LIBERO: Benchmarking Knowledge Transfer in Lifelong Robot Learning

Bo Liu*, Yifeng Zhu*, Chongkai Gao*, Yihao Feng, Qiang Liu, Yuke Zhu, Peter Stone

The University of Texas at Austin

Procedural Generation

Crowd-source Human Activities

- On(white_mug, init_region_1)
- On(cabinet, init_region_2)
- Open(cabinet_top_drawer)
 - Specify init Configuration

- On(white_mug, cabinet_top_side)
 - Close(cabinet_top_drawer)
 - Specify Task Goals

PDDL Definition File

LIBERO Task Suites

- LIBERO-Object
 - Different layouts, same objects

- LIBERO-Spatial
 - Different objects, same layout

- LIBERO-Goal
 - Different goals, same objects & layout

- LIBERO-100
 - Involve declarative knowledge
 - Involve procedural knowledge

- Diverse objects, layouts, backgrounds

Five Research Topics

- Distribution Shifts
- Algorithmic Designs
- Neural Architectures
- Task Orderings
- Pretraining Effects

Implemented Lifelong Algorithms

- Memory Buffer
 - Memory (Experience Replay)

- Dynamic Architecture
 - Dynamic Architecture (PackNet)

- Pretraining
 - Multitask Baseline (Multitask)

Results

- The tested lifelong algorithms are overall good at backward transfer, but not at forward transfer, while sequential baseline vice versa.

- Vision transformers are better at declarative knowledge, while convolution networks are better at processing procedural knowledge.

- Simple language instructions of task goals would only function as bags of words, degenerating to the case of using task ids.