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ABSTRACT

Developing Al agents that can robustly adapt to varying strategic
landscapes without retraining is a central challenge in multi-agent
learning. Pokémon Video Game Championships (VGC) is a do-
main with a vast space of approximately 10'3° team configura-
tions, far larger than those of other games such as Chess, Go,
Poker, StarCraft, or Dota. The combinatorial nature of team build-
ing in Pokémon VGC causes optimal strategies to vary substan-
tially depending on both the controlled team and the opponent’s
team, making generalization uniquely challenging. To advance re-
search on this problem, we introduce VGC-BENCcH: a benchmark
that provides critical infrastructure, standardizes evaluation pro-
tocols, and supplies a human-play dataset of over 700,000 battle
logs and a range of baseline agents based on heuristics, large lan-
guage models, behavior cloning, and multi-agent reinforcement
learning with empirical game-theoretic methods such as self-play,
fictitious play, and double oracle. In the restricted setting where
an agent is trained and evaluated in a mirror match with a single
team configuration, our methods can win against a professional
VGC competitor. We repeat this training and evaluation with pro-
gressively larger team sets and find that as the number of teams
increases, the best-performing algorithm in the single-team set-
ting has worse performance and is more exploitable, but has im-
proved generalization to unseen teams. Our code and dataset are
open-sourced at https://github.com/cameronangliss/vgc-bench and
https://huggingface.co/datasets/cameronangliss/vgc-battle-logs.
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1 INTRODUCTION

Pokémon is the highest-grossing media franchise in the world, with
an estimated total revenue exceeding $100 billion and a global player
base numbering in the millions. In 2008, the Pokémon Company
launched the Video Game Championships (VGC), a competitive
series of tournaments featuring significant cash prizes and interna-
tional prestige. The largest tournament to date, EUIC 2025, featured
1,257 competitors. Despite this popularity and competitive depth,
to the best of our knowledge, no Al system has yet achieved super-
human performance in competitive Pokémon VGC battles.

Competitive Pokémon presents two tightly-coupled challenges:
team building and team usage. Note that we only address team
usage in this work; team building is left as an open challenge. We
estimate the size of the team configuration space to be on the
order of 10!, vastly exceeding the configuration space of other
benchmark games such as Dota or StarCraft. Because of the discrete
and combinatorial nature of team-building, optimal strategies can
vary dramatically depending on the team compositions of both
the player and opponent. As a result, even expert human players
struggle to generalize strategies across matchups — even when their
own team remains fixed, as is standard in VGC tournaments, but
especially if trying to pilot many different team compositions. Some
teams focus on controlling the weather; some focus on controlling
the speed of Pokémon on the field; some focus on preventing the
opponent’s Pokémon from switching out. There is no well-defined
maximum number of strategic paradigms with which a team can
be built around, and many teams are hybrid, playing to more than
one of these powerful strategies at the same time.

This combination of a vast space of team configurations and
highly diverse team strategies makes Pokémon an especially valu-
able testbed for generalization in Al systems. In the past, research
has been conducted on Pokémon with heuristic and search-based
agents [12, 14, 17], reinforcement learning [11, 18, 23, 29], team
building [19], and predicting the winner at any state [6]. However,
most of the prior work focuses exclusively on the Single Battle
format, where each player sends out one Pokémon at a time. This
setting significantly simplifies the underlying decision space: in
contrast, the official Pokémon VGC tournaments use Double Battle
format, which involves two active Pokémon per side, leading to a
combinatorial explosion in possible actions and interactions and
more challenging learning.
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Figure 1: VGC-BencH Overview. VGC-BENCH captures the multi-agent multi-team dynamics with PettingZoo integration, provides
human-play datasets and a range of baselines, and standardizes evaluation protocols.

In this work, we present VGC-BENCH, a benchmark designed to
evaluate Al generalization in Pokémon VGC. Our contributions in-
clude infrastructure for multi-agent learning and human-play data
collection, including a dataset of over 700,000 open team sheet VGC
battle logs; a suite of competitive baselines, covering multi-agent
RL, behavior cloning, using a language model, and heuristic agents;
and robust evaluation tools for performance, generalization, ex-
ploitability, and human interaction. In the restricted setting where
an agent is trained and evaluated on a single-team configuration,
our methods are able to win against a professional VGC competitor.
We then extend evaluation to broader multi-task settings involv-
ing diverse team configurations. While existing methods can learn
competent policies in narrow conditions, they exhibit notable per-
formance degradation as team diversity increases. These findings
underscore the need for more generalizable learning algorithms in
multi-agent, multi-task environments like VGC.

Furthermore, as part of our work, we contributed significant
open-source contributions to Poke-env [20], a widely used library
that has supported prior research in Pokémon Al. Our contribu-
tions include full integration with the PettingZoo [25] multi-agent
framework, extended support for VGC and doubles formats, and
many bugfixes to correct battle tracking and more. We expect that
these enhancements will enable and encourage more accessible and
rigorous experimentation, further advancing Al research in this
domain.

2 PROBLEM FORMULATION

2.1 Game Mechanics

Pokémon VGC is a team-based competitive game with stochastic
dynamics, simultaneous move selection, and a vast configuration
space of possible teams. In the VGC format, each player assembles a

team of 6 Pokémon, with each Pokémon configured by customized
individual stats, up to 4 moves, a passive ability, a Tera type, and
potentially a held item. A Tera type is a gimmick mechanic spe-
cific to generation 9 of Pokémon which defines a type (i.e. grass,
fire, water) that a Pokémon can overwrite their default types to
for the rest of the battle. Players can only terastallize a Pokémon
once per battle, and is commonly used defensively to avoid being
super-effectively hit by an attack, but can also be used offensively
to boost the damage of moves of the same type. The VGC format is
entirely set in double battles, where players deploy up to 2 Pokémon
on the field at a time. Recent tournaments adopt Open Team Sheets
(OTS), a modification on the VGC format that reveals nearly all
aspects about the opponent’s team — such as moves, items, abili-
ties, and Tera types — while leaving the precise underlying stats
concealed. Each match begins with a Team Preview phase, during
which players simultaneously select 4 out of their 6 Pokémon to
bring into the battle. The first two chosen are sent out at the start
of the match, while the other two remain in reserve and can be
switched in as the battle progresses. Once the battle begins, both
players issue commands independently and simultaneously each
turn, and only after the players have locked in their decisions do
the battle mechanics determine the order of events for that turn.
Generally, Pokémon switch out before moves are performed, and
the execution order of moves is usually determined by the speed
stats of the acting Pokémon, with speed ties broken randomly. The
objective is to knock out all of the opponent’s Pokémon by reducing
their HP to zero before your own team is eliminated.

Several factors make VGC particularly challenging for Al agents
(see Appendix A for calculation of values presented here):

(1) Combinatorial Team Configurations: The team configura-
tion space in Pokémon VGC is large. With hundreds of Pokémon
species, moves, items, and abilities, 19 possible Tera types per



Pokémon, and a high-dimensional space of possible stat alloca-
tions, we estimate the total number of valid team configurations
to be approximately 10'3°. This combinatorial space far exceeds
that of many other strategic games (see Table 1 for comparison).
Stochastic Battle Mechanics: Move outcomes in VGC involve
randomness in damage and secondary effects (e.g., 10% chance
to paralyze). This results in a large branching factor per turn,
which we approximate to be at times as large as 1012.
Partial Observability: Even with OTS, Pokémon VGC remains
a partially observable game as the opponent’s stats are not
revealed. We estimate that the size of the information set - the
set of all possible states given a partial observation of the game
~ is lower-bounded at approximately 10°%.
(4) Simultaneous and Multi-Agent Actions: Pokémon VGC is a
simultaneous game that requires up to four Pokémon to make
a decision at the same time. This game feature introduces non-
stationarity and pose challenges to accurate credit assignment
during policy optimization. For example, suppose both of a
player’s Pokémon target the same opponent Pokémon, and one
of them uses a move the target is immune to, but the other
knocks the Pokémon out in one hit. In this case, assuming the
Al only observes the game state before and after the turn, the
Al could never know which Pokémon caused the knock out.
(5) Team Preview Strategy and Generalization: Pokémon VGC
features a unique challenge: only four of the six team members
are used in each battle. This introduces a mini team-selection
problem, where the player must pick the most effective sub-
team against the opponent’s lineup. This single decision can
drastically alter the dynamics of the battle, and with a total of
(g) . (g) = 90 possible team preview decisions for each player,
effective exploration and generalization are especially challeng-
ing.
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2.2 Formalization

We model each Pokémon battle as a two-player zero-sum partially
observable stochastic game (POSG) with randomized team config-
urations. Let C denote the finite set of legal team configurations
and U(C) denote the uniform distribution over those team config-
urations. At the start of each episode, players independently and
uniformly sample c1, ¢c; ~ U(C), which instantiates

G(cr,c2) = (S, {0i}, {Ai}, T, R c1,c2).

Here, S is the full battle state (HP, status, weather, stat boosts, etc.),
O; C Sisplayer i’s observation, A; the action set (switching, move
selection, targeting, terastallization), 7 (s’ | s, a1, az) the stochastic
transition function, and R(s7) € {—1, 1} the terminal reward for
player 1.

Given policies 71, r2 mapping observations to action distribu-
tions, the distribution of trajectories initialized with team configu-
rations c1, ¢ can be defined as

T-1

Tepe, (m1,m2) = [ | m(al | oh)ma(al | o) T (s | ', al,ah). (1)
t=0

The expected return for player 1 over all team draws is
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Figure 2: Pokémon Showdown Gameplay. Closer Pokémon
are on the agent’s side, and farther Pokémon are on the op-
ponent’s side. 1) Pokémon’s health bar with percentage of
current health remaining. 2) Current status of all party mem-
bers, with solid colors for revealed, translucent colors for
unrevealed, and greyed-out colors for fainted. 3) Effects on
Pokémon, including boosts and status conditions. 4) Active
side conditions and global fields/weather with a number of
turns remaining. 5) Active Tera type being used by Pokémon.

Since the game is zero-sum, the equilibrium in expectation over
configurations is

(nfq, ﬂ;q) =arg rrilgx arg n’,ll_lzn V (1, m2). 3)

This formalism captures our objective: to find robust policies that
perform well on average against all possible opposing team draws
in the configuration space.

3 RELATED WORK
3.1 Progress in Game Al

Early AI milestones focused on perfect-information games like
Chess and Go, where IBM’s Deep Blue and DeepMind’s AlphaGo
achieved superhuman performance through massive search and
pattern recognition [5, 22]. Poker introduced reasoning under par-
tial observability and uncertainty, with Libratus defeating top hu-
mans in no-limit Texas Hold’em [4]. Recent work shifted to more
complex multi-agent games: AlphaStar reached grandmaster in
StarCraft II by population-based reinforcement learning [28] and
OpenAl Five mastered Dota 2 with limited hero drafting [2]. In
contrast, Pokémon VGC offers a unique challenge that combines
partial observability, stochasticity, simultaneous actions, and a com-
binatorially vast team configuration space larger than any prior
benchmarked game (see Table 1).

3.2 Existing Pokémon Al

3.2.1 Heuristic and Search-Based Agents. Early Pokémon Al work
relied on handcrafted rules and search. Lee and Togelius (2017)
introduced the Showdown AI Competition, a benchmark based on
a clone of Pokémon battles [14]. They highlighted that Pokémon
battles involve turn-based team combat with partial observability, a
challenging setup uncommon in prior Al competitions. Huang and
Lee (2019) note that before DRL, most agents used expectimax or



Table 1: Configuration space comparison of benchmark
games versus Pokémon VGC. Calculations for numbers can
be found in section A.

Game Init. Config. Space
Chess 2
Go 2
52y (50 34\ 1029
Poker (10 players) ()(%) - (5) =10
StarCraft I (3 races)? Plavers . (9 maps) = 81
2%126\ (2x121
Dota 2 ( 5 )( 5 ) ~ 102
Pokémon VGC ~ (10139)2 players _ 1278

minimax search with learned evaluations. Panumate and Iida (2016)
built a simplified Generation-1 battle simulator and implemented
four heuristic Als (Random, Attack, Smart-Attack, Smart-Defense)
to simulate and balance Pokémon gameplay [17]. These simple bots
modeled human behavior and were used to study “comfortable”
game settings using game-refinement theory. In short, these studies
demonstrate that search-based and rule-based methods can yield
modest performance in Pokémon battles, but they often struggle
with the game’s huge state space and complexity. Karten, Nguyen,
and Jin (2025) made PokeChamp, an agent that plays Pokémon
battles with a minimax search algorithm enhanced with an LLM
(large language model). The LLM performs player action sampling,
opponent modeling, and value function estimation, and achieves
state-of-the-art LLM performance in the Gen 9 OU format [12].

3.2.2  Reinforcement Learning Approaches. More recent work has
applied deep RL to Pokémon. Huang and Lee [11] trained a deep
PPO agent via self-play for singles battles. Their approach requires
no handcrafted simulator and succeeds on the nondeterministic,
partially-observable Pokémon game, yielding a policy on par with
state-of-the-art search agents and competitive with human ladder.
Simoes et al. [23] similarly used deep RL on a Pokémon battling
simulator (using the Poké-env gym interface) to learn competitive
play. Wang [29] used DRL with PPO and augmented with parallel
MCTS to train an Al agent to play Gen 4 random battles at an
expert human level. Pleines et al. [18] took this further by tackling
Pokémon Red, an open-world RPG. They wrapped an emulator in an
OpenAl Gym and trained a PPO agent to reach Cerulean City. Their
experiments revealed that naive reward shaping can be exploited
(e.g. agents skip intermediate challenges if badges give reward),
and they underscore the exploration and multi-tasking challenges
in Pokémon games. In summary, DRL (especially policy-gradient
methods like PPO) has shown promise for learning Pokémon battle
strategies from experience, achieving competitive performance
without explicit simulators.

3.2.3 Team Building and Metagame Analysis. Building a strong
team is crucial in Pokémon. Reis et al. [19] automated team con-
struction under a metagame framework. They set up an adversarial
model with two agents: a “team builder” that evolves six-Pokémon
teams to maximize win-rate, and a “balancer” that adjusts base
stats or move sets to encourage diversity in the meta. The team
builders use evolutionary or linear optimization to exploit current

metagames, while the balancer nudges them to try underused Poké-
mon. This adversarial setup iteratively yields balanced meta-teams.

3.24 Other Machine Learning Approaches. Some studies use super-
vised learning on Pokémon data. For example, Charde [6] trained
machine learning models to predict the winner of a Pokémon Show-
down battle given the game state. This suggests that supervised
classifiers can capture strategic patterns.

4 VGC-BENCH

This section introduces VGC-BENCH, a comprehensive benchmark
built on top of poke-env [20]. VGC-BENCH provides users with
(1) infrastructure for multi-agent learning and human-play data
collection, (2) a diverse suite of baselines, and (3) robust evaluation
tools for performance, generalization, exploitability, and human

play.

4.1 Infrastructure

Multi-Agent Environment. We integrate poke-env with Petting-
Zoo [25] to support parallelized population-based and PSRO-style
multi-agent learning [13] for both players and support the VGC
format. To support more controlled training settings, we introduce
two toggles: one to exclude the team preview phase and another
to disable mirror matches. Disabling team preview skips that stage
from the agent’s perspective, initializing each game with a random
team preview decision — potentially encouraging policy exploration
in any team preview situation. Disabling mirror matches prevents
an agent from facing the same team configuration during training,
which is useful when evaluating a specific matchup between two
distinct team configurations. Finally, we provide users with a team
scraper that collects high-performing teams in real tournaments
from VGCPastes [1].

Observation Space. The default observation encodes information
for each of the 12 Pokémon (6 per player) using a mixture of discrete
(e.g., Pokémon type) and continuous (e.g., HP) features. Let g be
the global features (e.g., weather), s the side-specific features (e.g.,
light screen), and p the per-Pokémon features. Each Pokémon is
represented as a concatenation of p, its side’s s, and the global g
vector, giving a vector of size g + s + p. The overall observation is
shaped as 12 X (g + s + p). If frame stacking is used with n frames,
the observation becomes n X 12 X (g + s + p).

Action Space. We represent actions in the VGC format as a joint
action space, since each turn in doubles matches requires an action
for each of the two active Pokémon. The action space is enumerated
in Table 6. Each Pokémon has 107 available actions, which captures
the full space of switching in benched Pokémon and using moves,
where moves involve which move is being picked, the intended
target, and whether or not the Pokémon is terastallizing (or using
another available gimmick). We also unify the team preview action
of the battle with the action space for the rest of the battle by simply
modeling team preview as two joint "switch-in" actions in a row,
providing two Pokémon per joint action for a total of four Pokémon
to make the team preview decision.

Human-Play Data Collector. To facilitate large-scale imitation
learning from human players, we provide a parallel data collection



pipeline for scraping and parsing Gen 9 VGC battle replays from
Pokémon Showdown. With the current number of available replays
from Pokémon Showdown, we are able to amass over 700,000 OTS-
enabled VGC games. Due to the neutral perspective of battle logs
and its purely transitional messages, reconstructing a trajectory of
game states cannot be done perfectly. However, because we filter
for only OTS-enabled battle logs, we can derive well-approximated
states and actions from the logs by replaying the transitions through
our environment. Our log reader also has configurable filters to
only read logs of players with ratings above a threshold and only
the winner of the battle.

4.2 Baseline Implementations

VGC-BENCH implements a total of 11 baseline agents: three heuristic
agents, an LLM agent, a behavior cloning model (BC), a self-play
RL agent (SP), a fictitious play RL agent (FP), and a double oracle
RL agent (DO), as well as fine-tuning the agent initialized with the
BC policy’s parameters using SP, FP, and DO (BCSP, BCFP, BCDO).

4.2.1 Trained Baselines.

Behavior Cloning. We train a behavior cloning (BC) policy [7]
to match the distribution of human actions given a state from the
dataset D collected by the human play data collector, without the
use of our rating or winner-based data filters. The parameterized
policy 7y is trained to imitate human decision-making by minimiz-
ing the negative log-likelihood of the demonstrated actions:

mgin E(S,Q)NDRszin [_ log ”9(a|3)]

Multi-Agent Reinforcement Learning. We employ an actor-critic
implementation of Proximal Policy Optimization (PPO) [21] to train
all reinforcement learning agents. For agents to approach the de-
sired minimax solution of the game via RL, we implement three
multi-agent training paradigms from the unified empirical game-
theoretic framework [13] on top of RL: self-play, fictitious play, and
double oracle [15]. In self-play (SP), the agent trains against itself.
The fictitious play (FP) variant maintains a pool of the agent’s
past checkpoints, and the agent learns against a uniform distribu-
tion of its past selves, resampling the opponent policies after every
experience-gathering period. We take the final response policy to
the policy pool as the method’s output. Double oracle (DO) differs
from FP in that it derives the Nash equilibrium distribution from a
maintained empirical payoff matrix between all agents in the pool,
and uses that distribution to sample opponents. We solve the Nash
distribution by solving a linear programming problem because of
the game’s two-player, zero-sum, and symmetric-payoff nature. Fu-
ture work could employ more complex meta-game solvers with the
Policy Space Response Oracle [13]. We also implement baselines
that fine-tune the policy from the BC-trained parameters (BCSP,
BCFP, BCDO). Each method is trained with the same number of
training teams and interaction timesteps. The hyperparameters for
RL used for all PPO methods (details in Table 7) were tuned to serve
as a reasonable starting point for future work.

Policy and Value Network Architecture. All the policy networks
used across the learning baselines embed each agent’s moves, items,
and abilities into latent representations, and then use an additional

aggregation token and a 3-layer Transformer encoder [27] to aggre-
gate the information of 12 Pokémon (6 from the agent’s team and
6 from the opponent’s team) in the field. When frame stacking is
enabled, we use a second Transformer encoder along the time axis,
apply a positional encoding, and use causal masking to process the
historical information and only use the logits from the last frame.
The output of the Transformer encoder is then projected to the
size of the action space by a linear layer into the logits before the
softmax layer. The logits at the invalid actions are masked by —co.
We also handle interdependent action constraints, such as ensuring
that both Pokémon do not switch into the same replacement. For
reinforcement learning methods, we adopt an actor-critic imple-
mentation without parameter sharing, though they share the same
network architecture.

4.2.2 Other Baselines.

LLM Agent. We also provide a basic LLM agent that uses Meta-
Llama-3.1-8B-Instruct [8]. Each turn, the battle state is converted
into a prompt that is then fed into the agent along with an available
action space, instructions on how to construct a valid action, and the
required format of its response. If the LLM agent does not respond
in the correct format, the agent selects a random action. Note that
the LLM agent was not thoroughly researched; we acknowledge
that it is possible to make a stronger LLM agent with tool use and
other techniques [12]. However, this LLM agent baseline provides
a reasonable starting point on which research can be conducted.

Heuristic Agents. From poke-env, we inherit 3 rule-based base-
lines: RandomPlayer, MaxBasePowerPlayer, and SimpleHeuris-
ticsPlayer [20]. The RandomPlayer plays random moves every
turn, the MaxBasePowerPlayer greedily chooses the highest-power
move from the available options every turn, and the SimpleHeuris-
ticsPlayer has a hard-coded weighted sum of multiple heuristics
to select the best move based on the heuristic scores, which con-
siders information such as current HP of the active Pokémon, type
matchup viability, accuracy, power of its moves, etc. We extend
SimpleHeuristicsPlayer so that it can also play double battles for
the VGC format.

4.3 Evaluation Methods

VGC-BENCcH provides multiple methods of evaluation, including
cross-evaluation of agents, Alpha-Rank [16] for ranking agents
based on their cross-evaluation performance, training an exploiter
policy against an agent to lower-bound the agent’s worst-case lose-
rate, and evaluating agents over varying team set sizes with the
performance and generalization tests.

Let C be the set of team configurations used for evaluation
and U(C) be the uniform distribution of those teams. The cross-
evaluation of a pair of policies (73, 7j) € II x II from the policy
poolIT, where 1 < i < |II|, 1 < j < |II|,and i # j, can be defined as

CTOSSPIaY(ﬂi, Tj, C)= Ecl,cz~'LI(C) ET~1",_.L,_.2 (7i,7j) [R(sp)]|, (4)

where 1 controls team c1, 73 controls team ¢y, and the distribution
of trajectories I is defined in Equation 1. Alpha-Rank [16] provides a
way of transforming this cross-play matrix into an ordered ranking
of policies, allowing us to determine a best policy among a pool.



The combination of these evaluation primitives enables insight
into agent performance, generalization, and exploitability.

(1) Performance can be tested by cross-playing agents with teams
that every agent had experience with during training. Ideally,
as you train agents with more teams, performance would min-
imally decrease on an individual team basis against agents
trained with fewer teams. We define Ci as the set of teams
configurations that policy 7 was trained on; the evaluation set
of teams Cgy,] is constrained by

I}
Ceval = m Cr» (5)
k=1

(2) Generalization can be tested by cross-playing agents with
teams that none of them experienced during training; how
much an agent trained on more team configurations surpasses
those trained on fewer configurations reflects its generalization
ability. We constrain the evaluation set of teams Cey4) by

Ceva 0 |_J Ck = 0. ©)
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Exploitability can be tested by approximating a best response
policy, BR(), against the agent to be evaluated via RL training
and measuring the highest win rate that the best response can
achieve [26]. Whatever maximum win rate the exploiter agent
achieves over a sufficiently large number of training steps serves
as our exploitability measurement for our agent. We formally
define the exploitability of the agent as

exp(71, Ceval) = crossplay (BR(x), 7, Ceval)- ™

5 EXPERIMENTS

To encourage research in Pokémon VGC, we gather preliminary re-
sults interrogating 2 main research questions. In sections 5.2 and 5.3,
we investigate how performance, generalization, and exploitability
scale as the training team size increases. In section 5.4 we see if it is
possible to use standard RL methods to create an Al agent that plays
at a human expert level for the one-team setting. All experiments
are conducted on a cluster with 8 A40 GPUs and 2 Intel(R) Xeon(R)
Gold 6342 CPU @ 2.80GHz.

5.1 Cross-Play Performance

For all agents that fine-tuned with RL, we did training runs with
team set sizes of 1, 4, 16, and 64. For each team set size, we compare
our 6 RL baseline agents, the BC agent, 3 rule-based players, and
our LLM agent (all described in section 4.2) through cross-play in
Figure 3. Each win-rate entry of the cross-play matrix is calculated
with 1000 episodes with uniformly drawn teams for each game
played, except for the LLM player, which was evaluated with 100
episodes due to the LLM’s relatively slow inference. These 1000
episodes equally evaluate across 5 training seeds for all learning
methods. For each seed, a different set of teams is selected for the 1,
4, 16, and 64-team settings, and these team sets are always perfectly
nested so that, for example, all teams from the 16-team setting of
a given seed are included in the 64-team setting of that seed. All
cross-evaluations have win-rates relative to the row players, with
errors of approximately +0.03 for 1000-game evaluations, and +0.10

for the LLM player’s 100-game evaluations. For numerical win rates,
see Tables 8, 9, 10, 11 in Appendix B.

Notice that as the number of teams increases, the heatmaps
become progressively less noisy. We hypothesize that this is likely
caused by (1) all of our learning methods noticeably degrading in
performance for larger team set sizes, and (2) results being averaged
over larger numbers of matchups reducing matchup-specific biases
in the evaluation.

Table 2: Alpha-Rank Results. This table contains a relative ranking
of each baseline agent featured in VGC-BENCcH. Each agent is only
compared with other agents that trained with the same number of
teams.

1Team 4 Teams 16 Teams 64 Teams

R 11 9 11 11
MBP 9 7 9 9
SH 7 5 8 7
LLM 10 8 10 10
SP 4 4 6 4
FP 6 4 5 8
DO 5 4 4 5
BC 8 6 7 6
BCSP 1 1 3 1
BCFP 2 2 2 3
BCDO 3 3 1 2

It is clear from Figure 3 and Table 2 that while non-BC methods
achieve decent performance, they are generally outperformed by
methods initialized with BC. Self play seems to be the most reliably
high-performance method in the 1 team setting, but we note that
the performance differences between the BC methods for the 4, 16,
and 64 team set sizes are negligible.

5.2 Performance and Generalization
Evaluations

We then measure performance and generalization as described in
section 4.3. We used the highest overall ranked agents from our
Alpha-Rank evaluation in the 1, 4, 16, and 64-team settings for this
evaluation; Table 3 shows that as the size of the set of teams used
during training increases, the performance of the Al agent on any
one team decreases considerably and consistently. These results
indicate that our agent does not pass the performance test even
for relatively small n < 64, highlighting the central challenge that
Pokémon VGC poses to the Al community. To test generalization,
we used 72 out-of-distribution teams and compared agents across
team set sizes via cross-play. In Table 4, we can see that our agent
exhibits generalization since win rate increases moderately as n
increases.

In order to solidify the validity of our generalization results, we
also calculate statistics regarding the similarity of the 72 teams we
set aside during training with the upper bound of 64 teams used
during training in Table 5. We measure team similarity on a scale
of 0 to 1, taking into account matching species between teams,
and among those matching species, whether they have the same
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Figure 3: Cross-Play Win Rate Heatmaps for varying team set sizes.

Table 3: Performance Test. Each matchup evaluated for 1000 games,
with errors +0.03.

#Teams  1(BCSP) 4 (BCSP) 16 (BCDO) 64 (BCSP)
1 (BCSP) - 0.699 0.74 0.698

4 (BCSP 0.301 - 0.594 0.672
16 (BCDO)  0.26 0.406 - 0.644
64 (BCSP) 0302 0.328 0.356 -

Table 4: Generalization Test. Each matchup evaluated for 1000 games,
with errors +0.03.

#Teams  1(BCSP) 4 (BCSP) 16 (BCDO) 64 (BCSP)
1 (BCSP - 0.405 0.375 0331

4 (BCSP) 0.595 - 0.453 0.422
16 (BCDO)  0.625 0.547 - 0.436
64 (BCSP)  0.669 0.578 0.564 -

item, moves, ability, Tera type, and stat configurations. We ensure
that no two teams are fully identical, and assert that the average
similarity being about 0.5 across all training seeds firmly grounds
the Generalization Test as a legitimate experiment.

Table 5: Team Similarity Score Statistics. Comparison between the
< 64 seen teams and the 72 unseen teams.

Run Mean Median Min Max

0.508 0.513 0.268 0.946
0.522 0.526 0.221 0.947
0.530 0.524 0.221 0.948
0.557 0.554 0.260 0.947
0.526 0.526 0.238 0.948

s W N =

5.3 Exploitability Evaluation

We measured the exploitability of the strongest agent according
to the Alpha-Rank evaluation from each of our team set sizes as
described in section 4.3. This evaluation was averaged across the

agents from all 5 training seeds, and all exploiter agents were trained
on the same team configuration from the 1-team setting, regardless
of how many teams the agent being exploited experienced during
training. We tested exploitability by initializing the exploiter with
a random initialization in Table 4 and with the pre-trained BC
policy in Table 5. In almost all cases, all agents are approximately
100% exploitable, although the best agent in the 1-team setting
does exhibit notably stronger resistance to exploitation when the
exploiter agent is randomly initialized.

Randomly-Initialized Exploiter

1.04
0.8 1
3
5 0.6
e
é 0.4 —— 1 team
—— 4 teams
0.2 1 —— 16 teams
—— 64 teams
0.0 1
0 1 2 3 4 5
Timesteps le6

Figure 4: An exploiter agent initialized randomly trains to exploit
the strongest agent as determined in Table 2.

5.4 Human Evaluation

After measuring Alpha-Rank ratings and evaluating performance
across team set sizes, we tested our most performant agent in the
most performant team set size — the behavior cloning agent fine-
tuned with self-play in the 1-team setting — against an intermediate,
advanced, and expert player. Our expert player was Aaron Traylor,
a multi-time competitor in the World Championships and the 2020
Dallas Regional Champion. All 3 human testers were instructed to
try to find a way to exploit the Al system over 5 consecutive games
and encouraged to think for as long as they needed to. Against the
intermediate player, our agent won all 5 matches, and against the
advanced player, the agent won 2 out of 5 total matches played. In-
deed, our agent was even able to win against the expert-level player.
To the best of our knowledge, our agent is the first Al system to
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Figure 5: An exploiter agent initialized as the behavior cloning
agent trains to exploit the strongest agent as determined in Table 2.

achieve such a feat. We received feedback that although the agent
is strong on initial play, it does have noticeable dips in performance
in certain states. After enough successive games, strong human
players can adapt and beat the agent. Please note that these hu-
man evaluations are intentionally anecdotal; more comprehensive
human evaluation should be conducted before reaching stronger
conclusions based on these results.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced VGC-BENCH, a benchmark designed to
evaluate the generalization capabilities of Al agents in the challeng-
ing and combinatorially complex environment of Pokémon VGC.
Our benchmark includes standardized evaluation protocols, a mod-
ular training pipeline, curated human gameplay data, and imple-
mentations of a broad set of baseline methods ranging from behav-
ior cloning and reinforcement learning with game-theoretic algo-
rithms like self-play, fictitious play, and double oracle, the strongest
of which was able to win against a past World Championships
competitor. We also contributed substantial improvements to the
Poké-env library, including integration with PettingZoo and envi-
ronment support for VGC formats, thereby enabling easy adoption
by the broader research community.

Through extensive experiments, we demonstrated that while
current algorithms can attain strong performance in the single-
team setting, they degrade significantly when scaling to multi-team
generalization — highlighting a key open challenge in multi-agent
learning. By providing a reproducible benchmark and uncovering a
difficult generalization frontier, our work establishes a foundation
for future progress in robust multi-agent policy learning.

Looking forward, we identify five major research directions en-
abled by VGC-BENCH:

(1) Generalization to n Teams, n > 1: Our current agents achieve
strong performance in the single-team setting but struggle as
the number of teams in training increases. A natural extension
is to develop agents that can generalize across team matchups
without having performance degrade, and ultimately perform at
a superhuman level across arbitrary teams without needing to
retrain. Researchers can use the experiments in Tables 3 and 4
to assess progress on this front.

(2) Team Building: A strong VGC agent could be used to evalu-
ate candidate teams and provide a reward signal for searching
the vast team configuration space. While such work would be
downstream of generalization, our current agents may already
offer a useful starting point for this line of research.

Search: With an accurate and fast simulator, one could model
future positions of the game to make more well-informed de-
cisions [3, 24]. The benefits of model-based techniques could
be bountiful in the domain of Pokémon VGC, as it gives the
agent a way to understand how the individual actions of each
active Pokémon on the field contribute to the resulting state. In
fact, we suspect that much of the difficulty of achieving strong
performance across a large set of teams with model-free RL
may be that the complexity of predicting future outcomes of
the game simply can’t fit into the deep neural network. Past
work in Pokémon suggests that search has significant poten-
tial [11, 12, 29], but active work is ongoing to create a highly
accurate, fast, and open-source simulator.

Opponent Modeling: One could incorporate explicit opponent
modeling to infer latent properties of the opposing strategy,
such as playstyle, risk tolerance, and long-term tactical intent.
By predicting how an opponent is likely to act — or which
strategic archetype they belong to — an agent can dynamically
adapt its policy rather than treating all opponents as identically
optimal or uniformly random [9, 31]. It may be a good idea to
start the opponent model out as a behavior cloning agent from
human data and attempt to converge to the opponent’s style as
the game plays out, effectively adapting to the opponent in real
time from a reasonable starting guess.

Latent Variable Behavior Cloning: Future work could use
latent variable imitation learning, enabling the behavior cloning
agent to model diverse human play-styles rather than collapsing
behavior into a single averaged policy, which could improve
its strength by making its play more cohesive and consistent
[10, 30].
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A GAME ANALYSIS

Pokémon VGC is a complex game; there are up to four Pokémon
out at a time, each able to target up to three targets with a move
and potentially terastallize or switch out into up to two benched
Pokémon. Then we can calculate the approximate branching factor
of nondeterminism in Pokémon moves. Calculated loosely, there
are 16 damage rolls for each damaging move, almost always with a
chance to hit normally, fail, land a critical hit, land an additional
effect, or both land a critical hit and an additional effect. If we
only consider these possibilities, there are 16 * 5 = 80 outcomes
for every move used. Also, each Pokémon has 4 total moves they
can use, each of which have a maximum of 3 possible targets. If
terastallization is available, there are

2-80 - n_moves - n_targets + n_switches =2-80-3-4+2 = 1922
possible outcomes, and without terastallization there are
80 - n_moves - n_targets + n_switches = 80 -3 - 4 + 2 = 962

possible outcomes. Thus, in a turn, there is a worst-case branching
factor of approximately

19222 . 9622 = 3.419 x 10'? ~ 10'2.

Additionally, we can quantify the worst-case size of a player’s
information set, or the number of indistinguishable states due to
Pokémon VGC’s partial observability. The only unobservables are
the opponent Pokémon’s stats and the 2 bench Pokémon the oppo-
nent selected during team preview. For the latter, there are (‘21) =6
possibilities. As for stats, Pokémon stats are determined by a Poké-
mon’s EV’s, IV’s, and natures. There are 25 natures (although 5 are
identical in effect, so we will use 21), 32 possible values for each of
its 6 IV values, and 512 points to distribute over 6 stats for EV values,
with no more than 252 points for each stat. Assuming all EV points
are used and all EV spreads would distribute points to stats that are
divisible by 4, which is reasonable because EV points only affect
stats in multiples of 4, we can formalize EV spreading as the problem
of distributing 510/ /4 = 127 units across 6 stats, with the maximum
allocation per stat being 255//4 = 63. We must find the total num-
ber of solutions to the equation x1 + x2 + X3 + x4 + x5 + X = 127,
0 < x; <63 for1 < i< 6. This can be solved using the inclusion-
exclusion principle for bounded integer compositions, and yields
a total count of 246,774,528. We will leave IVs out of the calcula-
tion since most Pokémon are given all 31 points per stat. Thus, the
number of possible realistic stat configurations is

(21 - 246774528)"-T°0 = 1 937 x 10°® ~ 108,

This is the best-case size of the information set if the opponent has
revealed all four Pokémon they chose during team preview; if they
haven’t, then the worst-case size of the information set is

6-1.937 x 10°® = 1.162 x 10°° ~ 10°°.

Let us now attempt a rough count of the total number of possible
team configurations in VGC in Pokémon Scarlet and Violet. With
937 total moves in the game (of which we will approximate about
100 are available in a given Pokémon’s learnset), up to 3 available
abilities for a species, 540 holdable items (of which only 223 are

available in the latest game and are not pokeballs), 2 genders (usu-
ally), as well as the choice of a tera type and stat configurations for

each Pokémon (calculated above to be 21 % 246774528 = 5.182x 10°),
the total number of configurations for a single Pokémon can be

calculated as

100 9 20
4 ©3-223-2-19-5.182 X 107 =5.166 X 10“".

Thus, with approximately 750 species available in the current
games as of the writing of this paper, the total number of team
configurations is

750
( . ) - (5.166 x 1020)° = 4.604 x 10138 ~ 101%.

In chess and Go, players can only initialize as white or black. In
Texas hold ’em Poker, each player is dealt 2 cards out of a 52-card
deck at the beginning of the game, yielding a total initialization
space of ]_[;7:_01 (52;2i). Dota has two teams of five players choose
from a total of 126 available heroes, yielding a total configuration
space of (156) (121) = 4.85 X 101° ~ 10'7. Finally, Starcraft allows
each of the two players to choose from three available races, as well
as 9 playable maps, yielding 9 * 3% = 81 total configurations.

B ADDITIONAL TABLES

Table 6: Per-Slot Action Space in Doubles Format. Moves have ranges
of length 5 due to all possible targets: slot a self, slot b self, no target,
slot a opponent, slot b opponent.

Index | Action Description
-2 Default
-1 Forfeit
0 Pass

1-6 Switch

7-11 Move 1

12-16 Move 2

17-21 Move 3

22-26 Move 4

27-31 | Move 1 + Mega Evolve
32-36 | Move 2 + Mega Evolve
37-41 | Move 3 + Mega Evolve
42-46 | Move 4 + Mega Evolve
47-51 Move 1 + Z-Move
52-56 Move 2 + Z-Move
57-61 Move 3 + Z-Move
62—-66 Move 4 + Z-Move
67-71 | Move 1 + Dynamax
72-76 | Move 2 + Dynamax
77-81 Move 3 + Dynamax
82-86 | Move 4 + Dynamax
87-91 Move 1 + Terastallize
92-96 | Move 2 + Terastallize
97-101 | Move 3 + Terastallize
102-106 | Move 4 + Terastallize




Table 7: Reinforcement Learning Experiment Configuration.

Table 8: Cross-evaluation Win Rate. 1 team, 1000 games, 100 games

Hyperparameter Value
Learning Rate le-5
Discount Factor (y) 1.0
GAE Lambda (1) 0.95
Clip Range 0.2
Entropy Coefficient 0.001
Value Function Coefficient 0.5
Max Gradient Norm 0.5
Number of Steps per Update 24 * 128
Batch Size 64
Number of Epochs 10
Total Timesteps 5,013,504

for LLM player, win-rate relative to row player, errors +0.03.

Algorithm R MBP SH LLM SP FP DO BC BCSP BCFP BCDO
R - 0.068 0.039 0.220 0.007 0.014 0.008 0.053 0.001  0.002 0.012
MBP 0.932 - 0.298 0.660 0.134 0.070 0.116 0.440 0.064  0.050 0.136
SH 0.961 0.702 - 0.820 0.215 0.196 0.229 0.551 0.110  0.091 0.178
LLM 0.780 0340  0.180 - 0.110  0.080 0.070 0.310 0.020  0.020 0.060
sp 0.993 0.866 0.785 0.890 - 0.587 0.707 0.790 0.229  0.432 0.448
FP 0.986 0.930 0.804 0.920 0.413 - 0482 0.805 0.229  0.239 0.266
DO 0.992 0.884 0.771 0.930 0.293 0.518 - 0.842  0.203  0.236 0.337
BC 0.947 0.560 0.449 0.690 0.210 0.195 0.158 - 0.048  0.025 0.126
BCSP 0.999 0936 0.890 0.980 0.771 0.771 0.797 0.952 - 0.510 0.744
BCFP 0.998 0.950 0.909 0.980 0.568 0.761 0.764 0.975 0.490 - 0.556
BCDO 0.988 0.864 0.822 0.940 0.552 0.734 0.663 0.874 0.256  0.444 -

Table 9: Cross-evaluation Win Rate. 4 teams, 1000 games, 100 games
for LLM player, win-rate relative to row player, errors +0.03.

Algorithm R MBP SH LLM SP FP DO BC BCSP BCFP BCDO
R - 0.079 0.041 0.210 0.016 0.023 0.013 0.036 0.003  0.002 0.007
MBP 0.921 - 0.369 0.760 0.187 0.182 0.176 0.407 0.091  0.094 0.098
SH 0.959  0.631 - 0.750 0.289 0.262 0.302 0.518 0.132  0.143 0.133
LLM 0.790  0.240  0.250 - 0.140  0.060 0.080 0.290 0.060  0.030 0.020
SP 0.984 0.813 0.711 0.860 - 0.513 0.488 0.671 0.246  0.239 0.263
FP 0.977 0818 0.738 0.940 0.487 - 0.569 0.647 0.273  0.293 0.253
DO 0.987 0.824 0.698 0.920 0.512 0.431 - 0.653  0.222  0.256 0.213
BC 0.964 0.593 0.482 0710 0.329 0.353 0.347 - 0.130  0.114 0.171
BCSP 0.997 0.909 0.868 0.940 0.754 0.727 0.778 0.870 - 0.523 0.505
BCFP 0.998 0.906 0.857 0.970 0.761 0.707 0.744 0.886 0.477 - 0.522
BCDO 0.993 0.902 0.867 0.980 0.737 0.747 0.787 0.829 0.495  0.478 -

Table 10: Cross-evaluation Win Rate. 16 teams, 1000 games, 100
games for LLM player, win-rate relative to row player, errors +0.03.

Algorithm R MBP SH LLM SP FP DO BC BCSP BCFP BCDO
R - 0.067 0.052 0.270 0.040 0.037 0.032 0.038 0.010  0.003 0.005
MBP 0.933 - 0.337 0.680 0.310 0.272 0.274 0.361 0.104  0.089 0.084
SH 0.948  0.663 - 0.770  0.413 0.358 0.432 0.478 0.152  0.160 0.147
LLM 0.730  0.320 0.230 - 0.200 0.110 0.140 0.210 0.070  0.080 0.020
Sp 0.960  0.690 0.587 0.800 - 0.479 0.474 0.551 0.209  0.208 0.241
FP 0.963 0.728 0.642 0.890 0.521 - 0.486 0.578 0.211  0.232 0.216
DO 0.968 0.726 0.568 0.860 0.526 0.514 - 0.533  0.228 0.215 0.200
BC 0.962  0.639 0.522 0.790 0.449 0.422 0.467 - 0.204  0.191 0.193
BCSP 0.990 0.896 0.848 0.930 0.791 0.789 0.772 0.796 - 0.498 0.481
BCFP 0.997 0911 0.840 0.920 0.792 0.768 0.785 0.809  0.502 - 0.486
BCDO 0.995 0916 0.853 0.980 0.759 0.784 0.800 0.807 0.519 0.514 -

Table 11: Cross-evaluation Win Rate. 64 teams, 1000 games, 100
games for LLM player, win-rate relative to row player, error +0.03.

Algorithm R MBP SH LLM SP FP DO BC BCSP BCFP BCDO
R - 0.081 0.029 0.210 0.054 0.053 0.066 0.050 0.008 0.010 0.006
MBP 0.919 - 0.344 0.670 0.386 0.388 0.407 0.398 0.122  0.127 0.117
SH 0.971  0.656 - 0.790 0.486 0.482 049 0.511 0.166  0.173 0.199
LLM 0.790  0.330 0.210 - 0.240 0.120 0.190 0.150 0.060  0.040 0.030
Sp 0.946 0.614 0.514 0.760 - 0.512  0.510 0.481 0.169  0.189 0.196
FP 0.947 0.612 0.518 0.880 0.488 - 0.487 0.466 0.198  0.180 0.160
DO 0.934 0593 0.510 0.810 0.490 0.513 - 0.508 0.197  0.189 0.198
BC 0.950 0.602 0.489 0.850 0.519 0.534 0.492 - 0.231  0.234 0.238
BCSP 0.992 0.878 0.83¢ 0.940 0.831 0.802 0.803 0.769 - 0.554 0.505
BCFP 0.990 0.873 0.827 0.960 0.811 0.820 0.811 0.766 0.446 - 0.469
BCDO 0.994 0.883 0.801 0.970 0.804 0.840 0.802 0.762 0.495 0.531 -
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