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Background

Navigation in highly-constrained environments.

Xiao, et al., Toward Agile Maneuvers in Highly Constrained Spaces: Learning from Hallucination. RA-L 21
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- Classical methods require increased computation.

- Sampling-based methods require more samples to find feasible motion. [Kavraki, et al.,
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- Optimization-based methods require more optimization iterations. [Quinlan, et al., 93, Zucker,
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Navigation in highly-constrained environments.

- Classical methods require increased computation.

- Sampling-based methods require more samples to find feasible motion. [Kavraki, et al.,
TRA96, Fox, et al., RAM97, LaValle, TechReport98]

- Optimization-based methods require more optimization iterations. [Quinlan, et al., 93, Zucker,
etal., IURR13, Zhou, et al,. RA-L21]

- Learning methods are fast but require good-quality training data.
- Imitation learning: demonstrations are hard to acquire. [Pfeiffer, et al., ICRA17, Tai, et al., IROS16]
- Reinforcement learning: trial-and-error is dangerous [Tai, et al., IROS17, Chiang, et al., RA-L19]



Background

Inspiration

It's safe for the robot to perform agile maneuvers in open space, which can be optimal
for certain highly-constrained environments.

Can we hallucinate obstacles that make those maneuvers optimal?

If so, open space motion plans become cheap training data for learning methods.
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Cq: goal configuration

C.: current configuration : '
P : motion plan




Background

Learning from Hallucination

Cq: goal configuration . Minimal Obstacle Set +
g : :
C.: current configuration Most ((;ir;s:tr :l-n:g L(;b)stacle Additional Obstacles

P : motion plan (Xiao, et al., ICRA 21)



Learning from Learned Hallucination (LfLH)

Motivation & Contribution

- Previous methods use hand-crafted hallucination techniques.
- Laboriously designed for specific robots (takes expert several weeks through lots of tuning
iterations)
- Only works for a short planning horizon (1m).

Minimal Obstacle Set +

Additional Obstacles
(Xiao, et al., ICRA 21)

Most Constrained Obstacle
(Xiao, et al., RA-L 21)



Learning from Learned Hallucination (LfLH)

Motivation & Contribution

- Previous methods use hand-crafted hallucination techniques.

- Laboriously designed for specific robots (takes expert several weeks through lots of tuning
iterations)

- Only works for a short planning horizon (1m).
- LfLH uses self-supervised learning to hallucinate obstacles
- Works with any robot type or planning horizon.
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D navigatioh 3D navigation
planning horizon: 45 m planning horizon: 75 m



Learning from Learned Hallucination

- Learning Hallucination

Method - Learning Hallucination — P
Hallucinator ® Cc
® C

- Hallucination function to learn

- Input: motion plan (time series
of positions + velocities)

- Output: obstacle distribution

Learnable
Hallucinator

(normal distributions of obstacle . Slow
locations + sizes) Classical
- Parametrized as neural network Planner




Learning from Learned Hallucination

Method - Learning Hallucination
Classical Planner

Find the optimal motion plan
given obstacles

Input: sampled obstacles
(locations + sizes)

Output: optimal motion plan
(time series of positions +
velocities)

No parameters to learn

Slow for data collection, but still
can be used for training
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Learning Hallucination

Learnable
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Slow
Classical
Planner
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Learning from Learned Hallucination

Method - Learning Hallucination ~.. Learning Hallucination
. _ _ ®C, '>
- Train the hallucinator with a ®C,
reconstruction loss. — Learnable
) ) @l Hallucinator
- If reconstruction loss = 0, Reconstruction @]
: . L .
hallucinator finds obstacles where EE))SS @, a™,
the open space motion plan is the ¢ ;
optimal solution. t t‘d ~al ClSlO‘.v :
. . reconstructe (gf\ assica
- We use a differentiable p . '@ |: Plarinien
optimization-based planner. For &=, )
non-differentiable planners, one ¢
can use approximate gradients. —_—
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Learning from Learned Hallucination

Method - Learning Motion Planning

- Use learned hallucinator ~ Lexming Motion Planning
to sample obstacles. _
: Learnable
- Render observations Negirmin)
according to robot’s

sensor modalities.

— lidar scan

Rel-: dei & ; 5 & \\§ . a \
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Learning from Learned Hallucination

Method - Learning Motion Planning

Learning Motion Planning

- Use learned hallucinator
to sample obstacles.
- Render observations

according to robot’s P—
sensor modalities. s
otion
- Train imitation learning i

motion planner with open

space motion plans as _

training data.



Learning from Learned Hallucination
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Learning from Learned Hallucination

2D Navigation Experiment - Setup

Baselines

- DWA planner with max speed 2.0 m/s

- Most constrained hallucination (LfH)

- Minimal hallucination + additional
obstacles (HLSD)

Robot: Clearpath Jackal Physical Environment

Perille, et al., Benchmarking Metric Ground Navigation, SSRR’20

Dataset of varying max speed

- LfH learns up to 0.4 m/s

- HLSD learns up to 1.0 m/s

- LfLH learns 2.0 m/s and beyond

Simulated Environment
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Learning from Learned Hallucination

2D Navigation Experiment - Results

DWA2.0 Dataset Con'\éltor:;[ned Ol\glsrjt;nc;aels LiLH
0.4 m/s 13.8+53s | 13.2+79s | 134+64s
221+114s 1.0 m/s N/A 85+52s 83+38s
2.0m/s N/A N/A 81+54s

Simulated Average Traversal Time
DWA Most Constrained | Minimal Obstacles LfLH

2.0m/s 0.4 m/s 1.0 m/s 2.0m/s

73.6+38s 784 +18s 50.6+0.8s 411+09s

Physical Average Traversal Time

Simulated Environment

Physical Environment
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Learning from Learned Hallucination

3D Navigation Experiment - Setup

Baselines

- Previous hallucination methods cannot handle
3D navigation, so they are not tested.

- EGO-planner (zhou, et al., RA-L 20)

Dataset: collected by EGO-planner rather than

random policy.

Task: keep navigating to randomly-generated

goals until collision.

Metrics: survival distance, survival time, success

weighted by path length.

(S: success boolean, I: shortest path length, p: path length)

1 K l;
SPL= LYK, 52

Simulated Environment & Observation
(Depth Image)
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Learning from Learned Hallucination

3D Navigation Experiment - Results

- LfLH survives longer in both distance and time Metrics Ego-Planner LfLH

Survival Time (s) 101.99+62.83 192.874+161.37
bUt has |OW8I’ SPL ) ) Survival Distance (m) 174.15+106.74  213.07+£172.98
- LfLH trades off aggressive motions for safety. spL 0.74 0.56
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https://docs.google.com/file/d/1AlO69EIF1DGrnfa7F_orctW-vbRV-1cg/preview

Future Work

- Use random policy to collect data for aerial vehicle.
- Design good exploration policy to cover necessary navigation skills
for all obstacle configurations.

- Can we apply Learning from Hallucination to dynamic obstacles?
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