Learning Optimal Advantage from Preferences and Mistaking it for Reward

W. Bradley Knox1,4 Stephane Hatgis-Kessell1 Sigurdur Orn Adalgeirsson4 Serena Booth2 Anca Dragan5 Scott Niekum6 Peter Stone1,3

1UT Austin 2MIT CSAIL 3Sony AI 4Google Research 5UC Berkeley 6UMass Amherst
The model of preference

\[P(\sigma_1 \succ \sigma_2) = \frac{\exp[f(\sigma_1)]}{\exp[f(\sigma_1)] + \exp[f(\sigma_2)]} = \text{logistic}(f(\sigma_1) - f(\sigma_2)) \]

(Shorthand notation above leaves out from \(P \) and \(f \) an implied reward function as input.)
Learning a reward function from preferences

Given a preference model $P(\sigma_1 \succ \sigma_2 | \hat{r})$, optimize \hat{r} to maximize the likelihood of the preferences dataset.
Typical RLHF algorithm's view of the world

preferences sampled from a preference model

MLE with a preference model
The preference model

Common model: **Partial return**

\[
P(\sigma_1 \succ \sigma_2) = \text{logistic} \left(\sum_{(s,a) \in \sigma_1} r(s, a) - \sum_{(s,a) \in \sigma_2} r(s, a) \right)
\]
The preference model

Common model: **Partial return**

\[
P(\sigma_1 \succ \sigma_2) = \text{logistic} \left(\sum_{(s,a) \in \sigma_1} r(s, a) - \sum_{(s,a) \in \sigma_2} r(s, a) \right)
\]

-1

Indifferent!
Equal partial return

Lower end state value

Equal partial return

Higher end state value

Suboptimal segment

Optimal segment

Equal partial return

Higher start state value

Equal partial return

Lower start state value

Suboptimal segment

Optimal segment
The preference model

Common model: Partial return

\[P(\sigma_1 \succ \sigma_2) = \text{logistic}\left(\sum_{(s,a) \in \sigma_1} r(s,a) - \sum_{(s,a) \in \sigma_2} r(s,a) \right) \]
The preference model

Common model: Partial return

\[P(\sigma_1 \succ \sigma_2) = \text{logistic} \left(\sum_{(s,a) \in \sigma_1} r(s,a) - \sum_{(s,a) \in \sigma_2} r(s,a) \right) \]

Proposed model: Regret

\[P(\sigma_1 \succ \sigma_2) = \text{logistic} \left(\sum_{(s,a) \in \sigma_1} A_r^*(s,a) - \sum_{(s,a) \in \sigma_2} A_r^*(s,a) \right) \]

The regret of a segment measures how much it deviates from optimal behavior.
The preference model

Partial return

\[P(\sigma_1 > \sigma_2) = \text{logistic} \left(\sum_{(s,a)\in \sigma_1} r(s,a) - \sum_{(s,a)\in \sigma_2} r(s,a) \right) \]

Showing reward

Regret

\[P(\sigma_1 > \sigma_2) = \text{logistic} \left(\sum_{(s,a)\in \sigma_1} A^*_r(s,a) - \sum_{(s,a)\in \sigma_2} A^*_r(s,a) \right) \]

Showing optimal advantage

Indifferent

Preferred
The preference model

Proposed model: Regret

\[P(\sigma_1 > \sigma_2) = \text{logistic} \left(\sum_{(s,a) \in \sigma_1} A_r^*(s, a) - \sum_{(s,a) \in \sigma_2} A_r^*(s, a) \right) \]

Showing optimal advantage

[Diagram showing two grids with different outcomes and the preferred one marked]
The preference model

Proposed model: Regret

\[P(\sigma_1 \succ \sigma_2) = \text{logistic}\left(\sum_{(s,a) \in \sigma_1} A^*_r(s, a) - \sum_{(s,a) \in \sigma_2} A^*_r(s, a) \right) \]
Comparisons

Theoretically superior (identifiable)

With human preferences

● more descriptive
● learns more aligned reward functions
Then why does the partial return preference model work so well for fine-tuning?
Then why does the partial return preference model work so well for fine-tuning?

This paper answers in two contexts:

1) RLHF generally
2) RLHF fine tuning for LLMs
When regret drives preferences but the dominant model is assumed (i.e., using A^*_{γ} as γ)

Outline:
- When A^*_{γ} is known exactly
- When A^*_{γ} is approximated
- Reframing RLHF for LLMs
Assuming the partial return preference model when regret is correct

(Learning A^*_γ and using it as γ)
A unified representation of the preference models

\[P(\sigma_1 \succ \sigma_2) = \text{logistic}\left(f(\sigma_1) - f(\sigma_2) \right) \]

Partial return: \(f(\sigma) = \) discounted sum of \(r(s, a) \) for each \((s, a) \) in \(\sigma \)

Regret: \(f(\sigma) = \) discounted sum of \(A^*(s, a) \) for each \((s, a) \) in \(\sigma \)

Unification: \(f(\sigma) = \) discounted sum of \(g(s, a) \) for each \((s, a) \) in \(\sigma \)

If you assume partial return but preferences are by regret, then **you are using (an approximation of) A* as a reward function.**
A unified representation of the preference models

\[P(\sigma_1 \succ \sigma_2) = \text{logistic} \left(f(\sigma_1) - f(\sigma_2) \right) \]

\[= \text{logistic} \left(\sum_{t=0}^{\left| \sigma_1 \right|-1} \tilde{r}(s_t^\sigma, a_t^\sigma) - \sum_{t=0}^{\left| \sigma_2 \right|-1} \tilde{r}(s_t^\sigma, a_t^\sigma) \right) \quad \text{Partial return} \]

\[= \text{logistic} \left(\sum_{t=0}^{\left| \sigma_1 \right|-1} A_\tilde{r}^*(s_t^\sigma, a_t^\sigma) - \sum_{t=0}^{\left| \sigma_2 \right|-1} A_\tilde{r}^*(s_t^\sigma, a_t^\sigma) \right) \quad \text{Regret} \]

\[= \text{logistic} \left(\sum_{t=0}^{\left| \sigma_1 \right|-1} g(s_t^\sigma, a_t^\sigma) - \sum_{t=0}^{\left| \sigma_2 \right|-1} g(s_t^\sigma, a_t^\sigma) \right) \quad \text{Unification} \]

If you assume partial return but preferences are by regret, then you are using (an approximation of) A* as a reward function.
A unified representation of the preference models

\[P(\sigma_1 \succ \sigma_2) = \text{logistic}\left(f(\sigma_1) - f(\sigma_2) \right) \]

\[= \text{logistic}\left(\sum_{t=0}^{\lfloor |\sigma_1| - 1 \rfloor} \tilde{r}(s_t^\sigma, a_t^\sigma) - \sum_{t=0}^{\lfloor |\sigma_2| - 1 \rfloor} \tilde{r}(s_t^\sigma, a_t^\sigma) \right) \text{ Partial return} \]

\[= \text{logistic}\left(\sum_{t=0}^{\lfloor |\sigma_1| - 1 \rfloor} A^*_\tilde{r}(s_t^\sigma, a_t^\sigma) - \sum_{t=0}^{\lfloor |\sigma_2| - 1 \rfloor} A^*_\tilde{r}(s_t^\sigma, a_t^\sigma) \right) \text{ Regret} \]

\[= \text{logistic}\left(\sum_{t=0}^{\lfloor |\sigma_1| - 1 \rfloor} g(s_t^\sigma, a_t^\sigma) - \sum_{t=0}^{\lfloor |\sigma_2| - 1 \rfloor} g(s_t^\sigma, a_t^\sigma) \right) \text{ Unification} \]
3 algorithms

<table>
<thead>
<tr>
<th>Dataset created by reward function r' and preference model</th>
<th>Algorithm for learning from preferences</th>
<th>Output of learning from preferences</th>
<th>Additional step to create policy (other than greedy action selection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>partial return preference model</td>
<td>learning g</td>
<td>\hat{r}</td>
<td>policy improvement</td>
</tr>
<tr>
<td>regret preference model</td>
<td>learning by regret algorithm</td>
<td>\hat{r}</td>
<td>policy improvement</td>
</tr>
<tr>
<td>regret preference model</td>
<td>learning g</td>
<td>\hat{A}_r^*</td>
<td>nothing</td>
</tr>
</tbody>
</table>
3 algorithms

<table>
<thead>
<tr>
<th>Dataset created by reward function γ' and</th>
<th>Algorithm for learning from preferences</th>
<th>Output of learning from preferences</th>
<th>Additional step to create policy (other than greedy action selection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>partial return preference model</td>
<td>learning g</td>
<td>$\hat{\gamma}$</td>
<td>policy improvement</td>
</tr>
<tr>
<td>regret preference model</td>
<td>learning by regret algorithm</td>
<td>$\hat{\gamma}'$</td>
<td>$\hat{\pi}'$</td>
</tr>
<tr>
<td>regret preference model</td>
<td>learning g</td>
<td>\hat{A}'</td>
<td>nothing</td>
</tr>
</tbody>
</table>

$\hat{\pi}'$
4 algorithms

<table>
<thead>
<tr>
<th>Dataset created by reward function γ' and regret preference model</th>
<th>Algorithm for learning from preferences</th>
<th>Assumed Output of learning from preferences</th>
<th>Additional step to create policy (other than greedy action selection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning g</td>
<td>$\hat{\gamma}$</td>
<td>policy improvement</td>
<td>$\hat{\pi}_\gamma$</td>
</tr>
<tr>
<td>learning by regret algorithm</td>
<td>$\hat{\gamma}$</td>
<td>policy improvement</td>
<td>$\hat{\pi}_\gamma$</td>
</tr>
<tr>
<td>learning g</td>
<td>\hat{A}_γ</td>
<td>nothing</td>
<td>$\hat{\pi}_\gamma$</td>
</tr>
</tbody>
</table>
4 algorithms

Dataset created by reward function \(\hat{r} \) and

- **regret**
 - partial return
 - preference model

Algorithm for learning from preferences

- learning \(g \)

Assumed Output of learning from preferences

- \(\hat{r} \)

Additional step to create policy (other than greedy action selection)

- policy improvement

- \(\hat{\pi}_r \)

- learning by regret algorithm

- \(\hat{r} \)

- policy improvement

- \(\hat{\pi}_r \)

- learning \(g \)

- \(\hat{A}_r^* \)

- nothing

- \(\hat{\pi}_r \)
4 algorithms

<table>
<thead>
<tr>
<th>Dataset created by reward function (r') and partial return preference model</th>
<th>Algorithm for learning from preferences</th>
<th>Assumed Output of learning from preferences</th>
<th>Additional step to create policy (other than greedy action selection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>regret preference model</td>
<td>learning (g)</td>
<td>(\hat{r})</td>
<td>policy improvement</td>
</tr>
<tr>
<td>regret preference model</td>
<td>learning by regret algorithm</td>
<td>(\hat{\gamma})</td>
<td>policy improvement</td>
</tr>
<tr>
<td>regret preference model</td>
<td>learning (g)</td>
<td>(\hat{A}_r^*)</td>
<td>nothing</td>
</tr>
</tbody>
</table>

greedy \(\hat{A}_r^* \)
4 algorithms

Dataset created by reward function r^* and partial return preference model

Algorithm for learning from preferences

Assumed Output of learning from preferences

Additional step to create policy (other than greedy action selection)

\[
greedy \quad Q^*_r A^*_r
\]
Using A^*_r as reward
Optimal policies are preserved.

The set of optimal policies under \(r \) and \(r_A^* \triangleq A_r^* \) is the same, regardless of the discount factor used with \(r A_r^* \).

Intuition:

\[
A_r^*(s, a) = 0 \iff (s, a) \text{ is optimal w.r.t. } r
\]

\[
A_r^*(s, a) < 0 \iff (s, a) \text{ is suboptimal w.r.t. } r
\]

so:

trajectory \(\tau \) has return \(= 0 \) under \(r' \) \iff all \((s, a)\) in \(\tau \) are optimal w.r.t. \(r \)

trajectory \(\tau \) has return \(< 0 \) under \(r' \) \iff some \((s, a)\) in \(\tau \) is suboptimal w.r.t. \(r \)

Therefore a trajectory gets maximal return under \(r' \) iff that trajectory is optimal w.r.t. \(r \).
Reward is highly shaped.

From Ng, Harada, and Russell's 1999 paper on potential-based shaping:

about the domain. As to how one may do this, Corollary 2 suggests a particularly nice form for \(\Phi \), if we know enough about the domain to try choosing it as such. We see that if \(\Phi(s) = V_{M'}^*(s) \) (with \(\Phi(s_0) = 0 \) in the undiscounted case), then Equation (4) tells us that the value function in \(M' \) is \(V_{M'}^*(s) \equiv 0 \) — and

Set \(\Phi \triangleq V_{r^*} \).

With some algebra, we find that this definition of the potential function makes Ng et al.'s shaped reward function \(r_{A^*} \triangleq A_{r^*} \), the optimal advantage function with respect to \(r^* \)!
An underspecification issue is resolved.

When segment lengths $|\sigma|$ are 1:

$$\sum_{t=0}^{|\sigma|-1} \gamma^t r(s_t, a_t) = \gamma^0 r(s_0, a_0) = r(s_0, a_0)$$

Preferences training set generated via partial return	No
Reward function learned via partial return	No
The set of optimal policies	Yes
The choice of γ during policy optimization	Not without dataset augmentation

However, for $r_{A^*_r} \triangleq A^*_r$,

a trajectory is optimal \iff its discounted sum of $A^*_r(s, a)$ values is 0

so γ has no impact on the set of optimal policies.
Policy improvement wastes computation and environment sampling.

If we have A_r^*, then why do policy improvement to get the same policy as $\pi_r^*(s) = \arg\max_a A_r^*(s, a)$?
Using \hat{A}^*_r, an approximation of A^*_r, as reward
If the max of \hat{A}_r^* in every state is 0, behavior is identical between greedy \hat{A}_r^* and greedy Q_r^*.

Proof is in the paper. Empirical validation:

Across 90 small gridworld tasks

\[\text{Mean return} \begin{cases} 1 & \text{if greedy } \hat{A}_r^* \\ 0 & \text{if greedy } Q_r^* \end{cases}
\]

\[\text{i.e., } r_{\hat{A}} \triangleq \hat{A}_r^*, \quad \text{where } \max_a \hat{A}_r^*(\cdot, a) = 0\]

I.e., while \hat{A}_r^* might not be optimal, treating \hat{A}_r^* as a reward function does not worsen (or improve) performance if the condition above is met.
But the max of \widehat{A}_r^* in every state is not generally 0.

Let $g'(s, a) = g(s, a) + \text{constant}$.

Then \(\text{logistic} \left(\sum_{t=0}^{|\sigma_1|-1} g(s_t^\sigma, a_t^\sigma) - \sum_{t=0}^{|\sigma_2|-1} g(s_t^\sigma, a_t^\sigma) \right) = \text{logistic} \left(\sum_{t=0}^{|\sigma_1|-1} g'(s_t^\sigma, a_t^\sigma) - \sum_{t=0}^{|\sigma_2|-1} g'(s_t^\sigma, a_t^\sigma) \right) \).

The likelihood is not affected by arbitrary shifts, so we should generally expect that $\max_a \widehat{A}_r^*(s, a) \neq 0$.

More generally, in variable horizon tasks, such constant shifts to reward can create catastrophic changes to the set of optimal policies. How can we reduce this issue?
An ameliorative tactic: include segments with transitions from absorbing state

A simple episodic MDP

Absorbing state - turns episodic tasks into continuing (infinite) ones
An ameliorative tactic: include segments with transitions from absorbing state

Results from 30 gridworld MDPs
An ameliorative tactic: include segments with transitions from absorbing state

Transitions from absorbing state push the maximum per state towards 0.

Results from the same 30 gridworld MDPs
Table 1: Hypothesis regarding which algorithm performs as well or better than the other, given 2 conditions.

<table>
<thead>
<tr>
<th>Condition</th>
<th>π^*_r terminates</th>
<th>π^*_r does not terminate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max loop partial return > 0</td>
<td>greedy Q^*_r</td>
<td>greedy \tilde{A}^*_r</td>
</tr>
<tr>
<td>Max loop partial return < 0</td>
<td>greedy \tilde{A}^*_r</td>
<td>greedy Q^*_r</td>
</tr>
</tbody>
</table>

![Graph showing the relationship between greedy Q^*_r and greedy \tilde{A}^*_r returns vs. maximum loop return.

- Blue dots: MDP in which π^r terminates
- Orange dots: MDP in which π^r does not terminate]
Reward is also highly shaped with approximation error

For 100 MDPs, each \hat{A}_r^* learned with 100K noiselessly generated preferences.
Is using \hat{A}_r^* as reward advised?

No!

But it's not as bad as we would have expected (if a pitfall is addressed).
Using A_r^* as reward when fine-tuning LLMs with RLHF
Our hypothesis
annotators give regret-based preferences
and engineers using fine-tuning are unknowingly applying the regret preference model
When A* is learned without error...

Optimal policies are preserved.

Reward is highly shaped.

(But with approximation error, there is one large issue.)
Mapping this to the previous content

- They assume the partial return preference model.
- Segment length is 1.
- State is the full observation history.
- The next state is not in the segment and not an input to .
- A ranking of n responses is turned into many preferences (precisely \((n^2-n)/2\) preferences).
- Their "reward model" is our .

The same approach is used for DeepMind's Sparrow (Glaese et al., 2022), Llama 2 (Touvron, 2023), and other influential work (Ziegler et al., 2019 and Bai et al.; 2022).
The multi-turn language problem

<table>
<thead>
<tr>
<th>LM framing:</th>
<th>human's prompt</th>
<th>LM's response</th>
<th>human's prompt</th>
<th>LM's response</th>
<th>human's prompt</th>
<th>LM's response</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL framing:</td>
<td>observation</td>
<td>action</td>
<td>observation</td>
<td>action</td>
<td>observation</td>
<td>action</td>
<td></td>
</tr>
<tr>
<td>R(s,a):</td>
<td>(r_0)</td>
<td></td>
<td>(r_1)</td>
<td></td>
<td>(r_2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Assumes the **partial return** preference model.
- Segment length is 1.
- Learned reward function is applied as if in a **bandit task**!!!

On **InstructGPT** (Ouyang et al., 2022)

Reinforcement learning (RL). Once again following Stiennon et al., (2020), we fine-tuned the SFT model on our environment using PPO (Schulman et al., 2017). The environment is a bandit environment which presents a random customer prompt and expects a response to the prompt. Given the prompt and response, it produces a reward determined by the reward model and ends the episode.
The multi-turn language problem

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RL framing:</td>
<td>observation</td>
<td>action</td>
<td>observation</td>
<td>action</td>
<td>observation</td>
<td>action</td>
</tr>
<tr>
<td>R(s,a):</td>
<td>r_0</td>
<td></td>
<td>r_1</td>
<td></td>
<td>r_2</td>
<td></td>
</tr>
</tbody>
</table>

But the multi-turn problem is not a bandit problem!

Partial return assumes learned function approximates r.

$$\pi^*_r(s) = \arg\max_a Q^*_r(s, a)$$

$$= \arg\max_a (r(s, a) + \gamma E_s[V^*_r(s')])$$

$$= \arg\max_a r(s, a) \quad \text{bandit task}$$
Regret
Assumes the learned function approximates A^*. No γ hyperparameter.

$$\pi^*_r(s) = \arg\max_a A^*_r(s, a)$$

We get the same fine-tuning algorithm with a better supported preference model and without the arbitrary assumption of $\gamma=0$!
Preference elicitation interfaces

![Image of interface]

Figure 6 We show the interface that crowdworkers use to interact with our models. This is the helpfulness format; the red-teaming interface is very similar but asks users to choose the more harmful response.

Bai et al., 2022
So what?
The algorithm is the same.
When segment length > 1 and γ=0, the partial return preference model nonsensically ignores all actions after the first.

- Regret results in a different algorithm that appears reasonable.

A clearer understanding will bear fruit later.
Contrastive Preference Learning: Learning from Human Feedback without RL

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W. Bradley Knox, Dorsa Sadigh

\[L_{CPL}(\pi_\theta) = -\mathbb{E} \left[\log \frac{e^{\sum_{a \in A^+} \log \pi_\theta(a_t^+ | s_t^+)} + e^{\sum_{a \in A^-} \log \pi_\theta(a_t^- | s_t^-)}}{e^{\sum_{a \in A^+} \log \pi_\theta(a_t^+ | s_t^+)} + e^{\sum_{a \in A^-} \log \pi_\theta(a_t^- | s_t^-)}} \right] \]

MetaWorld from Images
Learning optimal advantage from preferences and mistaking it for reward (AAAI 2024)