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x-BMDP Model (Efroni et al., 2022)

Observation x; € X can be factored into

controllable state s: € S and noise state e; € &.

Controllable state evolves deterministically,
according to actions: st+1 = T(St,a1).

Noise (exogenous) state evolves as a Markov
chain, independent of actions : etw1 ~ Tel(€y).
Observation x: ~ Q(st,et); e: and s are not

observed and factorization not known a priori.

X and & can be continuous or large, S is
assumed to be discrete and small.
Goal: learn an encoder ¢ to map
observations x: to latent states s..

(Fig. From Levine et al. 2024)

Related Work

Efroni et al. (2022): Proposed provably
sample-efficient algorithm, PPE, for learning

Ex-BMDP representations in the finite horizon

setting, where the latent state s resets to a
specific s1 after (almost) every episode.
* Also allows for near-deterministic latent
dynamics T, rather than full determinism.
Lamb et al. (2023), Levine et al. (2024):
proposed algorithms for the infinite-horizon,
no-reset setting, but without sample-
complexity guarantees.
This work: we propose a provably sample-
efficient algorithm for Ex-BMDP
representation learning in the infinite-
horizon, no reset setting.
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Problem Setting and Guarantees

* Agent interacts with the Ex-BMDP In a single
trajectory, with no ability to reset the
environment.

* Models cases, such as in robotic navigation,
where manually resetting the environment
repeatedly during training could be costly.

Core Difficulty: In the (near) deterministic,
episodic setting (Efroni et al. 2022), taking the
same action sequence ai,...,at for repeated
episodes (usually) yields i.i.d. samples of a
single latent state si. Not possible in the no-
reset, single trajectory setting.

We assume that the noise state e: mixes fast:

Vee€ &, ||Pr(e,; =c¢€'lez=e)—mg(e)

where 1i¢ is the stationary distribution of the
noise state, and mix is @ known upper-bound
on the mixing time. (Necessary assumption)
Our proposed algorithm, STEEL, has
sample-complexity polynomial in |S| and
tmix, and logarithmic in the size of the
hypothesis class of the encoder ¢, with no
explicit dependence on |X| and |&|.

Experiments

Observed Transition Example Observed Transition Example
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Multi-Maze

Accuracy

20/20

20/20

20/20

20/20

Env. Steps

2.00-106
+1.28-10°

4.78-10°
+4.36-10°

0.59.106
+1.13-10°

4.13-107
+1.11-10°

Algorithm (STEEL)

 (Core Ildea: Repeating any action sequence & =
[a4,..,a@n] IS guaranteed to eventually enter a
loop of latent states (of length at most n*[S|)
 Once in aloop, we can “wait out” the
mixing time tmix to get near-i.i.d. samples.
 Once we find the period of the cycle, we
can collect near-i.i.d. datasets from all
visited latent states.
 We can then construct the latent dynamics
one loop at a time:

1. @ =[D] 2. a4 =[L] 3. a=|[L, U] 4. a=[L, U, R]
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5. @=L, U, D] 6. & =[L, R, U] 7. a=[L, R, R] 8. =L, R, D]
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12. 4 =[U, D, R,
9. a=[L,L,R,D] 10.4=[U,D,D] 11.a=[U,D,R, U] U, L, D]

 (Challenges:
« How do we determine the period of a cycle?
« How do we ensure that all latent states in S

are covered by some cycle?
See paper to find out!
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