steps K of multistep-inverse dynamics prediction.
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« Task: learn encoder d to map x € Xto s € S. ) —
 Existing Methods: Ig/ LR LR W) T s [EE—
« Efroni et al. (2022a, 2022b), Mhammedi (2023): finite- L/R& ? ’L/R (None) | ol QAR
horizon setting, learn separate encoders ¢: at each t. O L Lm% ca w00 o om o
« Lamb et al. (2022): infinite-horizon setting with no resets (D' > D) ez e e
 Bounded diameter assumption: v s,s’ € S, d(s,s’) <D g
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3. Multistep Inverse (Lamb et al., 2022) —
 AC-State: predict at given P(Xi), D(Xt+x), K: - () Pég):i;ég S [ SR L LR o
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—log(fa, (da(x:), do(xi4k); k)) - Function Approximation Setting:
{0} :={077|0"" = argmin Lac.state(P0) } - Gridworld-like maze navigation task and network architecture from
o g
" . released code of Lamb et al. (2022).
0 := arg 9161?9%* |Range(¢g)| +  Compared original maze environment to a periodic variant of the
environment, and original AC-State loss function to ACDF.
«  Must show that learned & won’t conflate two different states s, s’ € S: * Evaluation based on success of encoder for open-loop planning.

* Proof Sketch (re-framed):
For a,b € S, let W(a,b) be the
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_ Success Rate | 20/20 training runs 20720 * 1/20 " 19720 %
min. kK such that 3c € S, such that
a and b can both be reached
from c in exactly k steps.
N e 4
Compare P(at | st = ¢, St+k = @) VS. @ 7

P(at ‘ St = C, St+k = D). These @/‘ : 46_/\\

distributions have disjoint . o
support. Otherwise W(a,b) < k. 5 7 FUtU re WOrk
Therefore ¢ must distinguish a, b. « Sample-complexity guarantees:
@ » Neither AC-State nor ACDF have sample-complexity guarantees.
 While sample-efficient algorithms have been proposed for finite-
 Flawed implicit assumption: W(a,b) < D. horizon Ex-BMDPs (Efroni et al. 2022a, 2022b; Mhammedi 2023),

a method which such guarantees has not yet been proposed Iin
the reset-free setting.
 State generalization/structured states:

4. Multlstep Inverse Is Not All You Need » Existing Ex-BMDP algorithms assume that every possible
e« AC-State can fail if either: endogenous latent state is frequently visited during training.
« 3a,beS:W(a,b)>D:  There is a need to efficiently learn latent dynamics with

combinatorial structure.
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