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Abstract— In existing task and motion planning (TAMP)
research, it is a common assumption that experts manu-
ally specify the state space for task-level planning. A well-
developed state space enables the desirable distribution of
limited computational resources between task planning and
motion planning. However, developing such task-level state
spaces can be non-trivial in practice. In this paper, we consider
a long horizon mobile manipulation domain including repeated
navigation and manipulation. We propose Symbolic State Space
Optimization (S3O) for computing a set of abstracted locations
and their 2D geometric groundings for generating task-motion
plans in such domains. Our approach has been extensively
evaluated in simulation and demonstrated on a real mobile
manipulator working on clearing up dining tables. Results show
the superiority of the proposed method over TAMP baselines
in task completion rate and execution time.

I. INTRODUCTION

At the task level, robots frequently use symbolic planners
to sequence high-level actions [1]. At the motion level,
each high-level action is grounded to low-level trajectories
in continuous spaces using motion planners [2]. TAMP
algorithms aim to bridge the gap between task planning
and motion planning towards enabling robots to fulfill task-
level goals and maintain motion-level feasibility at the same
time [3], [4]. A common and widely accepted assumption for
most TAMP research is that the task planner is predefined
by a domain expert who manually specifies a symbolic state
space. In this paper, we discuss TAMP in a long horizon
mobile manipulation domain where the robot is given a task
of repeated navigation to perform manipulation behaviors
(e.g., pick and place) in different places.

Nevertheless, manually constructing state spaces might not
be desirable in some scenarios. Fig. 1 shows a situation
where in long horizon mobile manipulation domains, if each
object is placed at a separate symbolic location as defined
in the task-level state space, the robot will always need to
navigate before picking up the next object. This is because
the task planner believes only a navigation action can bring
the robot to the location required by the next manipulation
action. In practice, however, the robot often picks up multiple
objects from a single position, for example, as restaurant
waiters can easily identify a standing location that allows
them to pick up multiple dishes at once. Especially when
objects are located close to each other, it is unnecessary
for the robot to navigate before every manipulation. This
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Fig. 1: Objects are frequently in separate symbolic locations in a
predefined task planner. A TAMP system with such a fine-grained
state space would always generate plans that suggest the robot
navigate before every manipulation. However, if an optimized state
space can include multiple objects (that are close to each other)
in a single location, the robot will be able to navigate once and
perform a sequence of manipulation actions. We aim to answer how
to compute such symbolic locations and their geometric groundings.

observation motivated the development of this research on
optimizing symbolic state spaces for task planners to best
facilitate TAMP for long horizon mobile manipulation.

One of the challenges in optimizing symbolic state spaces
for TAMP, which is the focus of this work, comes from
the uncertainties in action and perception. We consider
failures in navigation and manipulation behaviors, e.g., due
to the robot being too close to obstacles or too far from
the target objects. To this end, we propose Symbolic State
Space Optimization (S3O) based on probabilistically eval-
uated action feasibility under uncertainty. S3O partitions
the continuous configuration space into a set of abstracted
locations with their 2D geometric groundings to compute
efficient and feasible task-motion plans in long horizon
mobile manipulation domains.

Fig. 2 shows an overview of S3O which first constructs a
candidate set of object-centric symbolic state spaces using
Voronoi Partitioning [5]. Then the algorithm ranks each
state space by a scoring function developed using feasibility
evaluation from robot perception. The ranking mechanism
effectively reduces the search complexity of state spaces
by controlling the size of the candidate set. Top-ranked
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Fig. 2: An overview of Symbolic State Space Optimization (S3O)
for Task and Motion Planning systems.

state spaces are used for constructing the task planner in
the TAMP system where we further apply an Evolution
Strategy (ES) algorithm [6] for efficient motion-level search.
The proposed framework has been quantitatively evaluated in
simulation and qualitatively demonstrated on real hardware,
where the robot works on the task of “clearing up dining
tables.” Compared to existing TAMP baselines, experimental
results show that our approach consistently leads to high-
quality task-motion plans in terms of task completion rate
and plan execution time.

II. RELATED WORK

In this section, we describe the three most related research
areas, including those task and motion planning methods
that optimize plan efficiency and feasibility, research that
learns symbolic representations for robot planning, and the
application domain of long horizon mobile manipulation.

A. TAMP for Efficient and Feasible Behaviors

Task and motion planning research can be categorized into
two groups: one includes high-level actions that take no more
than a few seconds (e.g., picking up, putting down and push-
ing objects), the other requires robot actions taking relatively
long time (e.g., long-term navigation) [7]. The former type of
TAMP has a long history in the literature and focuses mostly
on action feasibility [8], [9], [10], [11], [12], [13], [14], while
some recent methods have considered behavioral efficiency
in the latter type of TAMP, usually in robot navigation,
autonomous driving, or mobile manipulation domains [7],
[15], [16], [17], [18], [19], [20]. One common assumption
for these TAMP methods is the predefined task planner.
Unlike those, we probabilistically compute action feasibility
via visual perception to optimize the task-level state space.

B. Symbol Learning for Robot Planning

Learning-based methods have shown effectiveness in
model acquisition and symbol generation for robot planning.
Researchers have learned action preconditions and effects
models for enabling purely symbolic planning [21] and inte-
grated task-motion planning [22]. Some other work focuses
on symbol learning and mapping, such as connecting natural
language to learned symbolic abstractions [23], learning state
abstractions for bootstrapping motion planning [24], and
learning to ground the physical meanings of object attribute
symbols in the real world [25]. In our work, we also learn to
generate and map each symbol from the continuous space,

but going beyond that, we further optimize the efficiency and
feasibility of task-motion plans using the learned symbols.

C. Long Horizon Mobile Manipulation

There is rich literature on learning and planning coor-
dinated actions for mobile manipulation [26], [27]. Most
existing methods focused on positioning the base of a
mobile manipulator in such a way that manipulability is
maximized [28], [29], [30], [31]. A convincing technique
is using robot reachability maps [32], [33]. Recent research
applies reinforcement learning in a hierarchical style to tackle
this problem [34], [35], [36], [37], [38]. In this paper, we
not only consider coordinated navigation and manipulation,
but also optimize a sequence of mobile manipulation ac-
tions over a long horizon. Sequential mobile manipulation
tasks [39] have been studied, including works that aimed to
minimize platform movements to reach a set of poses in the
workspace [40] or to minimize the overall cost of completing
the task [41]. As compared to our approach, we also consider
perception and assume execution-time uncertainty from both
perception and actuation.

III. PROBLEM STATEMENT

We present the terminologies, assumptions, and objectives
of the TAMP problem we focus on in this research: a long
horizon mobile manipulation task where the robot repeatedly
navigates and picks up multiple objects in different locations.

Symbols and Symbol Mapping: O = {o1, o2...} is a set of
target objects that can be moved by a robot. L = {l1, l2...}
is a set of symbolic locations. Let y ∈ Y be a set of xy poses
in continuous space. Sym : Y → L is a function that maps
any 2D geometric position y ∈ Y to a symbolic location
l ∈ L. The symbolic state space of our problem is defined
in the form of ⟨L, Sym,Y⟩.
Actions: The robot is equipped with skills of performing a
set of actions denoted as A : An ∪Am, where An and Am

are navigation actions and manipulation actions respectively.
A navigation action an : ⟨lr, l′r, yr, y′r⟩ ∈ An is specified at
both low and high levels: 1) the robot’s current and next
symbolic locations that are denoted as lr, l

′
r ∈ L; 2) the

corresponding 2D coordinates yr, y′r mapped by Sym. r is a
symbol to denote “robot” as being distinguished from symbol
o for “object”. A manipulation action am : ⟨o, l, yr, yo⟩ ∈
Am is specified by an object (i.e., o) to be manipulated, the
object’s 2D location, yo, the object’s and the robot’s symbolic
location, l ∈ L. The robot and the object to be manipulated
should be in the same symbolic location. In this work, we
consider pickup as a manipulation action and goto as a
navigation action. Actions are defined via preconditions and
effects. For instance, the action pickup(o1) has precondi-
tions of at(robot, l1) and at(o1, l1), meaning that
to pick up the object o1, the object must be co-located with
the robot base in the same symbolic location l1. The effects
of pickup(o1) include o1 being moved into the robot’s
hand, i.e., inhand(o1).
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Fig. 3: Left: Action feasibility values are computed using robot
perception and represented as heatmaps. Right: A top-ranked
Voronoi Partition for the state space generated using S3O, where
objects A and B are in one symbolic location, and objects E and F
are in another one.

Action Uncertainty: Let T : T n ∪ T m be a set of prob-
ability distributions for modeling action uncertainties. For a
navigation action, T n(ŷ′r|yr, y′r) represents the probability of
a mobile robot aiming to navigate to goal y′r, while landing
in ŷ′r, given the current robot position yr. For a manipulation
action, T m(ŷ′o|yo, yr) represents the probability of the robot
given an end effector goal position yo of “reaching” the
object, while ending up at a position ŷ′o, given the robot’s
standing position yr. In practice, T n and T m are determined
by the robot’s navigation and manipulation systems. In this
paper, both T nand T m are treated as black box.

Perception: The robot visually perceives the environment.
While we provide the robot with top-down view images in
this work, our approach can be combined with perception
methods that rely on first-person view for object pose esti-
mation [42]. A map is generated in a pre-processing step,
and provided to the robot as prior information for navigation
purposes using rangefinder sensors. Please note that dynamic
obstacles such as randomly-placed chairs are not in the map.

Problem Formulation: The input of the problem is a tuple
⟨Yinit

o , yinitr ,A⟩. Yinit
o is a set of objects’ initial positions

and yinitr is the robot’s initial base pose. The problem outputs
a task-motion plan p which is in the form of a sequence of
navigation actions an ∈ An and manipulation actions am ∈
Am. The problem finds a task planner PlnL,Sym,Y that is
parameterized by the symbolic state space ⟨L, Sym,Y⟩, in
order to compute a task-motion plan p, where the objective
is to maximize the plan utility for improving task completion
rate and reducing robot execution time.

IV. SYMBOLIC STATE SPACE OPTIMIZATION (S3O)
In this section, we present the paper’s main contribution

called Symbolic State Space Optimization (S3O) which
optimizes the state space for the task planner based on
probabilistically evaluated action feasibility. S3O first con-
structs symbolic state spaces using object-centric Voronoi
Partitioning and robot reachability. And then it ranks a set of
candidate state spaces based on evaluated action feasibility.

Constructing Symbolic State Spaces: We construct state
spaces following two principles: 1) states (i.e., locations)

should be determined by which object(s) they are the closest
to; 2) the distance from the object to each pose in a state
should be within the maximum reachability (1 meter in our
case) of the robot. Thus, in our framework, we consider poses
that are around the objects within 1 meter, and generate areas
by object positions in the 2D configuration space using the
Voronoi Partitioning algorithm. The distance from each 2D
pose in an area to its corresponding object position is less
than that from every other object position. Each area in the
Voronoi diagram is considered as a symbolic location l, and
the whole Voronoi partition corresponds to a set of locations
L as well as a symbol mapping function Sym to map each
2D pose to a location l ∈ L. Further, possible adjacency area
merging operations are conducted in the Voronoi diagram.
Each area merging that results in a new symbolic state space
(i.e., ⟨L, Sym,Y⟩) is considered as a state space candidate.

Scoring Function for State Space Ranking: In order to
deal with a large number of objects, we compute scores
for each state space candidate, i.e., ⟨L, Sym,Y⟩. The score
is calculated using the following function that is based on
action feasibility:

Score(⟨L, Sym,Y⟩) =
∑
o∈O

Feat(l, o), if at(o, l) (1)

where Feat(l, o) is the task-level action feasibility function
that computes the probability of the robot navigating to
location l and picking up object o. Intuitively, if the symbolic
state space has a high accumulative task-level feasibility
value over all the objects, this state space will be evaluated
with a high score. Fig. 3 shows the evaluated action feasi-
bility (represented as heatmaps) and a top-ranked Voronoi
Partition for the state space.

After ranking the state spaces by the scores computed
using Eqn. 1, we select the top K state spaces to construct K
task planners at robot planning time. In each TAMP search
iteration, our system normalizes the scores to produce a
probability distribution from which one of the task planners
is chosen. The system plans in parallel, each with a sampled
task planner, and uses argmax to find the state space (i.e.,
⟨L, Sym,Y⟩) that generates a plan of the highest utility.

Action Feasibility Evaluation: Robot perception is used
to probabilistically evaluate action feasibility, represented as
function Fea : Feat ∪ Feam. The task-level feasibility
function Feat(l, o) takes a symbolic location l and an
object o as input, while the motion-level feasibility function
Feam(yr, yo) takes a robot 2D pose yr and an object 2D
pose yo as input. Both task-level and motion-level feasibility
functions output feasibility values ranging from 0.0 (infea-
sible) to 1.0 (feasible). In this work, Feat serves as a key
component in the proposed scoring function (Eqn. 1). Feam

is used to compute: 1) Feat, which is discussed in the next
paragraph, and 2) the plan utility, which is formally defined
in the next section.

Our task-level feasibility function Feat(l, o) shares the
same definition as what was initially introduced in [18].
Briefly summarizing here, Feat(l, o) relies on Feam(yr, yo)
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and a sampling function Smp. Feam(yr, yo) computes the
motion-level feasibility of robot navigating to 2D position
yr and picking up the object that is at position yo. Smp
samples 2D positions yr that satisfy Sym(yr) = l, where
the positions are weighted by Feam(yr, yo). In other words,
positions of higher motion-level feasibility are more likely to
be sampled. Computing Feat(l, o) is to calculate the average
motion-level feasibility over N samples from Smp.

We extract Feam(yr, yo) from a learned Fully Convo-
lutional Network model [43], which is trained using robot
data from past experience, represented as gray-scale heatmap
images. We trained the model by collecting a dataset that
diversifies the obstacle (i.e., chair) positions and is with
randomly-placed objects on the table. One recent work uses
the same architecture for motion-level feasibility evalua-
tion [18], but their model can only deal with objects that
are of a predefined distance from the table edge due to the
limitation of its training dataset. In comparison, the motion-
level feasibility function extracted from our model equips
the robot with the capability of handling more generalized
object pick and place tasks.

V. COMPUTING TASK-MOTION PLANS

Long horizon mobile manipulation domains require robots
to complete tasks as accurately and quickly as possible. This
section details how S3O computes task-motion plans.

As described in Sec. III, the objective of the problem is to
maximize the overall task completion rate and minimize the
robot execution time. Robot execution time is largely affected
by how much time each action takes (especially long-range
navigation actions), and the task completion rate depends on
manipulation action feasibility. To this end, at planning time,
we design the cost function for an action a as:

Cst(a) =

{
len(yr, y

′
r)/v + γ, if a ∈ An

δ, if a ∈ Am
(2)

where function len is able to measure the trajectory length
of executing a navigation action and v is the robot speed.
γ is a constant cost for navigation when the robot starts
moving, which motivates the robot to select as few navigation
actions as possible. δ is a constant cost for manipulation
actions which is relatively small as compared to the cost for
navigation actions.

We further use the action cost function to design the action
reward function. Let λ be a successful reward bonus of
picking up an object. The reward function is as follows:

R(a) =

{
−Cst(a), if a ∈ An

−Cst(a) + Feam(yr, yo) · λ, if a ∈ Am
(3)

We use the CMA-ES optimization technique [6] to serve
as the sampling algorithm for motion-level 2D poses that the
robot navigates to and performs the manipulation action(s)
at. Fig. 4 shows an example of the samples drawn from early
and late iterations of the CMA-ES sampler. Each sample we
draw is in the form of ⟨y1r [x], y1r [y], y2r [x], y2r [y], ...⟩, where
yir[x] (yir[y]) denotes the x (y) coordinate of the robot pose
for navigating to and picking up the ith object from. We
maintain an independent CMA-ES sampler for each fixed
task-level sequence, so we are able to form a complete task-
motion plan p by simply chaining the sampled xy positions.
Two consecutive pairs of xy positions (i.e., ⟨yir[x], yir[y]⟩ and
⟨yi+1

r [x], yi+1
r [y]⟩) can be used to parameterize a navigation

action, and every single pair of xy positions plus an object
position (i.e., yo) can be used to parameterize a manipulation
action. This enables us to convert a sample to a sequence of
actions and then evaluate the sample by computing

∑
R(a).∑

R(a) is the utility of a task-motion plan and serves as the
objective function for the CMA-ES sampler.

VI. EXPERIMENTS

We conducted extensive experiments in simulation, where
a mobile manipulator performs navigation and manipulation
actions to “collect dishes” in a “restaurant” scenario. We
also demonstrated the computed plan using our method on a
real robot. Our main hypothesis is that under a planning time
budget, the proposed framework outperforms existing TAMP
algorithms in task completion rate and robot execution time.

A. Baselines

Ours and the baseline methods differ from each other in
how to construct and optimize task planners (state spaces
in particular). We compare S3O with basic object-centric
Voronoi Partitioning (denoted as “V”). After selecting a task
planner, there are different TAMP strategies we can choose
from. We consider two TAMP algorithms for navigation
domains from the literature, which are GROP [18] and
PETLON [7]. Our TAMP component is built on GROP
and further incorporates the proposed CMA-ES sampling
algorithm for motion-level optimization. Thus, we denote
our TAMP strategy as GROP∗. Combining different methods
from task planner construction and TAMP strategy, we con-
sider the following five methods in total: S3O-GROP∗, S3O-
GROP, V-GROP∗, V-GROP, and V-PETLON. We briefly
summarize the major differences between the five methods:

• S3O-GROP∗ (proposed): It optimizes state spaces us-
ing S3O and samples navigation goals using CMA-ES.
The algorithm optimizes efficiency and feasibility.

• S3O-GROP: An ablative version of S3O-GROP∗. It is
the same as S3O-GROP∗ without CMA-ES.
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Fig. 5: Overall performances of our approach (S3O-GROP∗) and four baseline methods in task completion rate and robot execution time
(s). Tasks are grouped based on their difficulties. S3O-GROP∗ produced the highest task completion rate while maintaining the lowest
robot execution time. This observation is consistent over tasks of different difficulties.

• V-GROP∗: An ablative version of S3O-GROP∗. It is the
same as S3O-GROP∗ without state space optimization.

• V-GROP [18]: It does not optimize the state space, and
samples navigation goals only by feasibility. The algo-
rithm optimizes plan efficiency and action feasibility.

• V-PETLON [7]: It does not optimize the state space,
and selects navigation goals by just randomly sampling
an obstacle-free position that is close to the object
position. The algorithm optimizes plan efficiency but
does not evaluate action feasibility.

In comparison, our method, S3O-GROP∗, constructs the task
planner using S3O and selects navigation goals by CMA-
ES sampling, whose objective includes both motion-level
feasibility and long horizon mobile manipulation cost. Note
that we did not include “S3O-PETLON” as one of the
baselines as there is no feasibility evaluation in the original
PETLON algorithm, thus S3O is inapplicable.

B. Experimental Setup

The simulation environment contains seven tables of dif-
ferent sizes: one long table as the “bar area”, two mid-
sized tables, and four small tables that are able to take
one person per table. Objects to be collected are randomly
generated on the tables, and an obstacle (i.e., chair) that is
not mapped beforehand is placed near each object with a
randomly generated position and orientation. The number of
objects is dynamically changed for different environments,
ranging from 5 to 7. An RGB camera is attached to the
ceiling to capture overhead images of environments for robot
perception. We assume the robot can hold multiple objects
at the same time. Task completion is evaluated based on if
“dishes” on the tables are successfully “collected”.

The mobile manipulator in simulation includes a UR5e
robot arm, a Robotiq 2F-140 gripper, an RMP 110 mobile
base, and a Velodyne VLP-16 lidar sensor on the mobile
base. We used the Building-Wide Intelligence (BWI) code-
base [44] to construct our simulation platform, which relies
on the Gazebo physics engine [45]. Rapidly exploring Ran-
dom Tree (RRT) approach [46] is used to compute motion-
level manipulation plans. The navigation stack was built

using the move_base package of Robot Operating System
(ROS) [47]. The robot’s task planner is ASP-based [48],
[49] and the Clingo solver is applied for computing task
plans [50]. We adopted the FCN-VGG16 model [43] for
predicting action feasibility heatmaps. The model is trained
using a machine equipped with an Intel 3.80GHz i7-10700k
CPU and a GeForce RTX 3070 GPU on a Ubuntu system.

C. Planning Parameters

At planning time, we do parallel computing using 12 CPUs
on a different machine from training the FCN model. The
machine for planning is equipped with an 11th Gen Intel(R)
2.30GHz Core(TM) i7-11800H CPU. The planning time
budget is set to 300 seconds. For each task-level sequence,
the maximum number of motion-level samples that can be
drawn is 200. The manipulation constant cost δ is set to
5, and the navigation constant starting cost γ is set to 20.
The reward for a successful manipulation action λ has a
value of 150. The robot velocity v is set to 0.4m/s. For
the CMA-ES sampler, we consider the first 20 generations.
Since the number of motion-level samples is fixed (i.e., 200),
the population size of each generation is set to 10. After
ranking all possible state spaces, we choose the top 5 of
them according to the computed scores.

D. Task Completion Rate and Robot Execution Time

Fig. 5 shows the main results of task completion rate and
robot execution time. There were a total of 100 different
tasks. We grouped the tasks based on their difficulties: Easy,
Moderate, and Difficult. A task’s difficulty is measured by
the total area that a robot can navigate to and pick up an
object from. For instance, a task with all feasible picking up
positions being surrounded by obstacles has a high difficulty.
After sorting the tasks based on their difficulties, we evenly
placed them into the three groups.

Our system consistently performed the best in task com-
pletion rate (left subfigure) in all three settings, while main-
taining the lowest robot execution time (right subfigure).
We also see that methods that use S3O (i.e., S3O-GROP∗

and S3O-GROP) have better or at least similar performance
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TABLE I: Ablation study on the impact of different strategies
for constructing the task planner. Task completion rate / robot
execution time are reported in the table. S3O is our method that
does task planner optimization; S3O-Random is an ablative version
that uniformly selects the task planner from the candidate set.

Task Difficulty S3O S3O-Random

Easy 0.52 ± 0.02 / 107.90 ± 5.35 0.30 ± 0.06 / 96.95 ± 2.40

Moderate 0.36 ± 0.03 / 118.68 ± 2.78 0.18 ± 0.08 / 97.89 ± 4.22

Difficult 0.29 ± 0.02 / 131.25 ± 3.64 0.17 ± 0.08 / 102.85 ± 6.30

compared with the methods that use basic Voronoi Parti-
tioning (i.e., V-GROP∗, V-GROP, and V-PETLON). While
only considering methods that use Voronoi Partitioning, the
one that uses GROP∗ generates plans that are of the least
execution time and maintains a similar (higher) success rate
as compared to V-GROP (V-PETLON). Both GROP∗ and
GROP consider feasibility when sampling navigation points,
but the former also takes efficiency into account by using
CMA-ES. That is the reason why V-GROP∗ and V-GROP
share similar success rates but the former performs better in
plan efficiency. Overall, the results support our hypothesis.

E. Ablation Study

We also conducted an ablation study (as shown in TA-
BLE I) to learn the impact of different strategies for con-
structing the task planner, specifically how to select a state
space from a set of state space candidates at planning time.
Without a predefined state space, we compare two methods
for state space selection: the proposed S3O (with score rank-
ing), and an approach that uniformly samples state spaces
from all possible candidates (denoted as “Random”). We
observe that by considering S3O, the robot achieves a higher
task completion rate for all tasks. When uniformly selects a
state space to construct the task planner, the system produces
more cost-efficient plans, however, suffers from very poor
performance in completing the task. The reason is that the
random selection strategy treats every state space candidate
equally, even though some state spaces are unreasonable for
the current task. For instance, if two objects are too far from
each other for the robot to reach both, it will be reasonable
to separate the two objects into different locations instead of
merging them into a single one. However, given the limited
planning time, it is almost impossible for S3O-Random to
select the most suitable state space especially when there are
many objects, thus resulting in much lower task completion
rates. On the other hand, it is expected to see more Voronoi
area merging operations (including feasible and infeasible

ones) for S3O-Random than our method which prefers only
the feasible ones. As a result, the S3O-Random agent prefers
to navigate only a few times and tries to complete the whole
task, which is not ideal. In comparison, S3O (ours) seeks
balance in task completion rate and robot execution time.

F. Real Robot Demonstration

We demonstrated the generated plan using S3O-GROP∗

on a real robot, as shown in Fig. 6. We use the Human
Support Robot (HSR) from Toyota [51]. The robot is given
a “tidy home” task, including collecting three empty cans
and moving the apple to the white plate. Using our planning
framework, the robot planned to navigate to the first position
to do three manipulation actions: “collect” (i.e., pick up the
object and put it into a garbage bag mounted on the robot)
the green and red cans, and pick up the apple. While holding
the apple in hand, the robot then went to the second position
to place the apple on the plate. Finally, the robot planned to
go to the third position to collect the blue can.

VII. CONCLUSION

This paper introduces Symbolic State Space Optimiza-
tion (S3O), which constructs state space candidates from
object-centric partitioning of the configuration space and
ranks each candidate by probabilistically evaluating action
feasibility values. S3O is applied to a TAMP system for long
horizon mobile manipulation tasks where we further improve
motion-level search efficiency using CMA-ES. The resulting
framework is called S3O-GROP∗, which was extensively
evaluated in simulation and demonstrated it in real. Results
showed that S3O-GROP∗ produces task-motion plans that are
of higher quality than existing TAMP algorithms in terms of
task completion rate and robot execution time.
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