
Dyn-O: Building Structured World Models with
Object-Centric Representations

Zizhao Wang1,2∗ Kaixin Wang2 Li Zhao2 Peter Stone1,3 Jiang Bian2

1The University of Texas at Austin 2Microsoft Research Asia 3Sony AI
zizhao.wang@utexas.edu,pstone@cs.utexas.edu
{kaixwang,lizo,jiang.bian}@microsoft.com

Abstract

World models aim to capture the dynamics of the environment, enabling agents to
predict and plan for future states. In most scenarios of interest, the dynamics are
highly centered on interactions among objects within the environment. This moti-
vates the development of world models that operate on object-centric rather than
monolithic representations, with the goal of more effectively capturing environment
dynamics and enhancing compositional generalization. However, the development
of object-centric world models has largely been explored in environments with
limited visual complexity (such as basic geometries). It remains underexplored
whether such models can be effective in more challenging settings. In this paper, we
fill this gap by introducing Dyn-O, an enhanced structured world model built upon
object-centric representations. Compared to prior work in object-centric representa-
tions, Dyn-O improves in both learning representations and modeling dynamics. On
the challenging Procgen games, we demonstrate that our method can learn object-
centric world models directly from pixel observations, outperforming DreamerV3
in rollout prediction accuracy. Furthermore, by decoupling object-centric features
into dynamic-agnostic and dynamic-aware components, we enable finer-grained
manipulation of these features and generate more diverse imagined trajectories. The
code of Dyn-O can be found at: https://github.com/wangzizhao/dyn-O.

1 Introduction

World models have emerged as powerful tools for simulating environment dynamics, enabling agents
to predict and plan for the future [16, 17, 20, 21, 39]. A common design in these models is to map
high-dimensional observations (e.g., images) into latent features and then model the environment’s
dynamics in this latent space. However, these latent features are typically monolithic, encoding the
entire scene as a whole without accounting for its internal compositional structure. Yet, interactions
in most environments are inherently object-centric. This observation motivates the development of
object-centric world models, which can offer improved efficiency, interpretability, and compositional
generalization.

Building object-centric world models involves two key steps: 1) learning object-centric represen-
tations and 2) modeling dynamics on top of them, as illustrated in Figure 1. For the former, the
goal is to encode features associated with each object present in the observation. For the latter, the
dynamics model should account for the different representation space, in contrast to a monolithic
representation, the input and the prediction target is a set of object-centric representations. While
several prior approaches have explored object-centric world models, they primarily focus on simple
environments consisting of basic shapes [2, 13, 32, 42], or rely on externally provided compositional

∗work done during an internship at Microsoft Research Asia

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/wangzizhao/dyn-O

Figure 1: A high-level overview of the object-centric (OC) world model framework. The latent
features are not monolithic or patch-based, but instead are bound to the objects present in the scene.

signals such as language [46]. It remains underexplored whether object-centric world models can be
learned purely from trajectories to capture complex dynamics in more challenging, complex settings.

As a step toward bridging this gap, we introduce Dyn-O, a novel object-centric world model with
improved designs for both object-centric representation learning and dynamics modeling over prior
work. To handle complex visual observations, we draw inspiration from prior work on learning
object-centric representations from real-world videos (e.g., SOLV [1]) and adopt an autoencoder-style
architecture to embed observations into object-associated features, referred to as slots. Specifically,
we adopt a pre-trained Cosmos encoder [12], which offers two key advantages compared to the DINO
encoder [34] used in SOLV: (1) improved representation quality, and (2) access to a pretrained visual
decoder, eliminating the need to train a decoder from scratch for reconstructing pixel observations.
To further enhance the quality of the extracted slot features, we incorporate priors from a high-
performing pretrained segmentation model, SAM2 [35]. While this incorporation significantly
improves performance, it also introduces substantial computational overhead, particularly during
inference. To mitigate this issue, we use a scheduling strategy that gradually reduces reliance on the
segmentation mask during training, enabling the model to maintain performance at inference time
without requiring the mask.

The extracted slot features are modular in nature, with each slot associated with a distinct object. To
model transition dynamics in this slot space, we aim for the world model to respect this modular
structure. To this end, we adopt a state-space model (SSM) based on the Mamba architecture [15],
borrowing the idea from SlotSSM [23]. Unlike SlotSSM, which tightly integrates the slot encoder and
decoder within each transformer block of the SSM, we use the pretrained slot representation module
introduced above and apply the SSM solely for dynamics modeling. This decoupling of representation
learning and dynamics modeling aligns with recent trends in the world model literature [9, 29, 30].
Additionally, we explore disentangling each object’s slot feature into a static component capturing
time-invariant properties (e.g., texture) and a dynamic component encoding time-varying properties
(e.g., position). This disentanglement enables fine-grained manipulation of slot features. For instance,
we can modify the static feature of one object while keeping its dynamics unchanged, allowing for
diverse data generation during world model rollouts.

We evaluate Dyn-O in seven Procgen [7] environments. Our experiments indicate that Dyn-O learns
high-quality object-centric representations, generalizable world models, and disentangled static and
dynamic representations. We summarize our contributions as follows.

• We propose a novel object-centric representation learning method by leveraging segmentation
masks with a dropout schedule, enhancing representation quality while keeping efficient inference.

• We propose a novel object-centric world model that uses state-space models as backbones and
outperforms monolithic models in both rollout quality and generalization.

• We propose a novel object-centric representation that disentangles each object’s representation into
static and dynamic features, allowing the generation of diverse rollouts by altering static attributes
while preserving dynamic behavior.

2 Related Work

World Models Accurately and efficiently modeling the world’s dynamics has been a long-standing
topic in reinforcement learning [39]. A learned model of a simulated environment can be used to

2

facilitate planning or generate imagined data for training a policy. In recent years, world models have
seen great progress powered by advances in deep neural networks. Ha and Schmidhuber introduce
a generative world model where the dynamics is learned entirely in a latent feature space. In a
similar fashion, the Dreamer line of work [17–19] has further advanced the performance of world
models. More recently, several works have explored using sequence modeling techniques to train
world models within a token representation space [9, 29, 30].

Our works differs in that we build a world model on top of an object-centric representation, while prior
work mainly focuses on monolithic representations. Closely related to our work are those that also
consider the compositional nature of the world. Specifically, HOWM [45] and Cosmos [36] design
object-centric world models to address the compositional generalization problem. DreamWeaver [2]
uses a novel Recurrent Block-Slot Unit to discover compositional representations and generate
compositional future simulations. However, those approaches mainly focus on small-scale diagnostic
environments such as 2D block pushing, without validating in more complicated environments.
RoboDreamer [46] learns a compositional world for robot manipulation tasks, but their method
relies on language and leverages its natural compositionality. In comparison, our method learns the
object-centric world model purely from agent trajectories.

Object-Centric Representations Object-centric representations have gained increasing attention
in recent years [6, 11, 22, 28, 37]. Instead of encoding an image observation as a single monolithic
latent vector, object-centric representation learning aims to decompose a scene into objects and to
learn different latent representations for each object. A key milestone in this direction was Slot
Attention [28], which has since become the foundation for many subsequent methods that learn
object-centric features in an unsupervised manner from images [22, 37, 43] or videos [1, 10, 25].

Our work builds on the SOLV framework [1], introducing improvements to enhance the extraction
of object-specific latent features. Another closely related approach is the Slot State Space Model
(SlotSSM) [23], which uses state-space models to capture long-range temporal dependencies in
a structured way. However, it has only been validated on domains with limited complexity, such
as basic shapes. Moreover, SlotSSM tightly couples slot representation learning and dynamics
modeling, training them jointly. In contrast, we first learn a strong slot feature encoder and then build
object-centric world models on top of it.

Disentangling Static and Dynamic Features The disentanglement between static and dynamic
features in sequences has been studied in computer vision [5, 31, 38]. DSVAE [44] divides the
latent representation into the static factors and the dynamic factors and learns them jointly with the
ELBO objective. However, as formalized by Locatello et al. [27], unsupervised disentanglement
is impossible to achieve without inductive biases. C-DSVAE [3] further adds contrastive learning
to encourage disentanglement, yet its learned dynamic features highly depend on the chosen data
augmentations and can still capture static information. ContextWM [41] incorporates the notion of
time-invariant context and time-varying latent variables into world models. However, using the same
ELBO objectives as DSVAE, it may still learn entangled representations.

3 Method

From a high level perspective, Dyn-O models the environment’s dynamics in an object-centric manner,
enabled by two learning phases (Figure 2).

• Object-centric representation learning (Section 3.1): Dyn-O learns an object-centric representa-
tion in which coherent objects are each encoded into independent features, referred to as slots. This
factorized representation, in contrast to a monolithic scene-level encoding, leverages the natural
compositionality of objects in the world.

• Dynamics learning (Section 3.2): Dyn-O adopts a State Space Model (SSM) to predict transitions
from the current slots to the next-step slots, conditioned on the action. Each object’s slot feature is
further decoupled into static and dynamic components to enable fine-grained manipulation.

3.1 Extracting Object-Centric Representations

In the first learning phase, Dyn-O learns an object-centric representation from image observations. In
contrast to a monolithic representation that mixes all objects’ information, this factored representa-

3

Figure 2: Components of Dyn-O: (a) object-centric representation learning; (b) dynamics learning.
Modules marked with are fixed, while others are learnable. The "Dyn-O Encoder" in (b) corre-
sponds to the lower half of (a), which maps the image o to the latent slot feature z. See Section 3 for
details.

tion enables Dyn-O to modify each object independently and generate novel object combinations.
Formally, as shown in Figure 2(a), Dyn-O learns an encoder Enc : O → Z to extract an object-
centric representation z ∈ Z from observations o, where the representation consists of K slots,
z = [z1, . . . , zK], each corresponding to an object. Here, K is a predefined hyperparameter, and
when the number of objects in a scene is smaller than K, some slots may remain unused.

During encoder learning, inspired by SOLV [1], instead of training from scratch with raw pixels, Dyn-
O learns on top of the high-quality features extracted by the Cosmos tokenizer [12]. Given an input
frame o ∈ RH×W×3, Dyn-O first applies the Cosmos encoder (CosmosEnc) to extract patch-level
features f ∈ RN×df , where N denotes the number of patches in the frame. It then initializes K slots
zinit ∈ RK×dz from a set of learnable vectors. These slots compete to bind to objects using iterative
Slot Attention [28], producing z = Slot-Attn(zinit, f). The learning signals for slot extraction arise
from reconstructions – a decoder (Slot-Dec) reconstructs features f̂ from the slots, which are then
used to reconstruct the observation via the Cosmos decoder as ô = CosmosDec(f̂). That is,

f = CosmosEnc(o),
z = Slot-Attn(zinit, f),

f̂ = Slot-Dec(z),

ô = CosmosDec(f̂).

The Slot-Attn and Slot-Dec modules are trained jointly by minimizing the reconstruction error
as follows, while the Cosmos encoder-decoder remains frozen:

Lslot = ∥f − f̂∥2 + ∥o− ô∥2. (1)

Empirically, we observe that this fully unsupervised training objective usually results in inaccurate
object-slot bindings (see examples in Section 4.1). To improve the quality of object-centric repre-
sentations, we leverage the prior provided by foundational segmentation models. Specifically, we
use a pre-trained SAM2 model [35] to generate a segmentation mask m ∈ {0, 1}H×W×K and use
it as an attention mask during slot attention, z = Slot-Attn(zinit, f,m), binding each slot to one
segmented object and constraining it to only attend to patches from that object.

While the segmentation mask enhances object-slot binding, it also introduces substantial computa-
tional overhead, especially during inference. This dependency could limit the practicality of Dyn-O.
For example, when extracting slots for an agent interacting with the environment in an online setting,
we would need to run SAM2 inference at every environment step, which would be prohibitively
expensive compared to the typical cost per step. To address this issue, during encoder learning, we

4

Figure 3: Illustration of (a) the overall design for disentangling slot features in dynamics modeling,
and the training procedures for (b) static features and (c) dynamic features. // indicates a stop-gradient
operation.

introduce an annealing schedule that gradually reduces the reliance on the segmentation mask, aiming
to eliminate its use by the end of training. Initially, the segmentation mask is always used to guide slot
extraction. As training progresses, the probability of not using the mask increases according to a loga-
rithmic schedule w.r.t. the number of network updates, as log(1+# updates)/ log(1+# total updates).
This dropout schedule allows the encoder to achieve the best of both worlds – it learns high-quality
representations with the initial guidance of segmentation masks, while enabling efficient inference by
phasing out the need for them.

3.2 World Model with Object-Centric Representations

After learning object-centric representations as described above, the next phase of Dyn-O focuses
on training a world model to reason about object interactions. Given the history of slots z≤t and
actions a≤t, the world model predicts the next slots, the reward, and whether the episode terminates
as ẑt+1, r̂t, d̂t = Dyn(z≤t, a≤t).

World Model For the world model Dyn, we adopt state-space models (SSMs) for their strength
at capturing long-range temporal dependencies. Meanwhile, the model needs to account for the
permutation equivariance among slots – if the input slots are randomly permuted, the slots’ prediction
should follow the same permutation. Therefore, as shown in Figure 2(b), we design Dyn as follows.
We first apply self-attention to extract information about object interactions:

uk
t = Self-Attn(q = zkt , kv = [z1t , . . . , z

K
t , at]),

where no position encoding is used to maintain permutation invariance. Next, each slot is processed
by a shared SSM to update its hidden state, which is then used by Dyn-O to predict the next slots,
reward, and whether the episode terminates using separate prediction networks as follow:

hk
t+1 = SSM(hk

t , z
t
k), ẑkt+1 = Pred(hk

t+1),

r̂t = Cross-Attn(q = rcls, kv = [h1
t+1, . . . , h

K
t+1]),

d̂t = Cross-Attn(q = dcls, kv = [h1
t+1, . . . , h

K
t+1]),

where hk is the hidden state of the SSM that tracks past information for the k-th slot, and rcls and dcls
learnable query tokens used to extract reward and termination signals from the hidden states. Finally,
the world model is optimized by minimizing the following prediction loss (Alg. 1 line 4) :

Lwm =

T−1∑
t=1

∥ẑt+1 − zt+1∥2 +
T∑

t=1

(
∥r̂t − rt∥2 + CE(d̂t, dt)

)
, (2)

where CE stands for cross-entropy loss for binary classification.

Static-Dynamic Disentanglement The object-centric representation learned in Section 3.1 enables
the creation of scenes with novel object combinations. However, when synthesizing data, it is often
desirable to only modify object appearance (e.g., colors) while preserving their dynamic properties

5

(e.g., positions). For example, modifying dynamic information could result in invalid scenes, such as
a table being moved while the objects originally on it remain suspended in midair.

To this end, as shown in Figure 3(a), Dyn-O disentangles each slot zk into two components: static
features ck ∈ Rdc that captures time-invariant properties and dynamic features vk ∈ Rdv that
encodes time-variant properties. This decomposition allows us to modify an object’s static features
while keeping its dynamic features unchanged, generating novel scenarios with consistent dynamics.
Formally, Dyn-O maps slots to static and dynamic features with two separate neural networks:
ck = Mc(zk) and vk = Mv(zk). We describe how these features are learned below.

Static features are intended to capture time-invariant properties. Thus, for an object present at timestep
t, its static feature should remain the same across all timesteps. Therefore, a natural training objective
is to minimize the difference between static features across all timesep pairs. However, this objective
alone admits a degenerate solution where all static features collapse to a constant. To prevent this
collapse, Dyn-O incorporates contrastive learning to encourage feature diversity, as illustrated in
Figure 3(b): static features should be similar if they belong to the same slot, and distinct otherwise.
Dyn-O therefore learns static features by optimizing the following loss (Alg. 1 line 5):

Lstat =
∑

k,t ̸=t′

∥ckt − ckt′∥2︸ ︷︷ ︸
time invariance

+
∑
k,t

− log
cos(ckt , c

k
t′)

cos(ckt , c
k
t′) +

∑
c̃∈C̃ cos(ckt , c̃)︸ ︷︷ ︸

contrastive learning

, (3)

where cos denotes cosine similarity, and the second term corresponds to the InfoNCE loss [33]. For
each ckt , the positive sample ckt′ comes from the same slot at a different timestep, while the negative
samples C̃ are drawn from other slots in the batch.

On the other hand, Dyn-O learns dynamic features by reconstructing the slot content while ensuring
their disentanglement from static features. Specifically, Dyn-O uses a reconstruction network Mz to
output ẑk = Mz(sg(ck), vk), where sg denotes stop-gradient, preventing the static feature ck from
being updated by the reconstruction loss. (For simplicity, in this paragraph, we omit the subscript t in
z, c and v). However, minimizing reconstruction loss alone may lead the dynamic features to encode
time-invariant information as well, bypassing the need for ck. To avoid this effect, Dyn-O promotes
disentanglement by minimizing the mutual information

∑
t,k I(c

k
t , v

k
t) via adversarial training, as

illustrated in Figure 3(c). A discriminator Disc is trained to distinguish whether a pair of static and
dynamic features comes from the same slot. While Disc minimizes the discrimination loss, the
dynamic feature extractor Mv is trained to maximize it, thereby reducing the static information encoded
in dynamic features [14]. For stability, we adopt the Wasserstein distance as the discrimination loss
and apply LeCam regularization [40] (Alg. 1, lines 6-7):

Ldyn =
∑
k

∥ẑk − zk∥2︸ ︷︷ ︸
reconstruction

+ Disc(ck, vk)︸ ︷︷ ︸
disentanglement

, (4)

Ldisc =
∑
k

(
−Disc(ck, vk) + Disc(ck, dk

′
)
)

︸ ︷︷ ︸
discrimination

+LeCam(Disc)︸ ︷︷ ︸
regularization

, (5)

where (ck, vk) are from the same slot, and (ck, dk
′
) are from different slots.

4 Experimental Evaluation

We evaluate Dyn-O to answer the following questions: Q1: Can Dyn-O learn accurate object-centric
representations (Sec. 4.1)? Yes. Q2: Can Dyn-O learn accurate world models (Sec. 4.3)? Yes. Q3:
Are static and dynamic features learned by Dyn-O truly disentangled (Sec. 4.4)? Yes.

Our experiments are conducted in Procgen [7], a set of procedurally-generated 2D video game
environments. We use 7 Procgen environments: bigfish, coinrun, caveflyer, dodgeball, jumper, ninja,
and starpilot. In each Procgen environment, a PPG policy [8] is trained and used to collect an offline
dataset of 1M transitions from the first 200 levels for the learning of all methods.

6

Algorithm 1 Dyn-O World Model Learning

1: Collect a dataset of (ot, at, rt, ot+1). Initialize object-centric encoder (Enc), mappings to static
features (Mc), dynamic features (Mv), and slots (Mz), the world model (Dyn), and the discriminator
(Disc).

2: Train object-centric encoder Enc with Eq. (1).
3: Train the world model with joint optimization:
4: Update the world model Dyn by minimizing prediction losses in Eq. (2).
5: if learn static-dynamic disentanglement then
6: Update static features from Mc by enforcing time-invariance in Eq. (3).
7: Update Disc with Eq. (4) to estimate mutual information.
8: Update dynamic feature from Mv via reconstruction Mz and disentanglement loss in Eq. (5).

(a) Oracle (b) Dyn-O (ours) (c) SOLV

Method FR-ARI (↑)

Oracle 0.96
Dyn-O (ours) 0.80
SOLV 0.54

(d) slot-object binding accuracy
Figure 4: Evaluation of the object-centric representation learning in bigfish. (a) Using segmentation
masks during inference, Oracle achieves the most accurate slot-object binding, but also suffering
from the high computational overhead. (b) By using segmentation masks only during training,
Dyn-O learns to accurately assign each fish to one slot (shown as colored patches), which avoiding
inference-time overhead. (c) In contrast, learning without the guidance of segmentation masks, SOLV
often inaccurately splits a fish into multiple separate slots.

4.1 Evaluating Object-Centric Representation

As Dyn-O’s world model is learned on top of the object-centric representations, the quality of learned
representation is critical to its prediction accuracy. We compare Dyn-O’s representation learning
against the following ablations:

• Oracle: our method but always using the segmentation mask during both training and inference.
• SOLV [1]: the same as our method but does not use segmentation mask for training and inference.

As shown in Fig. 4, compared to SOLV that often splits an object into multiple slots, Dyn-O
achieves more accurate object-slot binding, assigning each object to a single slot. We also evaluate
the foreground adjusted rand index (FG-ARI) which is a widely used metric in the object-centric
literature that measures the similarity of the discovered objects masks to ground-truth masks. Again,
Dyn-O outperforms SOLV, suggesting the benefit of using segmentation masks to guide representation
learning.

4.2 Evaluating World Model Accuracy

The promise of Dyn-O is to learn accurate and and generalizable world models based on object-centric
representations. Therefore, the most critical evaluation of our work focuses on the world model
quality, and we compare Dyn-O against the following baselines and ablations:

• DreamerV3 [19]: one of the state-of-the-art model-based RL methods.
• Dreamweaver [2]: an object-centric world model designed to discover hierarchical and composi-

tional representations.
• Dyn-O without object-centric representations (denoted as Dyn-O w/o OC): our method but

without object-centric representations. The dynamics model is learned on top of 14x14 patch-level
features extracted by Cosmos encoder, where each patch is treated as a "slot".

For a fair comparison, we use the same frozen Cosmos tokenizer for DreamerV3 and Dreamweaver
as Dyn-O during world model learning.

7

Figure 5: Dyn-O generates more accurate rollouts than Dreamer in bigfish and coinrun. In each
environment, the first row displays a trajectory collected in the real environment. The second row
depicts the prediction inside the world model by Dyn-O (ours). The third and fourth rows show the
prediction of Dreamer and Dyn-O w/o OC respectively. In bigfish, our method keeps consistent
prediction for each fish until the 15th step, while baselines lose track of multiple small fish before the
10th step. Similarly, in coinrun, compared to baselines, Dyn-O generates predictions with clearer
floor and boxes.

To evaluate the generalizability of each method, we use the learned world model to generate 20-step
rollouts in 500 unseen levels. The evaluation metric covers pixel-level quality (PSNR) as well
as temporal and spatial coherence (FVD, LPIPS, and SSIM). The results are shown in Table 1,
where we average the evaluation at the last step across all environments. The results for each
environment can be found in Appendix B.3. Dyn-O significantly outperforms dreamer which
uses a monolithic representation, demonstrating the advantage of predicting in the object-centric
representation space. Meanwhile, in contrast to Dyn-O w/o OC whose latent representation consist
of 196 patch-level "slots", Dyn-O only uses 31 or 47 object-level slots (where each object-level slot
has the same dimension as a patch-level "slot") and achieves higher performance, demonstrating the
superior efficiency of object-centric representations. The results for Dreamwaver can be found in
Appendix B.3. To complement the analysis with qualitative examples, Fig. 5 shows the generated
rollouts of Dyn-O and its comparison with baselines.

8

Sw
ap

 A
ge

nt

Original Swapped

T=0

Sw
ap

 F
lo

or

1 2 3 4 5 10 15 20 30

Figure 6: Dyn-O generates dynamically consistent rollouts after exchanging static features. In the top two rows,
we swap the static features of the avatar (the small agent in the center of the image) between two initial states
and generate 30-step rollouts using Dyn-O. The results show that only the avatar’s color changes, while all other
objects remain unchanged. In the bottom two rows, we exchange the static features of the floor, and Dyn-O
consistently swaps their colors while keeping all other objects intact.

Table 1: Quantitative results for rollout trajectories, averaged across all environments.
Method LPIPS (↓) FVD (↓) SSIM (↑) PSNR (↑)

DreamerV3 0.42 692.5 0.56 15.70
Dyn-O w/o OC 0.41 538.4 0.53 16.10
Dyn-O (ours) 0.33 361.3 0.62 16.34

In addition to Procgen, we further compare Dyn-O against DreamerV3 on the CLEVR dataset [24]
and two ALE environments [4], and the results are in Appendix B.3.

4.3 Evaluating Representation Effectiveness for Policy Learning

Next, we evaluate whether the learned object-centric representations can facilitate policy learning. To
do so, we fix the representation backbone and train only the policy head using the PPG algorithm on
three Procgen games: Bigfish, Starpilot, and Coinrun, with three random seeds for each game. We
use the “easy” difficulty setting with an unlimited number of levels.

We compare the performance of policies using object-centric representations learned by Dyn-O against
policies using representations directly output by the Cosmos encoder, and the policy performance
(measured as reward) are shown in Table. 3. Policies using object-centric representations achieve
much higher reward than policies with raw patch-level features, demonstrating the effectiveness of
Dyn-O’s representations for downstream task learning.

Table 2: Probing accuracy (↑), in percentage (%), on coinrun privilege properties, shown the mean and standard
deviation . Static features have much higher prediction accuracy than dynamic features for static properties
(i.e., RGB values), while dynamic features have higher accuracy on dynamic properties (i.e., position and area),
demonstrating that Dyn-O achieves effective static-dynamic disentanglement

Static Properties Dynamic Properties
R value G value B value x position y position area

slots 83.5 ± 0.0 81.7 ± 0.0 89.3 ± 0.0 91.8 ± 0.0 94.5 ± 0.0 97.1 ± 0.0
dynamic features 47.7 ± 7.3 45.7 ± 7.3 47.0 ± 8.9 78.1 ± 5.1 75.2 ± 6.6 83.3 ± 3.1

static features 67.3 ± 1.4 70.9 ± 1.9 81.7 ± 2.2 34.9 ± 1.2 37.7 ± 2.0 75.3 ± 0.4
random features 25.8 ± 0.0 27.3 ± 0.0 23.2 ± 0.0 29.3 ± 0.0 28.3 ± 0.0 73.3 ± 0.0

9

Table 3: Reward of policies using different representations, measured by the mean and standard
deviation across three random seeds.

Representation Bigfish Starpilot Coinrun

Cosmos encoder 0.90 ± 0.02 8.80 ± 0.47 8.00 ± 0.18
Dyn-O (ours) 7.67 ± 4.02 19.19 ± 0.88 8.95 ± 0.38

4.4 Evaluating Static-Dynamic Disentanglement

To examine whether the static and dynamic features learned by Dyn-O are disentangled, We probe the
model with environment-privileged information, evaluating whether static features only capture time-
invariant properties and whether dynamic features only capture time-varying properties. Specifically,
we use SAM to segment out objects in 10K transitions and extract the following properties for each
object as probing targets: area (i.e., the number of pixels), xy positions, and average RGB values
across object pixels. Then we compute each object’s slot, static feature, and dynamic feature as
probing inputs. During probing, we discretize each property into 10 bins and use a linear classifier
to predict the target. To establish a reference point for interpretation, we also perform the same
prediction using randomly initialized features, representing the performance expected when no
meaningful information is available in the inputs. Table 2 shows the prediction accuracy of all
features in the coinrun environment (see results for other environments in the Appendix). Dyn-O
shows strong disentanglement results, particularly as the prediction accuracy of static features for
position and area is close to that of random features, indicating that static features capture little to no
information about dynamic properties.

We further illustrate the disentanglement between static and dynamic features with qualitative
examples. Fig. 6 presents rollouts generated after swapping static features between two initial states.
As shown, rollouts from the same initial states (the first and third rows) remain nearly identical,
except for the color changes in the avatar and floor. The same pattern is observed in the second and
fourth rows, demonstrating that Dyn-O preserves dynamics while modifying only static properties.

5 Conclusion

We present Dyn-O, a world modeling method that builds on object-centric representations. By lever-
aging segmentation masks during training with a schedule, Dyn-O learns high-quality object-centric
representations while avoiding the overhead of segmentation computation at inference time. Addition-
ally, Dyn-O further disentangles each object feature into static, time-invariant components (e.g., color)
and dynamic, time-variant components (e.g., position), allowing it to generate diverse predictions.
Dyn-O predicts in latent space, with a pretrained decoder used for visualization. Exploring more
sophisticated decoding methods, such as diffusion models, could further enhance the visual quality of
generated rollouts.

Acknowledgements

The majority of this work has taken place in the Learning Agents Research Group (LARG) at the
Artificial Intelligence Laboratory, The University of Texas at Austin. LARG research is supported
in part by the National Science Foundation (FAIN-2019844, NRT-2125858), the Office of Naval
Research (N00014-24-1-2550), Army Research Office (W911NF-17-2-0181, W911NF-23-2-0004,
W911NF-25-1-0065), DARPA (Cooperative Agreement HR00112520004 on Ad Hoc Teamwork),
Lockheed Martin, and Good Systems, a research grand challenge at the University of Texas at Austin.
The views and conclusions contained in this document are those of the authors alone. Peter Stone
serves as the Chief Scientist of Sony AI and receives financial compensation for that role. The
terms of this arrangement have been reviewed and approved by the University of Texas at Austin in
accordance with its policy on objectivity in research.

10

References
[1] G. Aydemir, W. Xie, and F. Güney. Self-supervised Object-centric Learning for Videos. In

Advances in Neural Information Processing Systems, 2023.

[2] J. Baek, Y.-F. Wu, G. Singh, and S. Ahn. Dreamweaver: Learning compositional world
representations from pixels. arXiv preprint arXiv: 2501.14174, 2025.

[3] J. Bai, W. Wang, and C. P. Gomes. Contrastively disentangled sequential variational autoencoder.
Advances in Neural Information Processing Systems, 34:10105–10118, 2021.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013.

[5] N. Berman, I. Naiman, I. Arbiv, G. Fadlon, and O. Azencot. Sequential disentanglement by
extracting static information from a single sequence element. arXiv preprint arXiv:2406.18131,
2024.

[6] C. P. Burgess, L. Matthey, N. Watters, R. Kabra, I. Higgins, M. Botvinick, and A. Lerch-
ner. Monet: Unsupervised scene decomposition and representation. arXiv preprint arXiv:
1901.11390, 2019.

[7] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to benchmark
reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

[8] K. W. Cobbe, J. Hilton, O. Klimov, and J. Schulman. Phasic policy gradient. In International
Conference on Machine Learning, pages 2020–2027. PMLR, 2021.

[9] L. Cohen, K. Wang, B. Kang, and S. Mannor. Improving token-based world models with parallel
observation prediction. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=Lfp5Dk1xb6.

[10] G. F. Elsayed, A. Mahendran, S. van Steenkiste, K. Greff, M. Mozer, and T. Kipf. Savi++: To-
wards end-to-end object-centric learning from real-world videos. Neural Information Processing
Systems, 2022. doi: 10.48550/arXiv.2206.07764.

[11] M. Engelcke, A. R. Kosiorek, O. P. Jones, and I. Posner. Genesis: Generative scene inference
and sampling with object-centric latent representations. arXiv preprint arXiv: 1907.13052,
2019.

[12] N. et. al. Cosmos world foundation model platform for physical ai. arXiv preprint
arXiv:2501.03575, 2025.

[13] S. Ferraro, P. Mazzaglia, T. Verbelen, and B. Dhoedt. Focus: Object-centric world models for
robotics manipulation. arXiv preprint arXiv: 2307.02427, 2023.

[14] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In Interna-
tional conference on machine learning, pages 1180–1189. PMLR, 2015.

[15] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv: 2312.00752, 2023.

[16] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf.

[17] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv: 1912.01603, 2019.

[18] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
International Conference on Learning Representations, 2020.

11

https://openreview.net/forum?id=Lfp5Dk1xb6
https://openreview.net/forum?id=Lfp5Dk1xb6
https://proceedings.neurips.cc/paper_files/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf

[19] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[20] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse control tasks through world
models. Nature, 640(8059):647–653, Apr. 2025.

[21] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

[22] J. Jiang, F. Deng, G. Singh, and S. Ahn. Object-centric slot diffusion. Neural Information
Processing Systems, 2023. doi: 10.48550/arXiv.2303.10834.

[23] J. Jiang, F. Deng, G. Singh, M. Lee, and S. Ahn. Slot state space models. arXiv preprint arXiv:
2406.12272, 2024.

[24] J. Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and R. Girshick.
Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2901–
2910, 2017.

[25] T. Kipf, G. F. Elsayed, A. Mahendran, A. Stone, S. Sabour, G. Heigold, R. Jonschkowski,
A. Dosovitskiy, and K. Greff. Conditional object-centric learning from video. arXiv preprint
arXiv:2111.12594, 2021.

[26] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu. Conflict-averse gradient descent for multi-task
learning. Advances in Neural Information Processing Systems, 34, 2021.

[27] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem. Chal-
lenging common assumptions in the unsupervised learning of disentangled representations. In
international conference on machine learning, pages 4114–4124. PMLR, 2019.

[28] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Doso-
vitskiy, and T. Kipf. Object-centric learning with slot attention, 2020.

[29] V. Micheli, E. Alonso, and F. Fleuret. Transformers are sample-efficient world models. Interna-
tional Conference on Learning Representations, 2022. doi: 10.48550/arXiv.2209.00588.

[30] V. Micheli, E. Alonso, and F. Fleuret. Efficient world models with context-aware tokenization. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=BiWIERWBFX.

[31] Ð. Miladinović, M. W. Gondal, B. Schölkopf, J. M. Buhmann, and S. Bauer. Disentangled state
space representations. arXiv preprint arXiv:1906.03255, 2019.

[32] A. Nakano, M. Suzuki, and Y. Matsuo. Interaction-based disentanglement of entities for object-
centric world models. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=JQc2VowqCzz.

[33] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[34] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,
D. Haziza, F. Massa, A. El-Nouby, R. Howes, P.-Y. Huang, H. Xu, V. Sharma, S.-W. Li,
W. Galuba, M. Rabbat, M. Assran, N. Ballas, G. Synnaeve, I. Misra, H. Jegou, J. Mairal,
P. Labatut, A. Joulin, and P. Bojanowski. Dinov2: Learning robust visual features without
supervision, 2023.

[35] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland,
L. Gustafson, E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dol-
lár, and C. Feichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. URL https://arxiv.org/abs/2408.00714.

[36] A. Sehgal, A. Grayeli, J. J. Sun, and S. Chaudhuri. Neurosymbolic grounding for compositional
world models. International Conference on Learning Representations, 2023. doi: 10.48550/
arXiv.2310.12690.

12

https://openreview.net/forum?id=BiWIERWBFX
https://openreview.net/forum?id=BiWIERWBFX
https://openreview.net/forum?id=JQc2VowqCzz
https://arxiv.org/abs/2408.00714

[37] M. Seitzer, M. Horn, A. Zadaianchuk, D. Zietlow, T. Xiao, C.-J. Simon-Gabriel, T. He, Z. Zhang,
B. Schölkopf, T. Brox, and F. Locatello. Bridging the gap to real-world object-centric learning.
arXiv preprint arXiv: 2209.14860, 2022.

[38] M. C. Simon, P. Frossard, and C. D. Vleeschouwer. Sequential representation learning via
static-dynamic conditional disentanglement. In European Conference on Computer Vision,
pages 110–126. Springer, 2024.

[39] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Machine learning proceedings 1990, pages 216–224. Elsevier, 1990.

[40] H.-Y. Tseng, L. Jiang, C. Liu, M.-H. Yang, and W. Yang. Regularing generative adversarial
networks under limited data. In CVPR, 2021.

[41] J. Wu, H. Ma, C. Deng, and M. Long. Pre-training contextualized world models with in-the-wild
videos for reinforcement learning. Advances in Neural Information Processing Systems, 36,
2024.

[42] Z. Wu, N. Dvornik, K. Greff, T. Kipf, and A. Garg. Slotformer: Unsupervised visual dynamics
simulation with object-centric models. International Conference on Learning Representations,
2022. doi: 10.48550/arXiv.2210.05861.

[43] Z. Wu, J. Hu, W. Lu, I. Gilitschenski, and A. Garg. Slotdiffusion: Object-centric generative
modeling with diffusion models. Advances in Neural Information Processing Systems, 36:
50932–50958, 2023.

[44] L. Yingzhen and S. Mandt. Disentangled sequential autoencoder. In International Conference
on Machine Learning, pages 5670–5679. PMLR, 2018.

[45] L. Zhao, L. Kong, R. Walters, and L. L. Wong. Toward compositional generalization in object-
oriented world modeling. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 26841–26864. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/v162/zhao22b.html.

[46] S. Zhou, Y. Du, J. Chen, Y. Li, D. Yeung, and C. Gan. Robodreamer: Learning compositional
world models for robot imagination. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=kHjOmAUfVe.

13

https://proceedings.mlr.press/v162/zhao22b.html
https://openreview.net/forum?id=kHjOmAUfVe
https://openreview.net/forum?id=kHjOmAUfVe

Table 4: The Architecture and Hyperparameters of Encoder Learning.

Name Value

bigfish caveflyer coinrun dodgeball jumper ninja starpilot
slots 31 63 31 31 31 47 47

slot dimension 256
slot attention iterations 3

image size [224, 224, 3]
patch size 16
optimizer Adam

learning rate 4e-4
data size 1M

epoch 15
batch size 64

Cosmos model Cosmos-0.1-Tokenizer-CI16x16

Table 5: The Architecture and Hyperparameters of Dynamics Learning.

Name Value

dynamic feature dimension 256
static feature dimension 256
self-attention # layers 1

self-attention model size 512
self-attention # heads 8

SSM # layers 2
SSM model size 512

SSM dstate 64
SSM dconv 4
optimizer Adam

learning rate 1e-4
batch size 32

A Method Details

A.1 Encoder

The architecture and hyperparameter used during encoder training are shown in Table. 4.

A.2 Dynamics

During dynamic feature training, the slot reconstruction loss and the disentanglement loss may
have conflicting gradient and hinder model learning. To mitigate this issue, we leverage gradient
modification [26] to enhance the balance between two objectives.

The architecture and hyperparameter used during encoder training are shown in Table. 5.

B Experiment Details

B.1 Environment Details

Among the 16 Procgen environments, we selected 7 environments based on their relevance to object-
centric learning and visual complexity. Specifically, we looked for environments with moving objects,
dynamic layouts, and minimal sensitivity to color. Based on these criteria, we excluded maze-like
environments such as Maze, Heist, Chaser, and Miner, as well as Plunder, where the ship’s color
plays a critical role. Among the remaining games, we randomly selected 7 while ensuring diversity
across game types, given resource constraints.

14

Table 6: slot-object binding accuracy, measured by FR-ARI (↑).

Environments Oracle Dyn-O (ours) SOLV

bigfish 0.96 0.80 0.54
coinrun 0.33 0.27 0.10
dogeball 0.79 0.48 0.17
starpilot 0.86 0.47 0.49

average 0.74 0.51 0.33

(a) Oracle (b) Dyn-O (ours) (c) SOLV

(d) Oracle (e) Dyn-O (ours) (f) SOLV

(g) Oracle (h) Dyn-O (ours) (i) SOLV

(j) Oracle (k) Dyn-O (ours) (l) SOLV

Figure 7: Qualitative evaluation of the object-centric representation learning in bigfish, coinrun,
dodgeball, and starpilot.

B.2 Evaluating Object-Centric Representation

The object-centric representation evaluation for 4 procgen environments are shown in Table. 6 and
Fig. 7. By leveraging segmentation masks only during training, Dyn-O significantly outperforms
SOLV in all environments, in terms of slot-object binding accuracy.

15

Table 7: Rollout accuracy for each Procgen environment at 20-th timestamp, measured as mean and
standard error.

Environment Metric DreamerV3 Dreamerwaver Dyn-O w/o OC Dyn-O (ours)

bigfish

LPIPS (↓) 0.39 ± 0.01 0.52 ± 0.01 0.36 ± 0.01 0.25 ± 0.01
FVD (↓) 567.20 ± 11.18 831.17 ± 15.55 248.94 ± 16.32 126.88 ± 6.42
SSIM (↑) 0.73 ± 0.01 0.68 ± 0.00 0.68 ± 0.01 0.76 ± 0.01
PSNR (↑) 19.34 ± 0.14 19.09 ± 0.12 20.16 ± 0.27 20.28 ± 0.30

caveflyer

LPIPS (↓) 0.53 ± 0.01 – 0.59 ± 0.01 0.61 ± 0.01
FVD (↓) 1104.50 ± 18.87 – 966.07 ± 28.71 877.74 ± 20.99
SSIM (↑) 0.44 ± 0.01 – 0.26 ± 0.01 0.26 ± 0.01
PSNR (↑) 11.99 ± 0.12 – 10.93 ± 0.19 10.82 ± 0.13

coinrun

LPIPS (↓) 0.34 ± 0.01 – 0.36 ± 0.01 0.28 ± 0.01
FVD (↓) 530.31 ± 10.51 – 583.11 ± 16.07 266.13 ± 6.16
SSIM (↑) 0.60 ± 0.01 – 0.47 ± 0.01 0.62 ± 0.01
PSNR (↑) 14.22 ± 0.25 – 12.61 ± 0.14 13.56 ± 0.19

dodgeball

LPIPS (↓) 0.42 ± 0.01 – 0.15 ± 0.01 0.14 ± 0.01
FVD (↓) 903.51 ± 20.44 – 481.55 ± 20.83 372.50 ± 15.07
SSIM (↑) 0.50 ± 0.01 – 0.72 ± 0.01 0.76 ± 0.01
PSNR (↑) 16.10 ± 0.05 – 20.33 ± 0.12 20.88 ± 0.15

ninja

LPIPS (↓) 0.48 ± 0.01 – 0.49 ± 0.01 0.45 ± 0.01
FVD (↓) 423.27 ± 14.26 – 521.32 ± 15.85 313.57 ± 9.73
SSIM (↑) 0.45 ± 0.01 – 0.33 ± 0.01 0.54 ± 0.01
PSNR (↑) 12.58 ± 0.17 – 12.80 ± 0.10 11.95 ± 0.12

starpilot

LPIPS (↓) 0.37 ± 0.01 0.50 ± 0.01 0.50 ± 0.01 0.22 ± 0.01
FVD (↓) 626.47 ± 14.95 735.24 ± 21.48 429.36 ± 15.46 211.27 ± 12.70
SSIM (↑) 0.69 ± 0.01 0.68 ± 0.00 0.72 ± 0.01 0.76 ± 0.01
PSNR (↑) 19.99 ± 0.08 19.48 ± 0.13 19.76 ± 0.23 20.55 ± 0.13

Table 8: Rollout accuracy for CLEVR and ALE environments at 20-th timestamp, measured as mean
and standard error.

Environment Metric DreamerV3 Dyn-O (ours)

CLEVR

LPIPS (↓) 0.34 ± 0.00 0.31 ± 0.00
FVD (↓) 1676.18 ± 40.92 446.57 ± 8.55
SSIM (↑) 0.86 ± 0.00 0.88 ± 0.00
PSNR (↑) 21.37 ± 0.09 22.63 ± 0.06

Atari Skiing

LPIPS (↓) 0.12 ± 0.00 0.09 ± 0.01
FVD (↓) 217.84 ± 3.76 187.76 ± 8.04
SSIM (↑) 0.91 ± 0.00 0.93 ± 0.00
PSNR (↑) 25.46 ± 0.13 26.39 ± 0.16

Atari Boxing

LPIPS (↓) 0.04 ± 0.00 0.02 ± 0.00
FVD (↓) 237.90 ± 12.15 218.68 ± 15.68
SSIM (↑) 0.93 ± 0.00 0.95 ± 0.00
PSNR (↑) 30.00 ± 0.14 29.46 ± 0.09

B.3 Evaluating World Model Accuracy

The world model accuracy for other procgen environments are shown in Table. 7 and Fig. 8 - Fig. 10.
In most environments, Dyn-O significantly outperforms baselines in term of prediction accuracy.

Meanwhile, we further compare Dyn-O against DreamerV3 on the CLEVR dataset [24] and two
ALE environments [4] (Skiing and Boxing), and the results are shown in Table. 8.

16

Figure 8: 20-step rollouts in dodgeball. 1st row: ground-truth, 2nd row: Dyn-O (ours), 3rd row:
DreamerV3, and 4th row: Dyn-O w/o OC. Dyn-O significantly outperforms dreamer, with sharp
player shape and accurate predictions of threw balls.

Figure 9: 20-step rollouts in jumper. 1st row: ground-truth, 2nd row: Dyn-O (ours), 3rd row:
DreamerV3, and 4th row: Dyn-O w/o OC. Dyn-O significantly outperforms dreamer, with sharp wall
and player trail until 10th timestamp.

B.4 Evaluating Static-Dynamic Disentanglement

The probing accuracy for other procgen environments are shown in Table. 9 - 12. The same privilege
information may belong to different properties in different environments, which we label out in the
tables. In some environments, the same privilege information can be static properties of some objects
and can dynamic for other objects. In such case, we mark such privilege information as "mixed".

17

Figure 10: 20-step rollouts in ninja. 1st row: ground-truth, 2nd row: Dyn-O (ours), 3rd row:
DreamerV3, and 4th row: Dyn-O w/o OC. Dyn-O significantly outperforms dreamer, with sharper
wall shape at 15-th timestamp.

Table 9: Probing accuracy (↑), in percentage (%), on bigfish privilege properties.

mean R values mean G values mean B values x position y position area
static static static dynamic static static

slots 74.7 ± 0.0 77.9 ± 0.0 83.8 ± 0.0 97.7 ± 0.0 98.3 ± 0.0 100.0 ± 0.0
dynamic features 49.3 ± 3.0 48.4 ± 2.4 47.4 ± 3.7 94.0 ± 1.9 45.2 ± 5.1 95.9 ± 1.2

static features 65.8 ± 4.2 67.6 ± 4.8 77.5 ± 1.2 29.3 ± 0.4 88.8 ± 0.7 100.0 ± 0.0
random features 37.6 ± 0.0 31.8 ± 0.0 37.3 ± 0.0 19.2 ± 0.0 20.8 ± 0.0 88.6 ± 0.0

Table 10: Probing accuracy (↑), in percentage (%), on dodgeball privilege properties.

mean R values mean G values mean B values x position y position area
static static static mixed mixed static

slots 90.2 ± 0.0 91.7 ± 0.0 91.2 ± 0.0 98.7 ± 0.0 98.7 ± 0.0 99.8 ± 0.0
dynamic features 66.0 ± 1.6 62.4 ± 1.2 61.1 ± 1.8 55.4 ± 1.8 57.7 ± 2.5 95.3 ± 1.7

static features 73.1 ± 1.2 74.2 ± 1.4 75.5 ± 1.7 74.9 ± 2.4 70.4 ± 2.9 99.3 ± 0.0
random features 53.3 ± 0.0 35.5 ± 0.0 42.9 ± 0.0 20.1 ± 0.0 19.7 ± 0.0 90.1 ± 0.0

Table 11: Probing accuracy (↑), in percentage (%), on ninja privilege properties.

mean R values mean G values mean B values x position y position area
static static static dynamic dynamic dynamic

slots 87.1 ± 0.0 80.7 ± 0.0 86.1 ± 0.0 95.0 ± 0.0 96.6 ± 0.0 97.3 ± 0.0
dynamic features 60.7 ± 9.7 51.3 ± 8.2 60.6 ± 9.0 86.3 ± 3.0 88.1 ± 0.3 87.6 ± 2.2

static features 77.6 ± 2.9 62.2 ± 0.4 79.6 ± 0.4 35.9 ± 0.9 37.8 ± 1.1 82.2 ± 1.3
random features 32.9 ± 0.0 25.4 ± 0.0 31.3 ± 0.0 25.0 ± 0.0 19.5 ± 0.0 80.5 ± 0.0

18

Table 12: Probing accuracy (↑), in percentage (%), on starpilot privilege properties.

mean R values mean G values mean B values x position y position area
static static static dynamic static static

slots 71.5 ± 0.0 79.1 ± 0.0 71.0 ± 0.0 97.2 ± 0.0 97.5 ± 0.0 99.5 ± 0.0
dynamic features 55.6 ± 7.2 66.5 ± 6.4 55.3 ± 6.2 94.8 ± 0.9 77.0 ± 14.2 97.9 ± 1.7

static features 55.9 ± 1.1 70.7 ± 1.1 50.5 ± 1.8 26.8 ± 0.7 76.6 ± 3.2 99.2 ± 0.0
random features 35.9 ± 0.0 50.6 ± 0.0 36.3 ± 0.0 18.3 ± 0.0 22.7 ± 0.0 92.0 ± 0.0

19

	Introduction
	Related Work
	Method
	Extracting Object-Centric Representations
	World Model with Object-Centric Representations

	Experimental Evaluation
	Evaluating Object-Centric Representation
	Evaluating World Model Accuracy
	Evaluating Representation Effectiveness for Policy Learning
	Evaluating Static-Dynamic Disentanglement

	Conclusion
	Method Details
	Encoder
	Dynamics

	Experiment Details
	Environment Details
	Evaluating Object-Centric Representation
	Evaluating World Model Accuracy
	Evaluating Static-Dynamic Disentanglement

