
VGC-Bench: Towards Mastering Diverse Team Strategies
in Competitive Pokémon

Cameron L. Angliss

The University of Texas at Austin

Austin, TX, United States

cangliss@utexas.edu

Jiaxun Cui
∗

The University of Texas at Austin

Austin, TX, United States

cuijiaxun@utexas.edu

Jiaheng Hu
∗

The University of Texas at Austin

Austin, TX, United States

jiahengh@utexas.edu

Arrasy Rahman

The University of Texas at Austin

Austin, TX, United States

arrasy@cs.utexas.edu

Peter Stone
†

The University of Texas at Austin

Austin, TX, United States

pstone@cs.utexas.edu

ABSTRACT

Developing AI agents that can robustly adapt to varying strategic

landscapes without retraining is a central challenge in multi-agent

learning. Pokémon Video Game Championships (VGC) is a do-

main with a vast space of approximately 10
139

team configura-

tions, far larger than those of other games such as Chess, Go,

Poker, StarCraft, or Dota. The combinatorial nature of team build-

ing in Pokémon VGC causes optimal strategies to vary substan-

tially depending on both the controlled team and the opponent’s

team, making generalization uniquely challenging. To advance re-

search on this problem, we introduce VGC-Bench: a benchmark

that provides critical infrastructure, standardizes evaluation pro-

tocols, and supplies a human-play dataset of over 700,000 battle

logs and a range of baseline agents based on heuristics, large lan-

guage models, behavior cloning, and multi-agent reinforcement

learning with empirical game-theoretic methods such as self-play,

fictitious play, and double oracle. In the restricted setting where

an agent is trained and evaluated in a mirror match with a single

team configuration, our methods can win against a professional

VGC competitor. We repeat this training and evaluation with pro-

gressively larger team sets and find that as the number of teams

increases, the best-performing algorithm in the single-team set-

ting has worse performance and is more exploitable, but has im-

proved generalization to unseen teams. Our code and dataset are

open-sourced at https://github.com/cameronangliss/vgc-bench and

https://huggingface.co/datasets/cameronangliss/vgc-battle-logs.

KEYWORDS

Multi-Agent Learning, Reinforcement Learning, Benchmarking

ACM Reference Format:

Cameron L. Angliss, Jiaxun Cui, Jiaheng Hu, Arrasy Rahman, and Peter

Stone. 2026. VGC-Bench: Towards Mastering Diverse Team Strategies in

Competitive Pokémon. In Proc. of the 25th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2026), Paphos, Cyprus,
May 25 – 29, 2026, IFAAMAS, 11 pages.

∗
Equal contribution

†
Sony AI

Proc. of the 25th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2026), C. Amato, L. Dennis, V. Mascardi, J. Thangarajah (eds.), May 25 – 29,
2026, Paphos, Cyprus. © 2026 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative

Commons Attribution 4.0 International (CC-BY 4.0) licence.

1 INTRODUCTION

Pokémon is the highest-grossing media franchise in the world, with

an estimated total revenue exceeding $100 billion and a global player

base numbering in the millions. In 2008, the Pokémon Company

launched the Video Game Championships (VGC), a competitive

series of tournaments featuring significant cash prizes and interna-

tional prestige. The largest tournament to date, EUIC 2025, featured

1,257 competitors. Despite this popularity and competitive depth,

to the best of our knowledge, no AI system has yet achieved super-

human performance in competitive Pokémon VGC battles.

Competitive Pokémon presents two tightly-coupled challenges:

team building and team usage. Note that we only address team

usage in this work; team building is left as an open challenge. We

estimate the size of the team configuration space to be on the

order of 10
139

, vastly exceeding the configuration space of other

benchmark games such as Dota or StarCraft. Because of the discrete

and combinatorial nature of team-building, optimal strategies can

vary dramatically depending on the team compositions of both

the player and opponent. As a result, even expert human players

struggle to generalize strategies across matchups – even when their

own team remains fixed, as is standard in VGC tournaments, but

especially if trying to pilot many different team compositions. Some

teams focus on controlling the weather; some focus on controlling

the speed of Pokémon on the field; some focus on preventing the

opponent’s Pokémon from switching out. There is no well-defined

maximum number of strategic paradigms with which a team can

be built around, and many teams are hybrid, playing to more than

one of these powerful strategies at the same time.

This combination of a vast space of team configurations and

highly diverse team strategies makes Pokémon an especially valu-

able testbed for generalization in AI systems. In the past, research

has been conducted on Pokémon with heuristic and search-based

agents [12, 14, 17], reinforcement learning [11, 18, 23, 29], team

building [19], and predicting the winner at any state [6]. However,

most of the prior work focuses exclusively on the Single Battle

format, where each player sends out one Pokémon at a time. This

setting significantly simplifies the underlying decision space: in

contrast, the official Pokémon VGC tournaments use Double Battle

format, which involves two active Pokémon per side, leading to a

combinatorial explosion in possible actions and interactions and

more challenging learning.

https://github.com/cameronangliss/vgc-bench
https://huggingface.co/datasets/cameronangliss/vgc-battle-logs


Figure 1: VGC-Bench Overview. VGC-Bench captures the multi-agent multi-team dynamics with PettingZoo integration, provides

human-play datasets and a range of baselines, and standardizes evaluation protocols.

In this work, we present VGC-Bench, a benchmark designed to

evaluate AI generalization in Pokémon VGC. Our contributions in-

clude infrastructure for multi-agent learning and human-play data

collection, including a dataset of over 700,000 open team sheet VGC

battle logs; a suite of competitive baselines, covering multi-agent

RL, behavior cloning, using a language model, and heuristic agents;

and robust evaluation tools for performance, generalization, ex-

ploitability, and human interaction. In the restricted setting where

an agent is trained and evaluated on a single-team configuration,

our methods are able to win against a professional VGC competitor.

We then extend evaluation to broader multi-task settings involv-

ing diverse team configurations. While existing methods can learn

competent policies in narrow conditions, they exhibit notable per-

formance degradation as team diversity increases. These findings

underscore the need for more generalizable learning algorithms in

multi-agent, multi-task environments like VGC.

Furthermore, as part of our work, we contributed significant

open-source contributions to Poke-env [20], a widely used library

that has supported prior research in Pokémon AI. Our contribu-

tions include full integration with the PettingZoo [25] multi-agent

framework, extended support for VGC and doubles formats, and

many bugfixes to correct battle tracking and more. We expect that

these enhancements will enable and encourage more accessible and

rigorous experimentation, further advancing AI research in this

domain.

2 PROBLEM FORMULATION

2.1 Game Mechanics

Pokémon VGC is a team-based competitive game with stochastic

dynamics, simultaneous move selection, and a vast configuration

space of possible teams. In the VGC format, each player assembles a

team of 6 Pokémon, with each Pokémon configured by customized

individual stats, up to 4 moves, a passive ability, a Tera type, and

potentially a held item. A Tera type is a gimmick mechanic spe-

cific to generation 9 of Pokémon which defines a type (i.e. grass,

fire, water) that a Pokémon can overwrite their default types to

for the rest of the battle. Players can only terastallize a Pokémon

once per battle, and is commonly used defensively to avoid being

super-effectively hit by an attack, but can also be used offensively

to boost the damage of moves of the same type. The VGC format is

entirely set in double battles, where players deploy up to 2 Pokémon

on the field at a time. Recent tournaments adopt Open Team Sheets
(OTS), a modification on the VGC format that reveals nearly all

aspects about the opponent’s team – such as moves, items, abili-

ties, and Tera types – while leaving the precise underlying stats

concealed. Each match begins with a Team Preview phase, during

which players simultaneously select 4 out of their 6 Pokémon to

bring into the battle. The first two chosen are sent out at the start

of the match, while the other two remain in reserve and can be

switched in as the battle progresses. Once the battle begins, both

players issue commands independently and simultaneously each

turn, and only after the players have locked in their decisions do

the battle mechanics determine the order of events for that turn.

Generally, Pokémon switch out before moves are performed, and

the execution order of moves is usually determined by the speed

stats of the acting Pokémon, with speed ties broken randomly. The

objective is to knock out all of the opponent’s Pokémon by reducing

their HP to zero before your own team is eliminated.

Several factors make VGC particularly challenging for AI agents

(see Appendix A for calculation of values presented here):

(1) Combinatorial Team Configurations: The team configura-

tion space in Pokémon VGC is large.With hundreds of Pokémon

species, moves, items, and abilities, 19 possible Tera types per



Pokémon, and a high-dimensional space of possible stat alloca-

tions, we estimate the total number of valid team configurations

to be approximately 10
139

. This combinatorial space far exceeds

that of many other strategic games (see Table 1 for comparison).

(2) Stochastic Battle Mechanics: Move outcomes in VGC involve

randomness in damage and secondary effects (e.g., 10% chance

to paralyze). This results in a large branching factor per turn,

which we approximate to be at times as large as 10
12
.

(3) Partial Observability: Even with OTS, Pokémon VGC remains

a partially observable game as the opponent’s stats are not

revealed. We estimate that the size of the information set – the

set of all possible states given a partial observation of the game

– is lower-bounded at approximately 10
58
.

(4) Simultaneous and Multi-Agent Actions: Pokémon VGC is a

simultaneous game that requires up to four Pokémon to make

a decision at the same time. This game feature introduces non-

stationarity and pose challenges to accurate credit assignment

during policy optimization. For example, suppose both of a

player’s Pokémon target the same opponent Pokémon, and one

of them uses a move the target is immune to, but the other

knocks the Pokémon out in one hit. In this case, assuming the

AI only observes the game state before and after the turn, the

AI could never know which Pokémon caused the knock out.

(5) Team Preview Strategy and Generalization: Pokémon VGC

features a unique challenge: only four of the six team members

are used in each battle. This introduces a mini team-selection

problem, where the player must pick the most effective sub-

team against the opponent’s lineup. This single decision can

drastically alter the dynamics of the battle, and with a total of(
6

2

)
·
(
4

2

)
= 90 possible team preview decisions for each player,

effective exploration and generalization are especially challeng-

ing.

2.2 Formalization

We model each Pokémon battle as a two-player zero-sum partially

observable stochastic game (POSG) with randomized team config-

urations. Let C denote the finite set of legal team configurations

and U(C) denote the uniform distribution over those team config-

urations. At the start of each episode, players independently and

uniformly sample 𝑐1, 𝑐2 ∼ U(C), which instantiates

G(𝑐1, 𝑐2) = ⟨S, {O𝑖 }, {A𝑖 },T , 𝑅, 𝑐1, 𝑐2⟩.

Here, S is the full battle state (HP, status, weather, stat boosts, etc.),

O𝑖 ⊆ S is player 𝑖’s observation,A𝑖 the action set (switching, move

selection, targeting, terastallization), T (𝑠′ | 𝑠, 𝑎1, 𝑎2) the stochastic
transition function, and 𝑅(𝑠𝑇 ) ∈ {−1, 1} the terminal reward for

player 1.

Given policies 𝜋1, 𝜋2 mapping observations to action distribu-

tions, the distribution of trajectories initialized with team configu-

rations 𝑐1, 𝑐2 can be defined as

Γ𝑐1,𝑐2 (𝜋1, 𝜋2) =
𝑇−1∏
𝑡=0

𝜋1 (𝑎𝑡1 | 𝑜𝑡
1
)𝜋2 (𝑎𝑡2 | 𝑜𝑡

2
)T (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡

1
, 𝑎𝑡

2
) . (1)

The expected return for player 1 over all team draws is

𝑉 (𝜋1, 𝜋2) = E𝑐1,𝑐2∼U(C)
[
E𝜏∼Γ𝑐

1
,𝑐
2
(𝜋1,𝜋2 ) [𝑅(𝑠𝑇 )]

]
. (2)

Figure 2: Pokémon Showdown Gameplay. Closer Pokémon

are on the agent’s side, and farther Pokémon are on the op-

ponent’s side. 1) Pokémon’s health bar with percentage of

current health remaining. 2) Current status of all party mem-

bers, with solid colors for revealed, translucent colors for

unrevealed, and greyed-out colors for fainted. 3) Effects on

Pokémon, including boosts and status conditions. 4) Active

side conditions and global fields/weather with a number of

turns remaining. 5) Active Tera type being used by Pokémon.

Since the game is zero-sum, the equilibrium in expectation over

configurations is

(𝜋eq
1
, 𝜋

eq

2
) = argmax

𝜋1

argmin

𝜋2

𝑉 (𝜋1, 𝜋2) . (3)

This formalism captures our objective: to find robust policies that

perform well on average against all possible opposing team draws

in the configuration space.

3 RELATEDWORK

3.1 Progress in Game AI.

Early AI milestones focused on perfect-information games like

Chess and Go, where IBM’s Deep Blue and DeepMind’s AlphaGo

achieved superhuman performance through massive search and

pattern recognition [5, 22]. Poker introduced reasoning under par-

tial observability and uncertainty, with Libratus defeating top hu-

mans in no-limit Texas Hold’em [4]. Recent work shifted to more

complex multi-agent games: AlphaStar reached grandmaster in

StarCraft II by population-based reinforcement learning [28] and

OpenAI Five mastered Dota 2 with limited hero drafting [2]. In

contrast, Pokémon VGC offers a unique challenge that combines

partial observability, stochasticity, simultaneous actions, and a com-

binatorially vast team configuration space larger than any prior

benchmarked game (see Table 1).

3.2 Existing Pokémon AI

3.2.1 Heuristic and Search-Based Agents. Early Pokémon AI work

relied on handcrafted rules and search. Lee and Togelius (2017)

introduced the Showdown AI Competition, a benchmark based on

a clone of Pokémon battles [14]. They highlighted that Pokémon

battles involve turn-based team combat with partial observability, a

challenging setup uncommon in prior AI competitions. Huang and

Lee (2019) note that before DRL, most agents used expectimax or



Table 1: Configuration space comparison of benchmark

games versus Pokémon VGC. Calculations for numbers can

be found in section A.

Game Init. Config. Space

Chess 2

Go 2

Poker (10 players)

(
52

2

) (
50

2

)
· · ·

(
34

2

)
≈ 10

29

StarCraft II (3 races)2 players ∗ (9 maps) = 81

Dota 2

(
2∗126
5

) (
2∗121
5

)
≈ 10

20

Pokémon VGC ≈ (10139)2 players = 10
278

minimax search with learned evaluations. Panumate and Iida (2016)

built a simplified Generation-1 battle simulator and implemented

four heuristic AIs (Random, Attack, Smart-Attack, Smart-Defense)

to simulate and balance Pokémon gameplay [17]. These simple bots

modeled human behavior and were used to study “comfortable”

game settings using game-refinement theory. In short, these studies

demonstrate that search-based and rule-based methods can yield

modest performance in Pokémon battles, but they often struggle

with the game’s huge state space and complexity. Karten, Nguyen,

and Jin (2025) made PokeChamp, an agent that plays Pokémon

battles with a minimax search algorithm enhanced with an LLM

(large language model). The LLM performs player action sampling,

opponent modeling, and value function estimation, and achieves

state-of-the-art LLM performance in the Gen 9 OU format [12].

3.2.2 Reinforcement Learning Approaches. More recent work has

applied deep RL to Pokémon. Huang and Lee [11] trained a deep

PPO agent via self-play for singles battles. Their approach requires

no handcrafted simulator and succeeds on the nondeterministic,

partially-observable Pokémon game, yielding a policy on par with

state-of-the-art search agents and competitive with human ladder.

Simoes et al. [23] similarly used deep RL on a Pokémon battling

simulator (using the Poké-env gym interface) to learn competitive

play. Wang [29] used DRL with PPO and augmented with parallel

MCTS to train an AI agent to play Gen 4 random battles at an

expert human level. Pleines et al. [18] took this further by tackling

Pokémon Red, an open-world RPG. They wrapped an emulator in an

OpenAI Gym and trained a PPO agent to reach Cerulean City. Their

experiments revealed that naive reward shaping can be exploited

(e.g. agents skip intermediate challenges if badges give reward),

and they underscore the exploration and multi-tasking challenges

in Pokémon games. In summary, DRL (especially policy-gradient

methods like PPO) has shown promise for learning Pokémon battle

strategies from experience, achieving competitive performance

without explicit simulators.

3.2.3 Team Building and Metagame Analysis. Building a strong

team is crucial in Pokémon. Reis et al. [19] automated team con-

struction under a metagame framework. They set up an adversarial
model with two agents: a “team builder” that evolves six-Pokémon

teams to maximize win-rate, and a “balancer” that adjusts base

stats or move sets to encourage diversity in the meta. The team

builders use evolutionary or linear optimization to exploit current

metagames, while the balancer nudges them to try underused Poké-

mon. This adversarial setup iteratively yields balanced meta-teams.

3.2.4 Other Machine Learning Approaches. Some studies use super-

vised learning on Pokémon data. For example, Charde [6] trained

machine learning models to predict the winner of a Pokémon Show-

down battle given the game state. This suggests that supervised

classifiers can capture strategic patterns.

4 VGC-BENCH

This section introduces VGC-Bench, a comprehensive benchmark

built on top of poke-env [20]. VGC-Bench provides users with

(1) infrastructure for multi-agent learning and human-play data

collection, (2) a diverse suite of baselines, and (3) robust evaluation

tools for performance, generalization, exploitability, and human

play.

4.1 Infrastructure

Multi-Agent Environment. We integrate poke-env with Petting-

Zoo [25] to support parallelized population-based and PSRO-style

multi-agent learning [13] for both players and support the VGC

format. To support more controlled training settings, we introduce

two toggles: one to exclude the team preview phase and another

to disable mirror matches. Disabling team preview skips that stage

from the agent’s perspective, initializing each game with a random

team preview decision – potentially encouraging policy exploration

in any team preview situation. Disabling mirror matches prevents

an agent from facing the same team configuration during training,

which is useful when evaluating a specific matchup between two

distinct team configurations. Finally, we provide users with a team

scraper that collects high-performing teams in real tournaments

from VGCPastes [1].

Observation Space. The default observation encodes information

for each of the 12 Pokémon (6 per player) using a mixture of discrete

(e.g., Pokémon type) and continuous (e.g., HP) features. Let 𝑔 be

the global features (e.g., weather), 𝑠 the side-specific features (e.g.,

light screen), and 𝑝 the per-Pokémon features. Each Pokémon is

represented as a concatenation of 𝑝 , its side’s 𝑠 , and the global 𝑔

vector, giving a vector of size 𝑔 + 𝑠 + 𝑝 . The overall observation is

shaped as 12 × (𝑔 + 𝑠 + 𝑝). If frame stacking is used with 𝑛 frames,

the observation becomes 𝑛 × 12 × (𝑔 + 𝑠 + 𝑝).

Action Space. We represent actions in the VGC format as a joint

action space, since each turn in doubles matches requires an action

for each of the two active Pokémon. The action space is enumerated

in Table 6. Each Pokémon has 107 available actions, which captures

the full space of switching in benched Pokémon and using moves,

where moves involve which move is being picked, the intended

target, and whether or not the Pokémon is terastallizing (or using

another available gimmick). We also unify the team preview action

of the battle with the action space for the rest of the battle by simply

modeling team preview as two joint "switch-in" actions in a row,

providing two Pokémon per joint action for a total of four Pokémon

to make the team preview decision.

Human-Play Data Collector. To facilitate large-scale imitation

learning from human players, we provide a parallel data collection



pipeline for scraping and parsing Gen 9 VGC battle replays from

Pokémon Showdown. With the current number of available replays

from Pokémon Showdown, we are able to amass over 700,000 OTS-

enabled VGC games. Due to the neutral perspective of battle logs

and its purely transitional messages, reconstructing a trajectory of

game states cannot be done perfectly. However, because we filter

for only OTS-enabled battle logs, we can derive well-approximated

states and actions from the logs by replaying the transitions through

our environment. Our log reader also has configurable filters to

only read logs of players with ratings above a threshold and only

the winner of the battle.

4.2 Baseline Implementations

VGC-Bench implements a total of 11 baseline agents: three heuristic

agents, an LLM agent, a behavior cloning model (BC), a self-play

RL agent (SP), a fictitious play RL agent (FP), and a double oracle

RL agent (DO), as well as fine-tuning the agent initialized with the

BC policy’s parameters using SP, FP, and DO (BCSP, BCFP, BCDO).

4.2.1 Trained Baselines.

Behavior Cloning. We train a behavior cloning (BC) policy [7]

to match the distribution of human actions given a state from the

dataset D collected by the human play data collector, without the

use of our rating or winner-based data filters. The parameterized

policy 𝜋𝜃 is trained to imitate human decision-making by minimiz-

ing the negative log-likelihood of the demonstrated actions:

min

𝜃
E(𝑠,𝑎)∼D𝑅≥𝑅

min

[− log𝜋𝜃 (𝑎 |𝑠)] .

Multi-Agent Reinforcement Learning. We employ an actor-critic

implementation of Proximal Policy Optimization (PPO) [21] to train

all reinforcement learning agents. For agents to approach the de-

sired minimax solution of the game via RL, we implement three

multi-agent training paradigms from the unified empirical game-

theoretic framework [13] on top of RL: self-play, fictitious play, and

double oracle [15]. In self-play (SP), the agent trains against itself.

The fictitious play (FP) variant maintains a pool of the agent’s

past checkpoints, and the agent learns against a uniform distribu-

tion of its past selves, resampling the opponent policies after every

experience-gathering period. We take the final response policy to

the policy pool as the method’s output. Double oracle (DO) differs

from FP in that it derives the Nash equilibrium distribution from a

maintained empirical payoff matrix between all agents in the pool,

and uses that distribution to sample opponents. We solve the Nash

distribution by solving a linear programming problem because of

the game’s two-player, zero-sum, and symmetric-payoff nature. Fu-

ture work could employ more complex meta-game solvers with the

Policy Space Response Oracle [13]. We also implement baselines

that fine-tune the policy from the BC-trained parameters (BCSP,

BCFP, BCDO). Each method is trained with the same number of

training teams and interaction timesteps. The hyperparameters for

RL used for all PPO methods (details in Table 7) were tuned to serve

as a reasonable starting point for future work.

Policy and Value Network Architecture. All the policy networks

used across the learning baselines embed each agent’s moves, items,

and abilities into latent representations, and then use an additional

aggregation token and a 3-layer Transformer encoder [27] to aggre-

gate the information of 12 Pokémon (6 from the agent’s team and

6 from the opponent’s team) in the field. When frame stacking is

enabled, we use a second Transformer encoder along the time axis,

apply a positional encoding, and use causal masking to process the

historical information and only use the logits from the last frame.

The output of the Transformer encoder is then projected to the

size of the action space by a linear layer into the logits before the

softmax layer. The logits at the invalid actions are masked by −∞.

We also handle interdependent action constraints, such as ensuring

that both Pokémon do not switch into the same replacement. For

reinforcement learning methods, we adopt an actor-critic imple-

mentation without parameter sharing, though they share the same

network architecture.

4.2.2 Other Baselines.

LLM Agent. We also provide a basic LLM agent that uses Meta-

Llama-3.1-8B-Instruct [8]. Each turn, the battle state is converted

into a prompt that is then fed into the agent along with an available

action space, instructions on how to construct a valid action, and the

required format of its response. If the LLM agent does not respond

in the correct format, the agent selects a random action. Note that

the LLM agent was not thoroughly researched; we acknowledge

that it is possible to make a stronger LLM agent with tool use and

other techniques [12]. However, this LLM agent baseline provides

a reasonable starting point on which research can be conducted.

Heuristic Agents. From poke-env, we inherit 3 rule-based base-

lines:RandomPlayer,MaxBasePowerPlayer, and SimpleHeuris-

ticsPlayer [20]. The RandomPlayer plays random moves every

turn, the MaxBasePowerPlayer greedily chooses the highest-power

move from the available options every turn, and the SimpleHeuris-

ticsPlayer has a hard-coded weighted sum of multiple heuristics

to select the best move based on the heuristic scores, which con-

siders information such as current HP of the active Pokémon, type

matchup viability, accuracy, power of its moves, etc. We extend

SimpleHeuristicsPlayer so that it can also play double battles for

the VGC format.

4.3 Evaluation Methods

VGC-Bench provides multiple methods of evaluation, including

cross-evaluation of agents, Alpha-Rank [16] for ranking agents

based on their cross-evaluation performance, training an exploiter

policy against an agent to lower-bound the agent’s worst-case lose-

rate, and evaluating agents over varying team set sizes with the

performance and generalization tests.

Let C be the set of team configurations used for evaluation

and U(C) be the uniform distribution of those teams. The cross-

evaluation of a pair of policies (𝜋𝑖 , 𝜋 𝑗 ) ∈ Π × Π from the policy

pool Π, where 1 ≤ 𝑖 ≤ |Π |, 1 ≤ 𝑗 ≤ |Π |, and 𝑖 ≠ 𝑗 , can be defined as

crossplay(𝜋𝑖 , 𝜋 𝑗 , C) = E𝑐1,𝑐2∼U(C)
[
E𝜏∼Γ𝑐

1
,𝑐
2
(𝜋𝑖 ,𝜋 𝑗 ) [𝑅(𝑠𝑇 )]

]
, (4)

where 𝜋1 controls team 𝑐1, 𝜋2 controls team 𝑐2, and the distribution

of trajectories Γ is defined in Equation 1. Alpha-Rank [16] provides a
way of transforming this cross-play matrix into an ordered ranking

of policies, allowing us to determine a best policy among a pool.



The combination of these evaluation primitives enables insight

into agent performance, generalization, and exploitability.

(1) Performance can be tested by cross-playing agents with teams

that every agent had experience with during training. Ideally,

as you train agents with more teams, performance would min-

imally decrease on an individual team basis against agents

trained with fewer teams. We define 𝐶𝑘 as the set of teams

configurations that policy 𝜋𝑘 was trained on; the evaluation set

of teams C
eval

is constrained by

C
eval

=

|Π |⋂
𝑘=1

C𝑘 , (5)

(2) Generalization can be tested by cross-playing agents with

teams that none of them experienced during training; how

much an agent trained on more team configurations surpasses

those trained on fewer configurations reflects its generalization

ability. We constrain the evaluation set of teams C
eval

by

C
eval

∩
|Π |⋃
𝑘=1

C𝑘 = ∅. (6)

(3) Exploitability can be tested by approximating a best response

policy, BR(𝜋), against the agent to be evaluated via RL training

and measuring the highest win rate that the best response can

achieve [26]. Whatever maximum win rate the exploiter agent

achieves over a sufficiently large number of training steps serves

as our exploitability measurement for our agent. We formally

define the exploitability of the agent as

exp(𝜋, C
eval

) = crossplay(BR(𝜋), 𝜋, C
eval

). (7)

5 EXPERIMENTS

To encourage research in Pokémon VGC, we gather preliminary re-

sults interrogating 2 main research questions. In sections 5.2 and 5.3,

we investigate how performance, generalization, and exploitability

scale as the training team size increases. In section 5.4 we see if it is

possible to use standard RL methods to create an AI agent that plays

at a human expert level for the one-team setting. All experiments

are conducted on a cluster with 8 A40 GPUs and 2 Intel(R) Xeon(R)

Gold 6342 CPU @ 2.80GHz.

5.1 Cross-Play Performance

For all agents that fine-tuned with RL, we did training runs with

team set sizes of 1, 4, 16, and 64. For each team set size, we compare

our 6 RL baseline agents, the BC agent, 3 rule-based players, and

our LLM agent (all described in section 4.2) through cross-play in

Figure 3. Each win-rate entry of the cross-play matrix is calculated

with 1000 episodes with uniformly drawn teams for each game

played, except for the LLM player, which was evaluated with 100

episodes due to the LLM’s relatively slow inference. These 1000

episodes equally evaluate across 5 training seeds for all learning

methods. For each seed, a different set of teams is selected for the 1,

4, 16, and 64-team settings, and these team sets are always perfectly

nested so that, for example, all teams from the 16-team setting of

a given seed are included in the 64-team setting of that seed. All

cross-evaluations have win-rates relative to the row players, with

errors of approximately ±0.03 for 1000-game evaluations, and ±0.10

for the LLM player’s 100-game evaluations. For numerical win rates,

see Tables 8, 9, 10, 11 in Appendix B.

Notice that as the number of teams increases, the heatmaps

become progressively less noisy. We hypothesize that this is likely

caused by (1) all of our learning methods noticeably degrading in

performance for larger team set sizes, and (2) results being averaged

over larger numbers of matchups reducing matchup-specific biases

in the evaluation.

Table 2: Alpha-Rank Results. This table contains a relative ranking

of each baseline agent featured in VGC-Bench. Each agent is only

compared with other agents that trained with the same number of

teams.

1 Team 4 Teams 16 Teams 64 Teams

R 11 9 11 11

MBP 9 7 9 9

SH 7 5 8 7

LLM 10 8 10 10

SP 4 4 6 4

FP 6 4 5 8

DO 5 4 4 5

BC 8 6 7 6

BCSP 1 1 3 1

BCFP 2 2 2 3

BCDO 3 3 1 2

It is clear from Figure 3 and Table 2 that while non-BC methods

achieve decent performance, they are generally outperformed by

methods initialized with BC. Self play seems to be the most reliably

high-performance method in the 1 team setting, but we note that

the performance differences between the BC methods for the 4, 16,

and 64 team set sizes are negligible.

5.2 Performance and Generalization

Evaluations

We then measure performance and generalization as described in

section 4.3. We used the highest overall ranked agents from our

Alpha-Rank evaluation in the 1, 4, 16, and 64-team settings for this

evaluation; Table 3 shows that as the size of the set of teams used

during training increases, the performance of the AI agent on any

one team decreases considerably and consistently. These results

indicate that our agent does not pass the performance test even

for relatively small 𝑛 ≤ 64, highlighting the central challenge that

Pokémon VGC poses to the AI community. To test generalization,

we used 72 out-of-distribution teams and compared agents across

team set sizes via cross-play. In Table 4, we can see that our agent

exhibits generalization since win rate increases moderately as 𝑛

increases.

In order to solidify the validity of our generalization results, we

also calculate statistics regarding the similarity of the 72 teams we

set aside during training with the upper bound of 64 teams used

during training in Table 5. We measure team similarity on a scale

of 0 to 1, taking into account matching species between teams,

and among those matching species, whether they have the same



Figure 3: Cross-Play Win Rate Heatmaps for varying team set sizes.

Table 3: Performance Test. Each matchup evaluated for 1000 games,

with errors ±0.03.

#Teams 1 (BCSP) 4 (BCSP) 16 (BCDO) 64 (BCSP)

1 (BCSP) – 0.699 0.74 0.698

4 (BCSP 0.301 – 0.594 0.672

16 (BCDO) 0.26 0.406 – 0.644

64 (BCSP) 0.302 0.328 0.356 –

Table 4:GeneralizationTest.Eachmatchup evaluated for 1000 games,

with errors ±0.03.

#Teams 1 (BCSP) 4 (BCSP) 16 (BCDO) 64 (BCSP)

1 (BCSP – 0.405 0.375 0.331

4 (BCSP) 0.595 – 0.453 0.422

16 (BCDO) 0.625 0.547 – 0.436

64 (BCSP) 0.669 0.578 0.564 –

item, moves, ability, Tera type, and stat configurations. We ensure

that no two teams are fully identical, and assert that the average

similarity being about 0.5 across all training seeds firmly grounds

the Generalization Test as a legitimate experiment.

Table 5: Team Similarity Score Statistics. Comparison between the

≤ 64 seen teams and the 72 unseen teams.

Run Mean Median Min Max

1 0.508 0.513 0.268 0.946

2 0.522 0.526 0.221 0.947

3 0.530 0.524 0.221 0.948

4 0.557 0.554 0.260 0.947

5 0.526 0.526 0.238 0.948

5.3 Exploitability Evaluation

We measured the exploitability of the strongest agent according

to the Alpha-Rank evaluation from each of our team set sizes as

described in section 4.3. This evaluation was averaged across the

agents from all 5 training seeds, and all exploiter agents were trained

on the same team configuration from the 1-team setting, regardless

of how many teams the agent being exploited experienced during

training. We tested exploitability by initializing the exploiter with

a random initialization in Table 4 and with the pre-trained BC

policy in Table 5. In almost all cases, all agents are approximately

100% exploitable, although the best agent in the 1-team setting

does exhibit notably stronger resistance to exploitation when the

exploiter agent is randomly initialized.

Figure 4: An exploiter agent initialized randomly trains to exploit

the strongest agent as determined in Table 2.

5.4 Human Evaluation

After measuring Alpha-Rank ratings and evaluating performance

across team set sizes, we tested our most performant agent in the

most performant team set size – the behavior cloning agent fine-

tuned with self-play in the 1-team setting – against an intermediate,

advanced, and expert player. Our expert player was Aaron Traylor,

a multi-time competitor in the World Championships and the 2020

Dallas Regional Champion. All 3 human testers were instructed to

try to find a way to exploit the AI system over 5 consecutive games

and encouraged to think for as long as they needed to. Against the

intermediate player, our agent won all 5 matches, and against the

advanced player, the agent won 2 out of 5 total matches played. In-

deed, our agent was even able to win against the expert-level player.

To the best of our knowledge, our agent is the first AI system to



Figure 5: An exploiter agent initialized as the behavior cloning

agent trains to exploit the strongest agent as determined in Table 2.

achieve such a feat. We received feedback that although the agent

is strong on initial play, it does have noticeable dips in performance

in certain states. After enough successive games, strong human

players can adapt and beat the agent. Please note that these hu-

man evaluations are intentionally anecdotal; more comprehensive

human evaluation should be conducted before reaching stronger

conclusions based on these results.

6 CONCLUSION AND FUTUREWORK

In this work, we introduced VGC-Bench, a benchmark designed to

evaluate the generalization capabilities of AI agents in the challeng-

ing and combinatorially complex environment of Pokémon VGC.

Our benchmark includes standardized evaluation protocols, a mod-

ular training pipeline, curated human gameplay data, and imple-

mentations of a broad set of baseline methods ranging from behav-

ior cloning and reinforcement learning with game-theoretic algo-

rithms like self-play, fictitious play, and double oracle, the strongest

of which was able to win against a past World Championships

competitor. We also contributed substantial improvements to the

Poké-env library, including integration with PettingZoo and envi-

ronment support for VGC formats, thereby enabling easy adoption

by the broader research community.

Through extensive experiments, we demonstrated that while

current algorithms can attain strong performance in the single-

team setting, they degrade significantly when scaling to multi-team

generalization – highlighting a key open challenge in multi-agent

learning. By providing a reproducible benchmark and uncovering a

difficult generalization frontier, our work establishes a foundation

for future progress in robust multi-agent policy learning.

Looking forward, we identify five major research directions en-

abled by VGC-Bench:

(1) Generalization to 𝑛 Teams, 𝑛 > 1:Our current agents achieve

strong performance in the single-team setting but struggle as

the number of teams in training increases. A natural extension

is to develop agents that can generalize across team matchups

without having performance degrade, and ultimately perform at

a superhuman level across arbitrary teams without needing to

retrain. Researchers can use the experiments in Tables 3 and 4

to assess progress on this front.

(2) Team Building: A strong VGC agent could be used to evalu-

ate candidate teams and provide a reward signal for searching

the vast team configuration space. While such work would be

downstream of generalization, our current agents may already

offer a useful starting point for this line of research.

(3) Search:With an accurate and fast simulator, one could model

future positions of the game to make more well-informed de-

cisions [3, 24]. The benefits of model-based techniques could

be bountiful in the domain of Pokémon VGC, as it gives the

agent a way to understand how the individual actions of each

active Pokémon on the field contribute to the resulting state. In

fact, we suspect that much of the difficulty of achieving strong

performance across a large set of teams with model-free RL

may be that the complexity of predicting future outcomes of

the game simply can’t fit into the deep neural network. Past

work in Pokémon suggests that search has significant poten-

tial [11, 12, 29], but active work is ongoing to create a highly

accurate, fast, and open-source simulator.

(4) OpponentModeling:One could incorporate explicit opponent

modeling to infer latent properties of the opposing strategy,

such as playstyle, risk tolerance, and long-term tactical intent.

By predicting how an opponent is likely to act – or which

strategic archetype they belong to – an agent can dynamically

adapt its policy rather than treating all opponents as identically

optimal or uniformly random [9, 31]. It may be a good idea to

start the opponent model out as a behavior cloning agent from

human data and attempt to converge to the opponent’s style as

the game plays out, effectively adapting to the opponent in real

time from a reasonable starting guess.

(5) Latent Variable Behavior Cloning: Future work could use

latent variable imitation learning, enabling the behavior cloning

agent to model diverse human play-styles rather than collapsing

behavior into a single averaged policy, which could improve

its strength by making its play more cohesive and consistent

[10, 30].

ACKNOWLEDGMENTS

This work has taken place in the Learning Agents Research

Group (LARG) at UT Austin. LARG research is supported in

part by NSF (FAIN-2019844, NRT-2125858), ONR (W911NF-25-1-

0065), ARO (W911NF-23-2-0004), DARPA (Cooperative Agreement

HR00112520004 on Ad Hoc Teamwork) Lockheed Martin, and UT

Austin’s Good Systems grand challenge. Peter Stone serves as the

Chief Scientist of Sony AI and receives financial compensation for

that role. The terms of this arrangement have been reviewed and

approved by the University of Texas at Austin in accordance with

its policy on objectivity in research.

We are very thankful to our human testers: Dylan Remillard

(intermediate), Jiaheng Hu (advanced), and Aaron Traylor (expert).

Aaron Traylor was also kind enough to explain some niche mechan-

ics in Pokémon VGC, give helpful feedback to the AI’s strengths and

weaknesses, connect us with other professional VGC competitors,

and even used their platform to help popularize our work. Also, we

thank our anonymous reviewers for their diligence in evaluating

our work and for the constructive criticism which ultimately helped

this paper become what it is.



REFERENCES

[1] 2025. VGCPastes Repository and Tour & Stats Gallery. Google Sheets.

[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław

Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris

Hesse, et al. 2019. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 (2019).

[3] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. 2020. Combin-

ing deep reinforcement learning and search for imperfect-information games.

Advances in neural information processing systems 33 (2020), 17057–17069.
[4] Noam Brown, Tuomas Sandholm, and Strategic Machine. 2017. Libratus: The

Superhuman AI for No-Limit Poker.. In IJCAI. 5226–5228.
[5] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. 2002. Deep blue.

Artificial intelligence 134, 1-2 (2002), 57–83.
[6] Saurabh Charde. 2019. Predicting pokémon battle winner using machine learning.

(2019).

[7] Adam Gleave, Mohammad Taufeeque, Juan Rocamonde, Erik Jenner, Steven H.

Wang, Sam Toyer, Maximilian Ernestus, Nora Belrose, Scott Emmons, and

Stuart Russell. 2022. imitation: Clean Imitation Learning Implementations.

arXiv:2211.11972v1 [cs.LG]. arXiv:2211.11972 [cs.LG] https://arxiv.org/abs/

2211.11972

[8] AaronGrattafiori, AbhimanyuDubey, Abhinav Jauhri, Abhinav Pandey, Abhishek

Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex

Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783
(2024).

[9] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. 2016. Opponent

modeling in deep reinforcement learning. In International conference on machine
learning. PMLR, 1804–1813.

[10] Fang-I Hsiao, Jui-Hsuan Kuo, and Min Sun. 2019. Learning a multi-modal

policy via imitating demonstrations with mixed behaviors. arXiv preprint
arXiv:1903.10304 (2019).

[11] Dan Huang and Scott Lee. 2019. A self-play policy optimization approach to

battling pokémon. In 2019 IEEE conference on games (CoG). IEEE, 1–4.
[12] Seth Karten, Andy Luu Nguyen, and Chi Jin. 2025. Pok\’eChamp: an Expert-level

Minimax Language Agent. arXiv preprint arXiv:2503.04094 (2025).
[13] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl

Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A unified game-

theoretic approach to multiagent reinforcement learning. Advances in neural
information processing systems 30 (2017).

[14] Scott Lee and Julian Togelius. 2017. Showdown AI competition. In 2017 IEEE
Conference on Computational Intelligence and Games (CIG). IEEE, 191–198.

[15] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. 2003. Planning in

the presence of cost functions controlled by an adversary. In Proceedings of the
20th International Conference on Machine Learning (ICML-03). 536–543.

[16] Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls,

Mark Rowland, Jean-Baptiste Lespiau, Wojciech M Czarnecki, Marc Lanctot,

Julien Perolat, and Remi Munos. 2019. 𝛼-rank: Multi-agent evaluation by evolu-

tion. Scientific reports 9, 1 (2019), 9937.

[17] Chetprayoon Panumate and Hiroyuki Iida. 2016. Developing Pok’emon AI for

Finding Comfortable Settings. In Proceedings of the 2016 Summer Conference,
Digital Games Research Association Japan. 168–171.

[18] Marco Pleines, Daniel Addis, David Rubinstein, Frank Zimmer, Mike Preuss, and

Peter Whidden. 2025. Pokemon Red via Reinforcement Learning. arXiv preprint
arXiv:2502.19920 (2025).

[19] Sim ao Reis, Rita Novais, Lu’ıs Paulo Reis, and Nuno Lau. 2023. An Adversarial

Approach for Automated Pok’emon Team Building and Metagame Balance. IEEE
Transactions on Games (2023). https://doi.org/10.1109/TG.2023.3273157

[20] Haris Sahovic. [n.d.]. Poke-env: pokemon AI in python. https://github.com/

hsahovic/poke-env

[21] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[22] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. nature 529, 7587 (2016), 484–489.
[23] David Simoes, Simao Reis, Nuno Lau, and Luis Paulo Reis. 2020. Competitive

deep reinforcement learning over a pokémon battling simulator. In 2020 IEEE
international conference on autonomous robot systems and competitions (ICARSC).
IEEE, 40–45.

[24] Samuel Sokota, Eugene Vinitsky, Hengyuan Hu, J Zico Kolter, and Gabriele Farina.

2025. Superhuman AI for Stratego Using Self-Play Reinforcement Learning and

Test-Time Search. arXiv preprint arXiv:2511.07312 (2025).
[25] Jordan Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth

Hari, Ryan Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Ro-

drigo Perez-Vicente, et al. 2021. Pettingzoo: Gym for multi-agent reinforcement

learning. Advances in Neural Information Processing Systems 34 (2021), 15032–
15043.

[26] Finbarr Timbers, Nolan Bard, Edward Lockhart, Marc Lanctot, Martin Schmid,

Neil Burch, Julian Schrittwieser, Thomas Hubert, and Michael Bowling. 2020.

Approximate exploitability: Learning a best response in large games. arXiv
preprint arXiv:2004.09677 (2020).

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[28] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-

drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,

Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent

reinforcement learning. nature 575, 7782 (2019), 350–354.
[29] Jett Wang. 2024. Winning at Pokémon Random Battles Using Reinforcement Learn-

ing. Ph.D. Dissertation. Massachusetts Institute of Technology.

[30] Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and

Nicolas Heess. 2017. Robust imitation of diverse behaviors. Advances in Neural
Information Processing Systems 30 (2017).

[31] Xiaopeng Yu, Jiechuan Jiang, Wanpeng Zhang, Haobin Jiang, and Zongqing

Lu. 2022. Model-based opponent modeling. Advances in Neural Information
Processing Systems 35 (2022), 28208–28221.

https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972
https://doi.org/10.1109/TG.2023.3273157
https://github.com/hsahovic/poke-env
https://github.com/hsahovic/poke-env


A GAME ANALYSIS

Pokémon VGC is a complex game; there are up to four Pokémon

out at a time, each able to target up to three targets with a move

and potentially terastallize or switch out into up to two benched

Pokémon. Then we can calculate the approximate branching factor

of nondeterminism in Pokémon moves. Calculated loosely, there

are 16 damage rolls for each damaging move, almost always with a

chance to hit normally, fail, land a critical hit, land an additional

effect, or both land a critical hit and an additional effect. If we

only consider these possibilities, there are 16 ∗ 5 = 80 outcomes

for every move used. Also, each Pokémon has 4 total moves they

can use, each of which have a maximum of 3 possible targets. If

terastallization is available, there are

2 · 80 · n_moves · n_targets + n_switches = 2 · 80 · 3 · 4 + 2 = 1922

possible outcomes, and without terastallization there are

80 · n_moves · n_targets + n_switches = 80 · 3 · 4 + 2 = 962

possible outcomes. Thus, in a turn, there is a worst-case branching

factor of approximately

1922
2 · 9622 = 3.419 × 10

12 ≈ 10
12 .

Additionally, we can quantify the worst-case size of a player’s

information set, or the number of indistinguishable states due to

Pokémon VGC’s partial observability. The only unobservables are

the opponent Pokémon’s stats and the 2 bench Pokémon the oppo-

nent selected during team preview. For the latter, there are

(
4

2

)
= 6

possibilities. As for stats, Pokémon stats are determined by a Poké-

mon’s EV’s, IV’s, and natures. There are 25 natures (although 5 are

identical in effect, so we will use 21), 32 possible values for each of

its 6 IV values, and 512 points to distribute over 6 stats for EV values,

with no more than 252 points for each stat. Assuming all EV points

are used and all EV spreads would distribute points to stats that are

divisible by 4, which is reasonable because EV points only affect

stats inmultiples of 4, we can formalize EV spreading as the problem

of distributing 510//4 = 127 units across 6 stats, with the maximum

allocation per stat being 255//4 = 63. We must find the total num-

ber of solutions to the equation 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 = 127,

0 ≤ 𝑥𝑖 ≤ 63 for 1 ≤ 𝑖 ≤ 6. This can be solved using the inclusion-

exclusion principle for bounded integer compositions, and yields

a total count of 246,774,528. We will leave IVs out of the calcula-

tion since most Pokémon are given all 31 points per stat. Thus, the

number of possible realistic stat configurations is

(21 · 246774528)n_mons = 1.937 × 10
58 ≈ 10

58 .

This is the best-case size of the information set if the opponent has

revealed all four Pokémon they chose during team preview; if they

haven’t, then the worst-case size of the information set is

6 · 1.937 × 10
58 = 1.162 × 10

59 ≈ 10
59 .

Let us now attempt a rough count of the total number of possible

team configurations in VGC in Pokémon Scarlet and Violet. With

937 total moves in the game (of which we will approximate about

100 are available in a given Pokémon’s learnset), up to 3 available

abilities for a species, 540 holdable items (of which only 223 are

available in the latest game and are not pokeballs), 2 genders (usu-

ally), as well as the choice of a tera type and stat configurations for

each Pokémon (calculated above to be 21∗246774528 = 5.182×10
9
),

the total number of configurations for a single Pokémon can be

calculated as(
100

4

)
· 3 · 223 · 2 · 19 · 5.182 × 10

9 = 5.166 × 10
20 .

Thus, with approximately 750 species available in the current

games as of the writing of this paper, the total number of team

configurations is(
750

6

)
· (5.166 × 10

20)6 = 4.604 × 10
138 ≈ 10

139 .

In chess and Go, players can only initialize as white or black. In

Texas hold ’em Poker, each player is dealt 2 cards out of a 52-card

deck at the beginning of the game, yielding a total initialization

space of

∏𝑛−1
𝑖=0

(
52−2𝑖
2

)
. Dota has two teams of five players choose

from a total of 126 available heroes, yielding a total configuration

space of

(
126

5

) (
121

5

)
= 4.85 × 10

16 ≈ 10
17
. Finally, Starcraft allows

each of the two players to choose from three available races, as well

as 9 playable maps, yielding 9 ∗ 32 = 81 total configurations.

B ADDITIONAL TABLES

Table 6: Per-Slot Action Space in Doubles Format.Moves have ranges

of length 5 due to all possible targets: slot a self, slot b self, no target,

slot a opponent, slot b opponent.

Index Action Description

-2 Default

-1 Forfeit

0 Pass

1–6 Switch

7–11 Move 1

12–16 Move 2

17–21 Move 3

22–26 Move 4

27–31 Move 1 + Mega Evolve

32–36 Move 2 + Mega Evolve

37–41 Move 3 + Mega Evolve

42–46 Move 4 + Mega Evolve

47–51 Move 1 + Z-Move

52–56 Move 2 + Z-Move

57–61 Move 3 + Z-Move

62–66 Move 4 + Z-Move

67–71 Move 1 + Dynamax

72–76 Move 2 + Dynamax

77–81 Move 3 + Dynamax

82–86 Move 4 + Dynamax

87–91 Move 1 + Terastallize

92–96 Move 2 + Terastallize

97–101 Move 3 + Terastallize

102–106 Move 4 + Terastallize



Table 7: Reinforcement Learning Experiment Configuration.

Hyperparameter Value

Learning Rate 1e-5

Discount Factor (𝛾 ) 1.0

GAE Lambda (𝜆) 0.95

Clip Range 0.2

Entropy Coefficient 0.001

Value Function Coefficient 0.5

Max Gradient Norm 0.5

Number of Steps per Update 24 * 128

Batch Size 64

Number of Epochs 10

Total Timesteps 5,013,504

Table 8: Cross-evaluation Win Rate. 1 team, 1000 games, 100 games

for LLM player, win-rate relative to row player, errors ±0.03.

Algorithm R MBP SH LLM SP FP DO BC BCSP BCFP BCDO

R – 0.068 0.039 0.220 0.007 0.014 0.008 0.053 0.001 0.002 0.012

MBP 0.932 – 0.298 0.660 0.134 0.070 0.116 0.440 0.064 0.050 0.136

SH 0.961 0.702 – 0.820 0.215 0.196 0.229 0.551 0.110 0.091 0.178

LLM 0.780 0.340 0.180 – 0.110 0.080 0.070 0.310 0.020 0.020 0.060

SP 0.993 0.866 0.785 0.890 – 0.587 0.707 0.790 0.229 0.432 0.448

FP 0.986 0.930 0.804 0.920 0.413 – 0.482 0.805 0.229 0.239 0.266

DO 0.992 0.884 0.771 0.930 0.293 0.518 – 0.842 0.203 0.236 0.337

BC 0.947 0.560 0.449 0.690 0.210 0.195 0.158 – 0.048 0.025 0.126

BCSP 0.999 0.936 0.890 0.980 0.771 0.771 0.797 0.952 – 0.510 0.744

BCFP 0.998 0.950 0.909 0.980 0.568 0.761 0.764 0.975 0.490 – 0.556

BCDO 0.988 0.864 0.822 0.940 0.552 0.734 0.663 0.874 0.256 0.444 –

Table 9: Cross-evaluation Win Rate. 4 teams, 1000 games, 100 games

for LLM player, win-rate relative to row player, errors ±0.03.

Algorithm R MBP SH LLM SP FP DO BC BCSP BCFP BCDO

R – 0.079 0.041 0.210 0.016 0.023 0.013 0.036 0.003 0.002 0.007

MBP 0.921 – 0.369 0.760 0.187 0.182 0.176 0.407 0.091 0.094 0.098

SH 0.959 0.631 – 0.750 0.289 0.262 0.302 0.518 0.132 0.143 0.133

LLM 0.790 0.240 0.250 – 0.140 0.060 0.080 0.290 0.060 0.030 0.020

SP 0.984 0.813 0.711 0.860 – 0.513 0.488 0.671 0.246 0.239 0.263

FP 0.977 0.818 0.738 0.940 0.487 – 0.569 0.647 0.273 0.293 0.253

DO 0.987 0.824 0.698 0.920 0.512 0.431 – 0.653 0.222 0.256 0.213

BC 0.964 0.593 0.482 0.710 0.329 0.353 0.347 – 0.130 0.114 0.171

BCSP 0.997 0.909 0.868 0.940 0.754 0.727 0.778 0.870 – 0.523 0.505

BCFP 0.998 0.906 0.857 0.970 0.761 0.707 0.744 0.886 0.477 – 0.522

BCDO 0.993 0.902 0.867 0.980 0.737 0.747 0.787 0.829 0.495 0.478 –

Table 10: Cross-evaluation Win Rate. 16 teams, 1000 games, 100

games for LLM player, win-rate relative to row player, errors ±0.03.

Algorithm R MBP SH LLM SP FP DO BC BCSP BCFP BCDO

R – 0.067 0.052 0.270 0.040 0.037 0.032 0.038 0.010 0.003 0.005

MBP 0.933 – 0.337 0.680 0.310 0.272 0.274 0.361 0.104 0.089 0.084

SH 0.948 0.663 – 0.770 0.413 0.358 0.432 0.478 0.152 0.160 0.147

LLM 0.730 0.320 0.230 – 0.200 0.110 0.140 0.210 0.070 0.080 0.020

SP 0.960 0.690 0.587 0.800 – 0.479 0.474 0.551 0.209 0.208 0.241

FP 0.963 0.728 0.642 0.890 0.521 – 0.486 0.578 0.211 0.232 0.216

DO 0.968 0.726 0.568 0.860 0.526 0.514 – 0.533 0.228 0.215 0.200

BC 0.962 0.639 0.522 0.790 0.449 0.422 0.467 – 0.204 0.191 0.193

BCSP 0.990 0.896 0.848 0.930 0.791 0.789 0.772 0.796 – 0.498 0.481

BCFP 0.997 0.911 0.840 0.920 0.792 0.768 0.785 0.809 0.502 – 0.486

BCDO 0.995 0.916 0.853 0.980 0.759 0.784 0.800 0.807 0.519 0.514 –

Table 11: Cross-evaluation Win Rate. 64 teams, 1000 games, 100

games for LLM player, win-rate relative to row player, error ±0.03.

Algorithm R MBP SH LLM SP FP DO BC BCSP BCFP BCDO

R – 0.081 0.029 0.210 0.054 0.053 0.066 0.050 0.008 0.010 0.006

MBP 0.919 – 0.344 0.670 0.386 0.388 0.407 0.398 0.122 0.127 0.117

SH 0.971 0.656 – 0.790 0.486 0.482 0.490 0.511 0.166 0.173 0.199

LLM 0.790 0.330 0.210 – 0.240 0.120 0.190 0.150 0.060 0.040 0.030

SP 0.946 0.614 0.514 0.760 – 0.512 0.510 0.481 0.169 0.189 0.196

FP 0.947 0.612 0.518 0.880 0.488 – 0.487 0.466 0.198 0.180 0.160

DO 0.934 0.593 0.510 0.810 0.490 0.513 – 0.508 0.197 0.189 0.198

BC 0.950 0.602 0.489 0.850 0.519 0.534 0.492 – 0.231 0.234 0.238

BCSP 0.992 0.878 0.834 0.940 0.831 0.802 0.803 0.769 – 0.554 0.505

BCFP 0.990 0.873 0.827 0.960 0.811 0.820 0.811 0.766 0.446 – 0.469

BCDO 0.994 0.883 0.801 0.970 0.804 0.840 0.802 0.762 0.495 0.531 –


	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Game Mechanics
	2.2 Formalization

	3 Related Work
	3.1 Progress in Game AI.
	3.2 Existing Pokémon AI

	4 VGC-Bench
	4.1 Infrastructure
	4.2 Baseline Implementations
	4.3 Evaluation Methods

	5 Experiments
	5.1 Cross-Play Performance
	5.2 Performance and Generalization Evaluations
	5.3 Exploitability Evaluation
	5.4 Human Evaluation

	6 Conclusion and Future Work
	Acknowledgments
	References
	A Game Analysis
	B Additional Tables

