
In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA 2021) (icra 2021),
Xi’an China June 2021

APPLR: Adaptive Planner Parameter Learning from Reinforcement

Zifan Xu1, Gauraang Dhamankar2, Anirudh Nair3, Xuesu Xiao2,
Garrett Warnell2,4, Bo Liu2, Zizhao Wang5, and Peter Stone2,6

Abstract— Classical navigation systems typically operate us-
ing a fixed set of hand-picked parameters (e.g. maximum
speed, sampling rate, inflation radius, etc.) and require heavy
expert re-tuning in order to work in new environments. To
mitigate this requirement, it has been proposed to learn
parameters for different contexts in a new environment using
human demonstrations collected via teleoperation. However,
learning from human demonstration limits deployment to the
training environment, and limits overall performance to that
of a potentially-suboptimal demonstrator. In this paper, we
introduce APPLR, Adaptive Planner Parameter Learning from
Reinforcement, which allows existing navigation systems to
adapt to new scenarios by using a parameter selection scheme
discovered via reinforcement learning (RL) in a wide variety
of simulation environments. We evaluate APPLR on a robot
in both simulated and physical experiments, and show that it
can outperform both a fixed set of hand-tuned parameters and
also a dynamic parameter tuning scheme learned from human
demonstration.

I. INTRODUCTION

Most classical autonomous navigation systems are capable
of moving robots from one point to another, often with
verifiable collision-free guarantees, under a set of parameters
(e.g. maximum speed, sampling rate, inflation radius, etc.)
that have been fine-tuned for the deployment environment.
However, these parameters need to be re-tuned to adapt to
different environments, which requires extra time and en-
ergy spent onsite during deployment, and more importantly,
expert knowledge of the inner workings of the underlying
navigation system [1], [2].

A recent thrust to alleviate the costs associated with
expert re-tuning in new environments is to learn an adaptive
parameter tuning scheme from demonstration [3]. Although
this approach removes the requirement of expert tuning,
it still depends on access to a human demonstration, and
the learned parameters are typically only applicable to the
training environment. Moreover, the performance of the

Department of 1Physics zfxu@utexas.edu, 2Computer Science
{dgauraang, xiao, bliu, pstone}@cs.utexas.edu,
3Mathematics ani.nair@utexas.edu, 5Electrical and Computer
Engineering zizhao.wang@utexas.edu, University of Texas
at Austin, Austin, Texas 78712. 4Computational and Information
Sciences Directorate, Army Research Laboratory, Austin, Texas 78712
garrett.a.warnell.civ@mail.mil. 6Sony AI. This work
has taken place in the Learning Agents Research Group (LARG) at UT
Austin. LARG research is supported in part by NSF (CPS-1739964, IIS-
1724157, NRI-1925082), ONR (N00014-18-2243), FLI (RFP2-000), ARO
(W911NF-19-2-0333), DARPA, Lockheed Martin, GM, and Bosch. Peter
Stone serves as the Executive Director of Sony AI America and receives
financial compensation for this work. The terms of this arrangement have
been reviewed and approved by the University of Texas at Austin in
accordance with its policy on objectivity in research.

system is limited by the quality of the human demonstration,
which may be suboptimal.

In this paper, we seek a new method for adaptive au-
tonomous navigation which does not need access to expert
tuning or human demonstration, and is generalizable to many
deployment environments. We hypothesize that a method
based on reinforcement learning in simulation could achieve
these goals, and we verify this hypothesis by proposing
and studying Adaptive Planner Parameter Learning from
Reinforcement (APPLR). By using reinforcement learning,
APPLR introduces the concept of a parameter policy (Fig.
1), which is trained to make planner parameter decisions
in such a way that allows the system to take suboptimal
actions at one state in order to perhaps perform even better
in the future. For example, while it may be suboptimal in
the moment to slow down or alter the platform’s trajectory
before a turn, doing so may allow the system to carefully
position itself so that it can go much faster in the future
than if it had not. Additionally, as opposed to an end-to-
end motion policy (i.e., a mapping from states to low-level
motion commands), APPLR’s parameter policy interacts with
an underlying classical motion planner, and therefore the
overall system inherits all the benefits enjoyed by classical
approaches (e.g., safety and explainability). We posit that
learning policies that act in the parameter space of an existing
motion planner instead of in the velocity control space
can increase exploration safety, improve learning efficiency,
generalize well to unseen environments, and allow effective
sim-to-real transfer.

II. RELATED WORK

In this section, we summarize related work on existing
parameter tuning approaches for classical navigation and on
learning-based navigation systems.

A. Parameter Tuning

Classical navigation systems usually operate under a static
set of parameters. Those parameters are manually adjusted
to near-optimal values based on the specific deployment
environment, such as high sampling rate for cluttered en-
vironments or high maximum speed for open space. This
process is commonly known as parameter tuning, which
requires robotics experts’ intuition, experience, or trial-and-
error [1], [2]. To alleviate the burden of expert tuning,
automatic tuning systems have been proposed, such as those
using fuzzy logic [4] or gradient descent [5], to find one
set of parameters tailored to the specific navigation scenario.

Fig. 1: Instead of learning an end-to-end motion policy �m
which takes state S and reward R from the world W and
produces raw actions A, e.g. linear and angular velocity
(v; !) (left), APPLR treats an underlying classical motion
planner f as part of the meta-environment E (along with
the world W) and the learned parameter policy �p interacts
with it through actions in the parameter space (right). In
this way, the RL agent selects its action in the form of a
set of navigation parameters at each time step and reasons
about potential future consequences of those parameters,
rather than tuning a single set of parameters for the entire
environment only considering the current situation.

Recently, Xiao et al. introduced Adaptive Planner Parame-
ter Learning from Demonstration (APPLD), which learns a
library of parameter sets for different navigation contexts
from teleoperated demonstration, and dynamically tunes the
underlying navigation system during deployment. APPLD’s
parameter-tuning “on-the-fly” opens up a new possibility
for improving classical navigation systems. However, APPLD
makes decisions about which parameters to use based exclu-
sively on the current context in a manner that disregards the
potential future consequences of those decisions.

In contrast, APPLR goes beyond this myopic parameter
tuning scheme and introduces the concept of a parameter
policy, where we use the term policy to explicitly denote
state-action mappings found through reinforcement learning
to solve long-horizon sequential decision making problems.
By using such a policy, APPLR is able to make parameter-
selection decisions that take into account the possible future
consequences of those decisions.

B. Learning-based Navigation

A plethora of recent works have applied machine learn-
ing techniques to the classical mobile robot navigation
problem [6]–[11]. By directly leveraging experiential data,
these learning approaches can not only enable point-to-point
collision-free navigation without sophisticated engineering,
but also enable capabilities such as terrain-aware naviga-
tion [12], [13] and social navigation [14], [15]. However,
most end-to-end learning approaches are data-hungry, requir-
ing hours of training time and millions of training data/steps,
either from expert demonstration (as in imitation learning)
or trial-and-error exploration (RL). Moreover, when an end-
to-end policy is trained in simulation using RL, the sim-
to-real gap may cause problems in the real-world. Most
importantly, learning-based methods typically lack safety and

explainability, both of which are important properties for
mobile robots interacting with the real-world.

APPLR aims to address the aforementioned shortcomings:
as a RL approach, learning in parameter space (instead of
in velocity control space) effectively eliminates catastrophic
failures (e.g. collisions) and largely reduces costly random
exploration, with the help of the underlying navigation sys-
tem. This change in action space can also help to generalize
well to unseen environments and to mitigate the difference
between simulation and the real-world (e.g. physics).

III. APPROACH

We now introduce the proposed approach, APPLR, which
aims to apply RL to identify an optimal parameter selection
policy for a classical motion planner. By doing so, APPLR
naturally inherits from the classical planner its safety guar-
antees and ability to generalize to unseen environments. In
addition, through RL, APPLR learns to autonomously and
adaptively switch planner parameters “on-the-fly” and in
a manner that considers future consequences without any
expert tuning or human demonstration. In the rest of this
section, we first introduce the background of classical motion
planning. Then, we provide the problem definition of APPLR
under the standard Markov Decision Process framework.
Finally, we discuss the designed reward functions and the
chosen reinforcement learning algorithm.

A. Background on Motion Planning

In this work, we assume the robot employs a classical
motion planner, f , that can be tuned through a set of planner
parameters � 2 �. While navigating in a physical worldW ,1

f tries to move the platform to a global navigation goal,
e.g., � = (�x; �y) 2 R2. At each time step t, f receives
sensor observations ot (e.g. lidar scans), and then computes
a local goal g = (gx; gy) 2 R2, which the robot attempts
to reach quickly. Then, f is responsible for computing the
motion commands ut = f(ot; � j �) (e.g. ut can be the
angular/linear velocity). Most prior work in the learning
community attempts to replace f entirely by a learnable
function �m that directly outputs the motion commands.
However, the performance of these end-to-end planners is
usually limited due to insufficient training data and poor
generalization to unseen environments. In contrast, we focus
here on a scheme for adjusting the planner parameters �
“on-the-fly”. We expect learning in the planner parameter
space to increase the overall system’s adaptability while still
benefiting from the verifiable safety assurance provided by
the classical system.

B. Problem Definition

We formulate the navigation problem as a Markov Deci-
sion Process (MDP), i.e., a tuple (S;A; T ; ; R). Assume an
agent is located at the state st 2 S at time step t. If the agent
executes an action at 2 A, the environment will transition
the agent to st+1 � T (�jst; at) and the agent will receive

1In classical RL approaches for navigation, W is usually defined as an
MDP itself with the conventional state and action space (Fig. 1).

a reward rt = R(st; at). The overall objective of RL is to
learn a policy � : S ! A that can be used to select actions
that maximize the expected cumulative reward over time, i.e.
J = E(st;at)��[

∑1
t=0

trt].
In APPLR, we seek a policy in the context of an MDP E

that denotes a meta-environment composed of both the under-
lying navigation world W (the physical, obstacle-occupied
world) and a given motion planner f with adjustable param-
eters � 2 � and sensory inputs o 2 O. Additionally, we
assume going forward that a local goal g is always available
(as a waypoint along a coarse global path in most classical
navigation systems), and we use its angle relative to the
orientation of the agent, i.e., � = arctan 2(gy; gx) 2 [��; �],
to inject the local goal information to the agent. We assume
the agent interacts with the environment at regular time
intervals of fixed length. Within E , at each time step t,
st = (ot; �t; �t�1), where ot 2 O is the current sensory
inputs, �t 2 G is the angle towards the local goal, and
�t�1 2 � is the previous planner parameter that f was using.
That is, for our MDP E , S = O�G�� and A = �. In this
context, APPLR aims to learn a policy �p : O � G � � !
� that selects a planner parameter �t that enables f to
achieve optimal navigation performance over time. The agent
then transitions to the next state st+1 = (ot+1; �t+1; �t),
where ot+1; �t+1 � T (�jst; �t) are given by E . The overall
objective is therefore

max
�

J� = Es0;�t��(st);st+1�T (st;�t)

[1∑
t=0

trt

]
: (1)

After training with a reward function (Sec. III-C and
III-D), the learned parameter policy �p is deployed with
the underlying navigation system f in the world W , as
summarized in Alg. 1.

Algorithm 1 Navigation with APPLR

Require: the physical world W , the underlying motion
planner f , the global goal �, the initial parameter �0,
and the parameter policy �p.

1: t = 1
2: while � is not reached do
3: receive sensor readings ot from W and local goal �t

from a coarse global plan
4: �t = �p(ot; �t; �t�1) fparameter policyg
5: ut = f(ot; � j �t) ff parameterized by �tg
6: execute ut in W
7: t = t+ 1
8: end while

C. Reward Function

We now describe our design of the reward function for
APPLR. In general, we encourage three types of behaviors:
(1) behaviors that lead to the global goal faster; (2) behaviors
that make more local progress; and (3) behaviors that avoid
collisions and danger. Correspondingly, the designed reward

function can be summarized as

Rt(st; at; st+1) = cfRf + cpRp + ccRc: (2)

Here, cf ; cp; cc are coefficients for the three types of re-
ward functions Rf ; Rp; Rc : S � A ! R. Specifically,
Rf (st; at) = 1(st is terminal) � 1 applies a �1 penalty to
every step before reaching the global goal. To encourage the
local progress of the robot, we add a dense shaping reward
Rp. Assume at time t, the absolute coordinates of the robot
are pt = (pxt ; p

y
t), then we define

Rp =
(pt+1 � pt) � (� � pt)

j� � ptj
: (3)

In other words, Rp denotes the robot’s local progress (pt+1�
pt) projected on the direction toward the global goal (��pt).
Finally, a penalty for the robot colliding with or coming too
close to obstacles is defined as Rc = �1=d(ot+1), where
d(ot+1) is a distance function measuring how close the robot
is to obstacles based on sensor observations.

D. Reinforcement Learning Algorithm

We consider two major factors for choosing the RL algo-
rithm for APPLR: (1) the algorithm should allow selection
of continuous actions since the parameter space of most
planners is continuous; (2) the algorithm should be highly
sample efficient for physical simulation of navigation. Based
on these two criteria, we use the Twin Delayed Deep Deter-
ministic policy gradient algorithm (TD3) [16] for APPLR.
As one of the state-of-the-art off-policy algorithms, TD3
is very sample efficient and handles continuous actions by
design. Specifically, TD3 is an actor-critic algorithm that
keeps an estimate for both the policy ��p and the state-action
value function Q�p, parameterized by � and � separately. For
the policy, it uses the usual deterministic policy gradient
update [17]

r�J�
ξ
p = Es��ξp

[
raQ�p(s; a)ja=�ξp

r��p(s)
]
: (4)

To address the maximization bias on the estimation of
Q�p, which can influence the gradient in equation (4),
TD3 borrows the idea from double Q learning [18]
of keeping two separate Q estimators Q�1p and Q�2p ,
each updated using the conventional Bellman residual ob-
jective E(s;a;r;s′)�E

[
jjQ�p(s; a)� r � maxa′ Q

�
p(s
0; a0)jj2

]
.

TD3 further stabilizes training by using the clipped value
min(Q�1p (s; a); Q�2p (s; a)) in the place of the target in the
Bellman residual objective during the critic update to reduce
overestimation of the true value. Then, Q�1p is used in equa-
tion (4) to update the actor policy. Additionally, a delayed
updating strategy that updates the policy less frequently
than the value function is employed to further stabilize the
training. As physical simulations suffer from high variance
and are generally slow, TD3 is a good fit for APPLR.

To further address the sample inefficiency issue, a dis-
tributed general reinforcement learning architecture (Gorila)
[19] is employed, which enables parallelized acting processes
on a computing cluster. Our implementation of Gorila is a

