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Abstract. We explore two advantages of interleaving execution with
planning. First, the overall planning and execution time can be reduced.
Second, information from the environment can be incorporated into the
planner's knowledge of the world. We extend the prodigy planner to
handle execution as prompted by the user and to incorporate informa-
tion that results from this execution. Such information can either arise
automatically or can be input by the user. Finally, we brie
y discuss
ways to help the user determine potentially useful or needed points for
execution during planning.
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1 Introduction

Planners do not generally have the ability to actually manipulate and sense the real
world. Instead, they receive domain and problem descriptions from a human user and
return a sequence of actions to be executed. Ideally, planners have enough time and
information to reach a complete solution before execution must begin. However, this is
not the case in either time-critical or incompletely-de�ned situations. On the one hand,
the user may want to begin execution while the planner is still planning to improve the
combined planning and execution time. On the other hand, the user may need to start
execution to gather information necessary to continue planning.

It is a well-recognized complex problem to decide when and how to interleave execu-
tion and planning [1, 10, 11]. In this initial work towards addressing this general issue,
we assume that the planner does not autonomously determine when to execute a plan
step: the user decides. We present a planning and execution algorithm which we imple-
mented as an extension to the current prodigy planning algorithm [2]. The algorithm
allows the user to execute planning steps either for e�ciency reasons or for information
gathering purposes. The planner is extended to accommodate the user-selected exe-
cution in three ways. First, it is prepared to recommend actions for execution during
the planning process. Second, it keeps track of which actions have been executed (as
indicated by the user), so that it can produce a �nal plan accordingly. Third, it is able
to incorporate new information from execution into its planning process. This �nal



extension also allows us to incorporate changes in the planning state due to extraneous
events.

Several researchers have investigated the problem of interleaving planning and execu-
tion [5, 6, 8, 15]. The main focus of this research was on the de�nition and investigation
of reactive planning, and on issues of e�cient replanning. When deliberative planning
was used to generate plans, most of the combined planning and execution approaches
assumed that execution would be delayed as long as possible. During execution, elab-
orate methods for replanning are developed and invoked when execution alters the
planning state in an unpredictable way. More recently, other researchers focused on
producing contingency plans that try to enumerate di�erent possible outcomes of ac-
tions at execution time. In addition, speci�c information gathering operators are added
into the deliberative planning process to execute actions that probe the environment
for planning information [3, 12, 13]. In our work, we learn from and build upon these
di�erent aspects of previous work. The main contributions of our work at this stage of
development, as presented in this paper, are as follows. First, we recognize the possi-
ble bene�ts of early execution. Being aware of the di�culty of deciding correctly and
generally when to start execution, we include the user in the planning loop, allowing
the user to decide when execution should take place. Second, we extend the prodigy
planning algorithm to handle user-guided execution, suggesting possible break points
for the user to request execution. Third, we provide a mechanism by which execution
can be used to update the planning knowledge base.

2 Implications of Execution in Planning

Planning, independently of which planning algorithm is used, proceeds incrementally.
New plan steps are introduced into the plan one at a time and choices and commit-
ments are made as to which steps to select along the way. If a planning algorithm
is to be complete, then all the choices must have a chance to be visited. Hence, no
commitment made during the planning process should eliminate a portion of the search
space that could possibly yield a solution: every signi�cant choice is reversible through
backtracking. Steps may be reordered when threats are found, di�erent operators may
be selected to achieve a particular goal, and di�erent plan re�nements may be explored.

Real execution of an action during the planning process removes some control from
the planning algorithm: it can no longer backtrack over all of its deliberative commit-
ments. In this sense, execution consists of real-world commitment. Real execution can
also provide additional knowledge for the planning process. In this sense, execution
consists of real-world sensing.

In general, real execution of plan steps while planning, i.e., before planning is com-
pleted, has multiple implications. In this paper, we focus primarily on two particular
issues: the impact in terms of overall running time and quality of solutions of the com-
bined planning and execution process; and the information gathering aspect, by which
execution provides additional information to be used by the planner.

2.1 Quality of plans and time of plan execution

As mentioned above, one aspect of execution is real-world commitment as opposed to
the exploration of alternatives at planning time. For example, consider the following
example of planning with limited resources. Suppose a driver needs to plan a route from



one location to another, perhaps including some necessary intermediate stops. Suppose
further that it is late at night, so that gas stations are not open. When the vehicle moves,
its fuel gets spent, and fuel in this situation is a limited resource. The intelligent agent
starts planning for particular routes and destinations that would be reached. There
are several alternatives. Suppose that the intelligent agent, in its deliberative mode,
explores the alternative of moving along path X. It continues planning and later on, by
analyzing further knowledge, it comes to the conclusion that path X leads to a dead
end. This leads the planner to a failure, but the planner, in its deliberative reasoning,
simply backtracks and plans to send the vehicle on a di�erent path Y.

Suppose now that planning is interleaved with execution: when path X is proposed
as an option, the driver goes ahead and orders the vehicles to start moving along path
X. When path X is found to lead to a dead end, the planner cannot control that choice
any longer as the step is already under execution. The vehicle may not be able to
return back from path X as its fuel may not be enough for the return path. The eager
execution leads to a real failure.

There is therefore a clear tradeo� between the simulation of execution at delibera-
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(a) The planner can simulate execution. Operator b is applied to the state I and
a new internal state, S1, is achieved. Planning fails as plan step a cannot 
be executed in state S1. The planner simply backtracks and succeeds.

Figure 1: During planning, the planner can backtrack over its choices, as shown in (a). If
planning is combined with real execution, replanning may be needed and new steps must be
added to the plan, as shown in (b). Real executed steps are shown in diamonds. I is the
initial state and G is the goal statement. Operator b' reverses the e�ects of b.



tion time, which allows the planner to backtrack upon its choices, and the real execution
of steps which triggers the need for replanning instead of simple backtracking. Figure 1
illustrates this particular trade-o� in a general planning scenario using the representa-
tion of the search space in prodigy [4, 16]. The �gure clearly illustrates the di�erence
between the simulation of execution at planning time, which allows the planner to
backtrack upon its choices, and the real execution of steps which triggers the need for
replanning instead of simple backtracking.

As shown in Figure 1(b) early execution may lead to solutions that are longer than
an optimal solution (shown in Figure 1(a)). Interleaving planning and execution a�ects
the global time of the combined planning and execution process. An optimal plan may
be executed successfully concurrently with planning; but concurrent execution may also
cause generation of UN-optimal solutions in which conditions need to be reachieved.
Figure 2 sketches the possible e�ects of interleaving planning with execution in terms
of solution quality and overall running time.

(b) 6 steps executed; Total time = 9.

(d) 8 steps executed; Total time = 14.

(a) 6 steps executed; Total time = 12.

(c) 8 steps executed; Total time = 11.

Time
Planning

Execution

Figure 2: Interleaving planning and execution a�ects the global time of the combined planning
and execution process. It may also a�ect the quality of the plans generated: in (b) the optimal
plan (6-step long) is executed successfully in only 9 time steps; in (c) early execution leads
into a non-optimal plan (8-step long) but combined execution and planning time is better
than in (a); �nally (d) shows the undesirable situation corresponding to a longer plan and
delayed execution.

2.2 Execution as a source of information

Time pressure is only one force that can cause the user to execute an action. Execution
can also allow real observation of the e�ects of plan steps. In incompletely or incor-
rectly de�ned planning domains, execution is the best (and maybe the only) source of
gathering accurate planning information. Execution adds knowledge from the world
that can be used for future planning. Explicit requests for execution of plan steps can
be triggered during the planning process, as designed by information-gathering plan-
ning operators [3, 12]. Opportunistic or informed execution may also be requested by
a user during the planning process; the planning knowledge is then freshly updated for
more informed future planning. In general, information gathered by execution during
planning may open or prune alternatives for the planner. Figure 3 illustrates a planning
scenario in which execution of an early step is needed to complete the plan.

In general, information gathered via real execution makes the planner proceed in a
more informed manner. The chances of needing to replan during the execution phase
should decrease. For the purposes of this paper, we assume correct sensing. This
assumption is not unreasonable since we allow the user to be the sensor.
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Figure 3: The planning process fails because, according to its internal knowledge of the world,
the planner �nds that a necessary plan step, namely the operator c, cannot be achieved in the
current state S1. The user triggers execution of the plan step b which updates the planning
knowledge to a new state S2 where c can now be selected by the planner.

3 User-Guided Execution

What is so di�cult about interleaving planning and execution? Since the planner
loses control of the steps that it executes, it should try very hard to guarantee that
these steps will not interact with future steps before committing irrevocably to them.
The ability to give this guarantee is very di�cult for a planner. However, the human
user may have intuition or knowledge of when it is safe to execute. In addition, the
information gathered at execution time may enable new planning choices or invalidate
others. Although it is hard for a planner to predict the e�ects of executing an operator
in the real world, a user may be better aware of the right moment to execute.

We implemented a framework where a user can interact with a planning algorithm
to select the execution of plan steps. We extended the prodigy planning algorithm
to incorporate real execution. The prodigy algorithm is well suited for interleaving
planning and execution because it can reason about a simulated execution sequence
[4, 14]. Thus real execution can proceed from a sequence of plan steps which are
available for execution. Using its means-ends analysis strategy, early in the planning
process, prodigy selects operators that reduce the di�erences between the current state
and the goal statement. These plan step choices may be revised as planning proceeds,
as long as they have not yet been executed. prodigy readily provides a set of plan steps
to be executed rather early in its planning process. Other planners that do not use state
information in their planning process would need to modify their algorithms to produce
plan steps that are candidates to be executed at any given planning moment. Although
for many planners this modi�cation would not be di�cult to implement, prodigy
provides executable operators for free. Once any planner is given the capability of
identifying executable steps, our work can be applied to that planner as well.

In our system, the planner queries the user every time it has a new operator to
suggest for execution. It suggests operators that have been applied, but not executed.
Applied operators are those whose execution has been simulated by the planner accord-
ing to its internal state. Applying an operator by the planner produces a new internal
world state. Executed operators are those selected for execution by the user from the
set of applied ones. When an operator is executed, the internal state of the planner
is updated with new information gathered. Table 1 sketches the extended planning
algorithm combined with user-guided execution.

The extension to the prodigy planner consisted mainly of adding the following
functionality for when a plan step is executed: new state information is gathered and
the internal state of the planner is updated; all of the choices made leading up to
the application of that operator are �nalized, i.e. they can no longer be backtracked
over; and operators that would normally be discarded because they reverse the e�ects
of previous operators are now considered, but as a last resort. In this way, when an



1. Terminate if the goal statement is satis�ed in the current planning state. Return a list
of plan steps indicating which have been executed.

2. Check if there is an executable plan step, i.e., a step which has been applied but not yet
executed. If there is none, go to step 4.

3. For every executable plan step, ask the user if it should be executed. If yes,

� Close all backtrack points corresponding to the executed operator.
� Incorporate newfound information from the execution into the planning state.
� Go to step 2.

4. Plan:

� Either
� Identify a goal that needs to be achieved.
� Add a new operator or link an existing plan step to achieve this goal.

� Or
� Apply (simulate execution of) an operator previously selected to be in the
plan.

� Go to step 1.

Table 1: The prodigy planning algorithm combined with user-guided real execution of plan
steps.

operator is executed, all e�orts are made to �nd a solution that uses that operator
productively.

The interesting illustration of our technique would be a demo of the implemented
algorithm, where the user can select which steps to be executed. As it is not possible
to give a real demo in a written paper, we include a few running traces in a very simple
task to exemplify the user-guided method as developed so far.

Consider a domain where luggage is loaded into containers of limited capacity to be
carried by an airplane. At planning time, there is no knowledge of the weight or size of
each piece of luggage. Thus there is no basis on which to plan to select new containers
after some amount of luggage has been loaded into a particular container. The planning
operator \Load-Container", as shown below using prodigy representation language [2],
only checks if a container is available.

(OPERATOR LOAD-CONTAINER

(params <object> <container> <airport>)

(preconds

((<object> OBJECT)

(<container> CONTAINER)

(<airport> AIRPORT))

(and (at <object> <airport>)

(at <container> <airport>)

(available-container <container>)))

(effects

()

((del (at <object> <airport>))

(add (inside <object> <container>))

(add (loaded <object>)))))

Real execution of each loading step decreases the amount of available space in the
container being loaded until it is full. Then execution monitoring updates the planner's
knowledge and the planner receives the information that the particular container is no
longer available. If execution is not interleaved with planning, the planner plans to load



In this situation there are three objects, obj1, obj2, obj3,

to be loaded and two containers available, cont1 and cont2;

cont1 has enough capacity to carry only object obj1.

____________________________________________________________

;;User selects execution to gather additional information:

<cl> (run)

[Initial state: ... (available-container cont1)

(available-container cont2)

(available-container cont3)]

** <LOAD-CONTAINER OBJ1 CONT1> can be executed.

Should I execute <LOAD-CONTAINER OBJ1 CONT1>? y

Executed. Information update to the planning state:

[delete: (available-container cont1)]

** <LOAD-CONTAINER OBJ2 CONT2> can be executed.

Should I execute <LOAD-CONTAINER OBJ2 CONT2>? n

** <LOAD-CONTAINER OBJ2 CONT2>, <LOAD-CONTAINER OBJ3 CONT2>

can be executed -- independent steps.

Should I execute <LOAD-CONTAINER OBJ2 CONT2>? n

Should I execute <LOAD-CONTAINER OBJ3 CONT2>? n

Outcome of Planning:

<LOAD-CONTAINER OBJ1 CONT1> - executed.

<LOAD-CONTAINER OBJ2 CONT2>

<LOAD-CONTAINER OBJ3 CONT2>

Execution:

<LOAD-CONTAINER OBJ2 CONT2> - executed.

<LOAD-CONTAINER OBJ3 CONT2> - executed.

Success. Goals achieved after planning and real execution.

____________________________________________________________

;;Execution is not interleaved with planning.

;;Replanning is needed.

<cl> (run)

** <LOAD-CONTAINER OBJ1 CONT1> can be executed.

Should I execute <LOAD-CONTAINER OBJ1 CONT1>? no-more

Outcome of Planning:

<LOAD-CONTAINER OBJ1 CONT1>

<LOAD-CONTAINER OBJ2 CONT1>

<LOAD-CONTAINER OBJ3 CONT1>

Execution:

<LOAD-CONTAINER OBJ1 CONT1> - executed.

<LOAD-CONTAINER OBJ2 CONT1> - failed.

Failure. Replan needed.

____________________________________________________________

Figure 4: Interleaving execution and planning to gather information for informed planning.

all the luggage into the same container. In this case, the real execution, after planning
is completed, necessarily leads to failure and the need to replan. The trace shown in
Figure 4 (slightly edited for presentation purposes) shows one example where execution
is successfully interleaved with planning and another one where the lack of execution
leads to uninformed planning.

In the �rst example of Figure 4, the user guides the planner to execute the �rst
step as soon as possible. In doing so, the planner learns that cont1 can not hold any
more objects beyond obj1. This information is not available to the planner prior to
execution: the state of the world is updated as a result of the execution. With this one
step executed, the planner then knows to load the other objects in cont2 rather than
cont1. Indeed, the resulting plan can be successfully completed.



The motivation behind including the user in the loop, is that the user may have the
sensitivity to know when it could be important to execute an operator. For example,
the user may have knowledge not available to the planner about which operators are
reversible and which are not. In addition, looking back at our example, the user may
know that cont1 can easily hold several objects and thus may want to delay real
loading for a while. After some time, the user may opt to execute in order to see if
there is still room available. Note that in this case, the planner could not decide based
on the operator being considered that execution is a good idea: the user may decide
that the \Load-Container" operator should not be executed at �rst, but later that it
should indeed be executed. The planner may be able to suggest which operators are
occasionally useful to execute early, but ultimately the user decides. Eventually, our
system will need to be modi�ed to become more user-friendly.

In our modi�ed version of the prodigy algorithm, the availability of cont1 is deleted
not by a planning operator, but by a separate function that is invoked to represent real
execution. Were our system hooked up to a robot that could manipulate and sense the
world, then this change of state would not have to be modeled. Rather, it could be
sensed by the robot. Although robot sensing is often noisy, we assume correct sensing at
this point. The planner's internal state that results from applying operators to its initial
state incorporates such changes of state that are not the result of planning operators by
always including them in its internal state representation and then reasoning from this
representation. The successful result of such a process is illustrated in the �rst example
of Figure 4.

On the other hand, when the user does not guide the planner to execute the �rst step,
as in the second example of Figure 4, the planner continues on without the necessary
information. Since nothing deletes the availability of cont1, the planner plans to load
all three objects into this container. Then when execution is attempted, a failure results:
planning must begin anew.

We can run a variety of other execution examples that show other information
gathering opportunities and the impact in the quality of solution and overall running
time. We can also have the planner prompt the user for missing information that should
have been discovered by the user during execution. For instance, in the example above,
prodigy could ask the user for the weight of obj1 when it is actually loaded and then
determine whether or not there is any more room in cont1 afterwards.

4 Discussion and Conclusion

In our current work, we are working towards connecting the algorithm to real execution
agents, both software and robotic [7]. We would also like to propose useful execution
breaking points to a completely automated system or to less-informed users. A domain-
independent heuristic to select execution points should allow execution when there is
reason to believe that either there will not be a need to backtrack over the resulting
execution or that execution will provide additional information needed for future plan-
ning. In this case, allowing real execution will: save overall execution and planning
time, as the plan starts being executed concurrently with planning; relieve the need for
a completely-de�ned planning domain, as execution can provide information to re�ne
other planning steps; and increase overall planning e�ciency, as the planner is free from
the need to keep track of a large number of open choices. After execution, the situation
is equivalent to starting a new and potentially more informed planning problem.



The characteristics of the heuristic described remind us of the properties of Knoblock's
abstraction hierarchies [9], which can lead to no backtracking across re�nement spaces.
We can execute the re�nement of each abstraction step incrementally, also with the
hope that execution of the plan steps corresponding to the re�nement of one abstrac-
tion level will gather information necessary for the re�nement of the other abstraction
steps as illustrated in Figure 5.

Abstraction level

0S

1. Refine 1st 

Gather information from execution

0S 1S

2. Execute  the refined plan.

and compute a new planning state.

abstract plan step
3. Continue planning:

Figure 5: Execution break points guided by abstraction level information.

Another heuristic that the planner could use to suggest execution points is based
on the past decisions of the user. By caching the operators that the user has decided to
execute in the past, and by noticing at what point in the planning process the decision
was made, the planner may be able to learn when it it may be useful to begin execution.
We intend to explore this possibility further in the future.

We discussed why interleaving planning and execution is hard, and presented the
framework we created in which the user interacts with the planner. The user enables
the planner to take advantage of execution to gather new planning information and
to incorporate this information into the planning state, thus improving overall perfor-
mance. We implemented the approach as an extension to the prodigy planner. The
trace shown in this paper does not make use of our current graphical user interface.
We are currently also developing more sophisticated graphical representations of the
planning alternative decisions and dependencies to better support the integration with
the human user. Adding the ability to interleave planning and execution controlled by
the user can increase the usefulness of general purpose planners.
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