
Dyna-LfLH: Learning Agile Navigation in Dynamic Environments from Learned Hallucination

Saad Abdul Ghani1, Zizhao Wang2, Peter Stone2,3, and Xuesu Xiao1

Abstract— This paper introduces Dynamic Learning from
Learned Hallucination (Dyna-LfLH), a self-supervised method
for training motion planners to navigate environments with
dense and dynamic obstacles. Classical planners struggle with
dense, unpredictable obstacles due to limited computation,
while learning-based planners face challenges in acquiring high-
quality demonstrations for imitation learning or dealing with
exploration inefficiencies in reinforcement learning. Building on
Learning from Hallucination (LfH), which synthesizes training
data from past successful navigation experiences in simpler
environments, Dyna-LfLH incorporates dynamic obstacles by
generating them through a learned latent distribution. This
enables efficient and safe motion planner training. We evaluate
Dyna-LfLH on a ground robot in both simulated and real
environments, achieving up to a 25% improvement in success
rate compared to baselines.

I. INTRODUCTION

Dynamic obstacles present a significant challenge for
autonomous mobile robots, requiring them to adapt their
motion plans in real-time to avoid collisions. Pedestrians
crossing streets unexpectedly or other robots performing
independent tasks in warehouses exemplify the types of
dynamic obstacles that challenge autonomous mobile robots.
Such obstacles are often characterized by unpredictable
motion patterns, demanding intelligent navigation strategies
that can anticipate and respond to rapid changes in the
environment.

Navigating around unpredictable dynamic obstacles in a
highly dense environment poses significant computational
challenges for classical navigation systems, making it inef-
ficient to draw samples or perform optimization iterations
in real-time. Recently, machine learning approaches have
been used to successfully maneuver around such obstacles
in a data-driven manner [1], [2]. However, both Imitation
Learning (IL) and Reinforcement Learning (RL) approaches

1George Mason University {sghani2, xiao}@gmu.edu 2The
University of Texas at Austin zizhao.wang@utexas.edu,
pstone@cs.utexas.edu 3Sony AI

This work has taken place in the RobotiXX Laboratory at George
Mason University and the Learning Agents Research Group (LARG)
at the Artificial Intelligence Laboratory, The University of Texas at
Austin. RobotiXX research is supported by National Science Founda-
tion (NSF, 2350352), Army Research Office (ARO, W911NF2320004,
W911NF2420027, W911NF2520011), Air Force Research Laboratory, US
Air Forces Central, Google DeepMind, Clearpath Robotics, Raytheon
Technologies, Tangenta, Mason Innovation Exchange, and Walmart. LARG
research is supported in part by NSF (FAIN-2019844, NRT-2125858),
Office of Naval Research (N00014-24-1-2550), ARO (FAIN W911NF-17-
2-0181, W911NF-23-2-0004, W911NF-25-1-0065), DARPA (Cooperative
Agreement HR00112520004 on Ad Hoc Teamwork), Lockheed Martin, and
Good Systems, a research grand challenge at the University of Texas at
Austin. The views and conclusions contained in this document are those of
the authors alone. Peter Stone serves as the Chief Scientist of Sony AI and
receives financial compensation for that role. The terms of this arrangement
have been reviewed and approved by the University of Texas at Austin in
accordance with its policy on objectivity in research.

Fig. 1: A mobile robot navigating through a dense and
dynamic obstacle field using Dyna-LfLH.

depend on high-quality training data that is difficult and inef-
ficient to acquire in the former and latter cases respectively.

Learning from Hallucination (LfH) [2]–[5] is a paradigm
that can safely and efficiently provide a variety of training
data for collision avoidance without the need of actually
training in challenging obstacle configurations. In LfH, the
robot gathers motion plans from past navigation experiences
in relatively easy or completely open environments, imagines
other more difficult obstacle configurations for which the
existing motion plans would also be optimal (i.e., hallu-
cination), and then learns a motion planner based on the
hallucinated obstacle configurations and motion plans. This
process circumvents the data dependency of IL and RL
as one can generate a large amount of data safely and
efficiently without the need for an expert supervisor or trial-
and-error exploration. However, existing LfH methods are
only designed to hallucinate static environments and fail to
perform well in dynamic ones.

In this paper, we propose a new Dynamic Learning
from Learned Hallucination (Dyna-LfLH) approach (Fig. 1).
We design a novel latent distribution that can be learned
through Dyna-LfLH in a self-supervised manner and then
sampled from to generate a variety of dynamic obstacle
configurations. Paired with existing optimal motion plans,
these dynamic obstacle configurations are used to learn a
motion planner to navigate in environments filled with a
large number of dynamic obstacles. Dyna-LfLH is tested on
a ground robot both in simulated and physical environments.
Superior navigation performance is achieved when compared
to LfLH [2], a classical sampling-based motion planner
(DWA) [6], a state of the art sampling-based model predictive
controller (Log-MPPI) [7], and an IL method [8].

II. RELATED WORK

This section reviews classical motion planning and recent
machine learning techniques for mobile robot navigation in



dynamic environments. We also introduce the recent LfH
paradigm, which our Dyna-LfLH belongs to.

A. Classical Motion Planning
Two popular approaches [9] to solve motion planning

in dynamic environments are Artificial Potential Fields
(APF) [10] and velocity-based methods [6]. In APF, the
environment is modeled as a field of attractive and repulsive
forces, guiding the robot through space. The goal has an
attractive potential field while obstacles have a negative
potential field. The resultant force is calculated to guide the
robot towards the goal and away from the obstacles. Velocity-
based methods directly work on the robot’s and obstacles’
kinematics and dynamics. First, the robot’s and obstacles’
kinematics are taken into account and an initial kinematic
trajectory is created to avoid the obstacles. Then, using the
robot’s dynamics, a motion plan is created to closely follow
the initial kinematic trajectory. Dynamic Window Approach
(DWA) [6] is a well-known example of a velocity-based
method.

Compared to APF and velocity-based motion planners,
Dyna-LfLH uses configuration space, which decomposes the
environment into free and obstacle spaces. An advantage of
our learning approach is that its computation is not depen-
dent on obstacle density and movement during deployment,
because Dyna-LfLH simply queries a pre-trained neural
network to produce feasible and fast navigation behaviors.

B. Machine Learning for Navigation
Machine learning approaches have been applied to mobile

robot navigation in different ways [1], such as either applying
learning in conjunction with classical methods [11] or using
IL [12] or RL [13] to learn an end-to-end planner [14].

Most learning methods require either high-quality (IL) or
extensive (RL) training data. Dyna-LfLH is a self-supervised
learning approach that automatically generates diverse train-
ing data, addressing the conundrum of needing to know what
good navigation behavior is, without prior knowledge of how
to achieve it.

C. Learning from Hallucination (LfH)
LfH [2]–[5] generates training data by hallucinating ob-

stacle configurations where existing plans are optimal, thus
eliminating the need for expert demonstrations or risky
exploration. Researchers have designed hallucination tech-
niques to project the most constrained [3], a minimal [4], or
a learned [2] obstacle configuration onto the robot percep-
tion. Hallucination has also been used to enable multi-robot
navigation in narrow hallways [5] and to augment existing
global motion plans for which the global path is optimal
for [15].

However, all existing LfH approaches assume that the
environment is static, or enforce static perception through
hallucinating virtual fields [5]. In this work, we generalize
the existing LfH formulation into dynamic environments
and show our new Dyna-LfLH can hallucinate appropriate
dynamic obstacles to safely and efficiently provide training
data to learn an agile motion planner to navigate through

highly-cluttered, fast-moving, hard-to-predict obstacles.

III. APPROACH

In this section, we introduce our Dyna-LfLH approach. We
first formalize the problem of motion planning in dynamic
environments and then reformulate its “inverse” problem,
i.e., dynamic obstacle hallucination using the LfH paradigm.
Finally, we propose an algorithm to learn a dynamic hallu-
cination function from which we can generate a variety of
dynamic obstacle configurations to train a motion planner.

A. Problem Definition
Robot motion planning in static environments is typically

formulated in configuration space (C-space), representing
the set of all possible robot configurations. In a particular
environment, C is partitioned into C = Cfree ∪ Cobst,
where Cfree denotes collision-free configurations and Cobst
represents configurations blocked by obstacles or constraints.
A motion plan p ∈ P consists of actions p = {ut}T−1

t=0 , u
t ∈

U, where P is the plan space over discrete time horizon
T and U is its action space. The motion planning problem
is then to find p = f(Cobst|cc, cg) to move the robot
from its current configuration cc, through a sequence of
configurations ct, to its goal configuration cg , such that
ct ∩ Cobst = ∅, ∀t and p is the optimal path from cc to
cg , according to some metric.

To generalize into dynamic environments, the partition
becomes time-dependent, i.e., C = Ctfree ∪ Ctobst, t ∈
[1, T ]. The new motion planning problem then becomes
p = f({Ctobst}Tt=1|cc, cg) such that ct ∩ Ctobst = ∅, ∀ t. For
simplicity, we assume the obstacle states Ctobst are known
during planning, though this assumption is relaxed in our
implementation.

In previous LfH approaches [2]–[4], the “inverse” prob-
lem of motion planning, i.e., the hallucination of obstacle
configuration space, such that p is optimal, is defined as
{Ciobst}∞i=1 = f−1(p|cc, cg). Notice that the inverse function
is a mapping from a motion plan p to a set of obstacle
configurations, since multiple obstacle configurations can
make p optimal. In most cases, this set is infinitely large.

In Dyna-LfLH, we generalize the previous static hallucina-
tion to a dynamic one, i.e., {{Ct,iobst}Tt=1}∞i=1 =f−1(p|cc, cg),
that is, generating all possible obstacle configuration se-
quences which make the given motion plan p optimal over
the time horizon T . Since it is impossible to produce
all (infinite) possible obstacle sequences, we approximate
{{Ct,iobst}Tt=1}∞i=1 using a learned distribution, from which we
can numerously sample a large number of obstacle sequences
over time horizon T . To be specific, we learn a hallucination
function g, which outputs such a distribution:

{Ctobst}Tt=1 ∼ g(p|cc, cg). (1)

B. Approximating {Ctobst}Tt=1 with Discrete Obstacles
Despite the enormous space of all possible dynamic obsta-

cle sequences {Ctobst}Tt=1, it is reasonable to assume that they
are composed of a few discrete moving obstacles. Therefore,
in this paper, we assume {Ctobst}Tt=1 can be approximated by



 B
Sampling

Motion 
Plans

Motion 
Plans

Latent Space

Encoder

Reconstruction Loss

Motion 
PlannerReconstr.

Motion 
Plans

N Obstacles

Motion 
Plans

Fixed 
DecoderEncoder

Fig. 2: A. The encoder-decoder architecture learns the hallucination function gψ (yellow) in a self-supervised manner using past motion
plans. The latent space consists of vectors S0 and V, the N hallucinated obstacles’ initial locations and velocities which are sampled from
a normal distribution with learned parameters (µ and σ2). Using S0 and V, the obstacles Ct are constructed and passed to the fixed,
differentiable decoder d(·) (green). d(·) reconstructs a motion plan, p̂, that is optimal given Ct. Then, p̂ is compared against the original
motion plans, p. B. Once the hallucination function is trained, we hallucinate and sample S×N dynamic obstacles from gψ∗ that is used
to render and create our supervised training set Dtrain. Finally, we train a motion planner fθ(·) (dark blue) using a history of L rendered
LiDAR scans and our original motion plans, p.

N circular moving obstacles {Oi}Ni=1 with a fixed radius R
at coordinate Ct

i = (xti, y
t
i) moving in a continuous fashion

(obstacles cannot teleport) following first-order dynamics:

Ct
i = S0

i +Vi · t, 1 ≤ t ≤ T, (2)

where S0
i = (x0i , y

0
i ) is the starting coordinate of obstacle

Oi at t = 0, and Vi = (vxi , v
y
i ) is its fixed velocity.

These assumptions efficiently decompose our original prob-
lem of hallucinating the vast space of obstacle configuration
sequences, {Ctobst}Tt=1, into learning a set of structured
parameter distributions of (x0i , y

0
i ), and (vxi , v

y
i ), sampling

from them and forming dynamic obstacles:

{(x0i , y0i ), (vxi , v
y
i )}

N
i=1 ∼ g(p|cc, cg). (3)

In this work we assume the obstacles only follow first-order
dynamics. In future work, it is easy to add complex higher-
order dynamics by learning the distributions of acceleration,
jerk, snap, and so on. Though for a short time horizon,
modeling obstacles to have a constant velocity is sufficient.

C. Learning a Parameterized Hallucination Function
We instantiate the hallucination function g with learnable

parameters ψ and learn gψ in a self-supervised reconstructive
manner using an encoder-decoder structure similar to the
static LfLH approach [2]. The encoder gψ(p|cc, cg) takes
the current configuration cc, goal configuration cg , and the
corresponding plan p as input and produces the probability
distributions of x0i , y0i , vxi , and vyi for all N dynamic
obstacles, as shown in Eqn. (3). We assume x0i , y0i , vxi ,
and vyi are all independent, normally distributed random
variables. Then, a potential {Ctobst}Tt=1 is constructed by
applying Eqn. (2) on all N dynamic obstacle parameters
sampled from the learned distribution.

The decoder is a 2D classical motion planner without
any learnable parameters that is used to generate optimal
motion plans p̂ from the sampled obstacles. Specifically,
p̂ = d({Ctobst}Tt=1 ∼ g(p|cc, cg)). The goal is to ensure the
reconstructed motion plan p̂ is the same as the given plan
p, indicating p is also optimal for the sampled obstacles
{Ctobst}Tt=1.

Based on a dataset P of past motion plans, either from
static/dynamic obstacle environments or completely open
spaces, our Dyna-LfLH encoder and decoder find the optimal
parameters ψ∗ for gψ(·) by minimizing a self-supervised loss

ψ∗ = argmin
ψ

E
p∼P

p̂ = d({Ctobst}
T
t=1∼gψ(p|cc,cg))

[ℓ(p, p̂)], (4)

where ℓ(·, ·) is the reconstruction loss function to encour-
age the decoder output d({Ctobst}Tt=1) to be similar to the
existing motion plan p.

D. Dyna-LfLH
By sampling x0i , y0i , vxi , and vyi for all N dynamic

obstacles from gψ∗ and constructing {Ctobst}Tt=1 K times, we
can generate a supervised training set for Imitation Learning

Dtrain = {({{Ctobst}Tt=1}k, pk, ckc , ckg)}Kk=1,

with K data points, where pk is (close to) optimal for
{{Ctobst}Tt=1}k. {{Ctobst}Tt=1}k can be transformed into ob-
servations in the form of LiDAR scans (with ray tracing) or
depth images (with rendering). With the training set Dtrain,
a parameterized motion planner fθ(·) can be learned by
minimizing a supervised learning loss using gradient descent:

θ∗ = argmin
θ

E
({Ctobst}

T
t=1,p,cc,cg)

∼Dtrain

[
ℓ(p, fθ({Ctobst}Tt=1|cc, cg))

]
.

(5)
fθ will be used to produce motion plans based on the
perceived {Ctobst}Tt=1 during deployment. Notice that during
deployment, {Ctobst}Tt=1 is usually unavailable (unless using
explicit future obstacle motion predictors). Therefore, we use
the available history {Ctobst}0t=−L+1 of length L as inputs
to fθ. Implementation details can be found below.

E. Implementation
As shown in Algorithm 1 line 2, a motion plan p ∈ P ⊂ P

consists of a sequence of configurations and linear and an-
gular velocities {(xt, yt, yawt), (vt, ωt)}Tt=1. We instantiate
robot configurations in the robot frame so cc is always 0
and therefore ignored. cg is set to (xT , yT , yawT ), which
is included in p and ignored as well. The encoder gψ(·)
is a network of three one-dimensional convolutional layers



followed by fully connected autoregressive layers mapping
the input motion plan p to the distribution parameters of
the dynamic obstacles’ location and velocity (Eqn. 3) in
the form of means and log-variances. The decoder d is
a re-implementation of Ego-Planner [16] with differential
convex optimization layers [17]. The reconstruction loss ℓ
in Eqn. 4 is the mean squared error between all positions,
linear and angular velocities {xt, yt, vt, ωt}Tt=1 in p and their
reconstructed values. To additionally regularize the loss ℓ in
Eqn. (4), we impose an obstacle location prior distribution
to a normal distribution fitted on all positions {(xt, yt)}Tt=1

in the plan p as an additional loss ℓprior to prevent obstacles
from getting too far away from the plan p. Similarly, an
obstacle-obstacle and obstacle-plan collision regularization
loss ℓcoll =

∑
max(c − d, 0)2 is added, where clearance

c = 0.5m and d is the distance either between two obstacles
or between the obstacle and its closest point on p. We use
the same regularization weights as in LfLH [2].

To create Dtrain, S = 4 samples of a set of N = 1
obstacles are taken from the latent space produced by gψ∗(·)
for every motion plan p (lines 5-14). N dynamic obstacles,
{Ct

i}Ni=1, 1 ≤ t ≤ T , which make motion plan p optimal are
constructed using Eqn. (2) and the observations are rendered
as 2D LiDAR scans using ray casting given the current
robot configuration ct along the plan p and the corresponding
obstacle configuration Ctobst (lines 8-9). Dtrain is augmented
to enhance variability. First, up to five random non-colliding
obstacles are added to increase variability in Ctobst. Second,
motion plans with velocities over 0.9 m/s are augmented
without obstacles to help the model learn fast navigation in
open spaces.

In our Dyna-LfLH implementation, fθ∗(·) (Eqn. (5))
learns to produce one single action ui given a sequence
of L = 5 historic LiDAR scans, {Ctobst}it=i−L+1, which
comprise a data point in Dtrain (lines 10-12). Each data
point starts at the robot’s current configuration cic = 0 and
the goal cig is a unit vector of a point 2.5 m away on the
existing motion plan p.

By taking in a history of L LiDAR scans, the motion
planner can implicitly encode and address obstacle dynamics.
fθ∗(·) is modeled as a feed-forward recurrent neural network
with two hidden layers, each of size 256 followed by a
fully connected layer mapping the hidden layer to linear
and angular velocities (line 16). At each time step m during
deployment (lines 18-19), cmc = 0 and cmg is instantiated as
a unit vector of a point 2.5m away on the global path created
using the move base stack.

We use the same Model Predictive Control (MPC) model
as LfLH [4] to check for and avoid collisions, with the
addition that future LiDAR scans are also simulated based
on the two most recent scans. If a collision is imminent,
the robot will stop and slowly reverse until no collision is
predicted.

IV. EXPERIMENTS

Dyna-LfLH is implemented on a Clearpath Jackal robot,
a four-wheeled, differential-drive, UGV, running the Robot

Algorithm 1 Dyna-LfLH

Input: existing motion plans P , obstacle number N , sam-
pling count S, history sequence length L

1: // Learning Dynamic Hallucination
2: learn ψ∗ for gψ(·) with P ▷ Eqn.(4)
3: // Dataset Generation
4: Dtrain ← ∅
5: for every p ∈ P do
6: for S times do
7: sample {(x0i , y0i ), (vxi , v

y
i )}Ni=1 with gψ∗ ▷ Eqn. 3

8: create {Ct
i}Ni=1, 1 ≤ t ≤ T ▷ Eqn. 2

9: render LiDAR scans for {Ctobst}Tt=1

10: for every ui ∈ p, L ≤ i ≤ T − 1 do
11: Dtrain = Dtrain ∪ ({Ctobst}it=i−L+1, u

i, cic, c
i
g)

12: end for
13: end for
14: end for
15: // Dynamic Learning from Learned Hallucination
16: learn θ∗ for fθ(·) with Dtrain ▷ Eqn. 5

17: // Deployment (each time step m)
18: receive {Ctobst}mt=m−L+1, c

m
c , c

m
g

19: plan p = um = fθ∗({Ctobst}mt=m−L+1 | cmc , cmg )
20: return p

TABLE I: Key Parameters for DWA and Log-MPPI

DWA Linear (x) Angular
Max Velocity 1.0 m/s 1.57 rad/s
Min Velocity 0.1 m/s -1.57 rad/s
Acceleration Limit 10.0 m/s2 20.0 m/s2
Sampling Resolution 12 40

Simulation Time 2.0 s
Simulation Granularity 0.02 m

Log-MPPI Linear (x) Angular
Max Velocity 1.0 m/s 1.5 rad/s

Time Horizon 6.0 s
Sampling Rate 50 s-1

Sampled Trajectories 2496
Exploration Variance 1200.0
State Dimension 3
Control Dimension 2
Cost Function Weights [2.5, 2.5, 2]

Operating System move base navigation stack. The Jackal
has a 720-dimensional, front-facing, 2D LiDAR with a 270◦

field of view, which is used to instantiate obstacle config-
uration Ctobst. Dyna-LfLH is used as a local planner. We
conduct both simulated and physical experiments to validate
our hypothesis that Dyna-LfLH can learn to hallucinate dy-
namic obstacle configurations where previous motion plans
are near-optimal, and agile motion planners can be learned
through the learned hallucination.

A. Baselines
Dyna-LfLH is compared with a classical sampling-based

motion planner [6], a model predictive path integral (MPPI)
controller [7], a state-of-the-art LfH approach [2], and an IL



Fig. 3: Example hallucinations of 1, 2, 3, 4, and 5 obstacles respectively. The Z-axis represents time, with the bottom
indicating t = 1 and the top indicating t = T . Robot trajectories are represented by dark gray while obstacles are colored.
The robot and the obstacles start at the bottom and move to the top of the graph over time. The steepness of an obstacle is
related with its speed. For example, obstacle 1 (blue) is moving slower than obstacle 2 (red) in the second 3D plot. In all
cases, the robot trajectories maneuver through the obstacle(s) in a collision-free manner, while the obstacles are generated
such that the robot trajectories are near-optimal.

method [8] trained on a large expert dataset [18]. Specifically,
the Dynamic Window Approach (DWA) [6] samples actions
and evaluates them with a cost function, and Log-MPPI
[7] samples from a log-normal mixture distribution and
incorporates a 2D costmap. The key parameters for DWA and
Log-MPPI are provided in Tab. I. LfLH is trained on 25129
data points (under 10 minutes) of a Jackal robot exploring
an open space at 1.0 m/s. After training, it generates 10
static obstacles per data point. Behavior Cloning (BC) [8] is
a fully supervised approach using an 8.7-hour expert dataset
in dense, dynamic spaces. Dyna-LfLH trains on the same
open-space dataset as LfLH (under 10 minutes), generates
N = 1 dynamic obstacles, and learns a motion planner
with different obstacle sequence lengths (L = 1, 3, 5, and 10
previous LiDAR scans). For consistency, all planners have a
max linear velocity of 1.0 m/s, the maximum speed in the
training data for LfLH and Dyna-LfLH.

B. Learned Dynamic Hallucination
In Fig. 3, we present examples of the hallucination results.

Five different latent spaces with one to five dynamic obsta-
cles are learned. The corresponding obstacles are sampled
from these learned distributions and visualized in a 3D space
with the Z-axis representing time. The robot’s trajectories
successfully navigate through the obstacles without any
collision at each time step, while the obstacles are essential to
make the robot’s maneuvers near-optimal, i.e., the obstacles
are the reason why the robot needs to execute such an
obstacle avoidance maneuver. Fig. 3 also illustrates that, in
most cases, hallucinating just one obstacle is sufficient in
explaining the robot’s movement, so hallucinating more than
one obstacle is unnecessary. Furthermore, the figure shows
that the hallucination function learns that both fast and slow-
moving obstacles can be avoided using the same motion plan.

C. Simulation
We use DynaBARN [19], a simulation testbed for eval-

uating dynamic obstacle avoidance with a diverse set of
60 environments at different difficulty levels based on the
number of obstacles and obstacle motion profiles. For each
DynaBARN environment, the robot navigates from one side

0.14
0.15

0.23
0.24

0.25
0.26 0.26

0.27

LfLH Log-MPPI DWA Dyna-LfLH
(L=1)

Dyna-LfLH
(L=10)

BC Dyna-LfLH
(L=3)

Dyna-LfLH
(L=5)

0.1

0.15

0.2

0.25

0.3

Overall Success Rate in DynaBARN

O
ve

ra
ll 

Su
cc

es
s R

at
e 

(↑
)

Fig. 4: Simulation Results of 180 trials in DynaBARN. Dyna-
LfLH with 5 history scans (L=5) performs the best overall.

to the other, and a single collision with any of the obstacles
counts as a failure. For every method (DWA, Log-MPPI,
LfLH, BC, and Dyna-LfLH), we run 3 navigation trials for
each of the 60 environments for a total of 180 trials. In
the simulation experiments, the recovery behaviors of all
models are turned off to focus only on the main planner’s
performance. The overall results in terms of success rate in
DynaBARN are shown in Fig. 4.

The results show that LfLH does not perform well in
DynaBARN due to a lack of consideration of obstacle
dynamics during hallucination. The state-of-the-art classical
planner, Log-MPPI [7], also performs very poorly in this
fast-moving and highly cluttered benchmark. DWA performs
significantly better than LfLH and Log-MPPI. BC achieves
good performance in the simulated DynaBARN after learning
on 8.7-hours of expert demonstration data. Dyna-LfLH,
trained on 10-minute self-supervised exploration in an open
space, achieves a comparable success rate. The Dyna-LfLH
with 5 history scans outperforms BC and achieves the best
performance across the board.

D. Physical Experiments
We also compare the best Dyna-LfLH planner (L = 5)

with the best planner in each other category, classical (DWA)
and IL (BC), in a physical test course, 20 trials each (Fig.
1), with a total of 60 physical trials. We create an enclosed



TABLE II: Physical Experiment Results.

Metrics DWA BC Dyna-LfLH

Success Rate (↑) 0.40 0.15 0.50
Avg. TTS (s, ↓) 17.26 ± 8.31 17.67 ± 2.52 12.60 ± 2.37

8.2 m × 4.3 m arena with 11 randomly moving obstacles
(iRobot Roombas of 0.33 m diameter). The Roombas move
with a maximum linear speed of 0.5 m/s with a combination
of behaviors such as spiraling outwards, following walls,
and bouncing off each other. The success rate and average
traversal time on success (TTS) are shown in Tab. II.

Dyna-LfLH achieves the best success rate up to 50%, a
25% improvement over the 2nd best planner, DWA. BC does
not work well in the real world and only achieves 15%. We
also report the traversal time for each method and Dyna-
LfLH achieves the fastest navigation among all successful
trials. For safety in the physical experiments, the recovery
behaviors of all three methods are turned on.

E. Discussions
Navigating dynamic environments poses a significant chal-

lenge for autonomous robots, as evidenced by the low
success rates of all evaluated methods (Fig. 4). The simu-
lated DynaBARN environments present particularly difficult
scenarios due to the high variability in obstacle motion
profiles — individual obstacles frequently change speed and
direction, often moving faster than the robot’s maximum
speed and making sudden, sharp turns. In contrast, the Room-
bas used in the physical experiments move generally at a
constant velocity of 0.5 m/s, which is slower than the robot’s
maximum speed. This difference in obstacle dynamics makes
the physical experiments comparatively easier, contributing
to the higher success rates observed in real-world trials.

Nonetheless, our visualization of the learned dynamic ob-
stacles validate our hypothesis that Dyna-LfLH successfully
learns to generate dynamic obstacles for which our existing
motion plans are optimal. The results from the simulation and
physical experiments show that a dynamic motion planner
can be learned from such hallucinated data. The learned
motion planner also demonstrates generalization to both
simulation and the real world.

However, we observe that while theoretically possible to
approximate {{Ct,iobst}Tt=1}∞i=1 using a learned distribution,
in practice, distributions in Eqn. (1) suffer from mode
collapse, producing limited samples that fail to approxi-
mate the infinitely many obstacle configuration sequences,
{{Ct,iobst}Tt=1}∞i=1. This likely contributes to the low success
rate in Fig. 4. A potential solution is to change the architec-
ture and gradually add variance to the hallucinated obstacles.

V. CONCLUSIONS

Dyna-LfLH is a self-supervised method for mobile robot
navigation in dynamic environments, capable of navigating
among fast-moving, unpredictable obstacles using only past
deployment data or data from open spaces. It generates dy-
namic obstacle configurations to optimize motion plans and
provide efficient training data for planners. Both simulated

and physical experiments show that a local planner trained
with Dyna-LfLH outperforms classical planning methods and
supervised approaches that rely on large expert datasets.

REFERENCES

[1] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, vol. 46, no. 5, pp. 569–597, 2022.

[2] Z. Wang, X. Xiao, A. J. Nettekoven, K. Umasankar, A. Singh,
S. Bommakanti, U. Topcu, and P. Stone, “From agile ground to aerial
navigation: Learning from learned hallucination,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 148–153.

[3] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Toward agile maneuvers
in highly constrained spaces: Learning from hallucination,” IEEE
Robotics and Automation Letters, pp. 1503–1510, 2021.

[4] X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallu-
cinated learning and sober deployment,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021.

[5] J.-S. Park, X. Xiao, G. Warnell, H. Yedidsion, and P. Stone, “Learn-
ing perceptual hallucination for multi-robot navigation in narrow
hallways,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 10 033–10 039.

[6] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[7] I. S. Mohamed, K. Yin, and L. Liu, “Autonomous navigation of agvs
in unknown cluttered environments: Log-mppi control strategy,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 10 240–10 247,
2022.

[8] A. H. Raj, Z. Hu, H. Karnan, R. Chandra, A. Payandeh, L. Mao,
P. Stone, J. Biswas, and X. Xiao, “Rethinking social robot navigation:
Leveraging the best of two worlds,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024.

[9] M. Mohanan and A. Salgoankar, “A survey of robotic motion planning
in dynamic environments,” Robotics and Autonomous Systems, vol.
100, pp. 171–185, 2018.

[10] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in [1993] Proceedings IEEE International Conference
on Robotics and Automation. IEEE, 1993, pp. 802–807.

[11] X. Xiao, Z. Wang, Z. Xu, B. Liu, G. Warnell, G. Dhamankar, A. Nair,
and P. Stone, “Appl: Adaptive planner parameter learning,” Robotics
and Autonomous Systems, vol. 154, p. 104132, 2022.

[12] X. Xiao, T. Zhang, K. M. Choromanski, T.-W. E. Lee, A. Francis,
J. Varley, S. Tu, S. Singh, P. Xu, F. Xia, S. M. Persson, L. Takayama,
R. Frostig, J. Tan, C. Parada, and V. Sindhwani, “Learning model pre-
dictive controllers with real-time attention for real-world navigation,”
in Conference on robot learning. PMLR, 2022.

[13] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 31–36.

[14] B. Wullt, P. Matsson, T. B. Schön, and M. Norrlöf, “Neural motion
planning in dynamic environments,” IFAC-PapersOnLine, vol. 56,
no. 2, pp. 10 126–10 131, 2023.

[15] D. Das, Y. Lu, E. Plaku, and X. Xiao, “Motion memory: Leveraging
past experiences to accelerate future motion planning,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 16 467–16 474.

[16] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, 2020.

[17] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and
Z. Kolter, “Differentiable convex optimization layers,” arXiv preprint
arXiv:1910.12430, 2019.

[18] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand):
A large-scale dataset of demonstrations for social navigation,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11 807–11 814,
2022.

[19] A. Nair, F. Jiang, K. Hou, Z. Xu, S. Li, X. Xiao, and P. Stone,
“Dynabarn: Benchmarking metric ground navigation in dynamic envi-
ronments,” in 2022 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR). IEEE, 2022, pp. 347–352.


	Introduction
	Related Work
	Classical Motion Planning
	Machine Learning for Navigation
	Learning from Hallucination (LfH)

	Approach
	Problem Definition
	Approximating {Ctobst}t=1T with Discrete Obstacles
	Learning a Parameterized Hallucination Function
	Dyna-LfLH
	Implementation

	Experiments
	Baselines
	Learned Dynamic Hallucination
	Simulation
	Physical Experiments
	Discussions

	Conclusions
	References

