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Abstract: Robot navigation in dynamic, human-centered environments re-
quires socially-compliant decisions grounded in robust scene understanding.
Recent Vision-Language Models (VLMs) exhibit promising capabilities such
as object recognition, common-sense reasoning, and contextual understand-
ing—capabilities that align with the nuanced requirements of social robot nav-
igation. However, it remains unclear whether VLMs can accurately understand
complex social navigation scenes (e.g., inferring the spatial-temporal relations
among agents and human intentions), which is essential for safe and socially
compliant robot navigation. While some recent works have explored the use of
VLMs in social robot navigation, no existing work systematically evaluates their
ability to meet these necessary conditions. In this paper, we introduce the Social
Navigation Scene Understanding Benchmark (SocialNav-SUB), a Visual Question
Answering (VQA) dataset and benchmark designed to evaluate VLMs for scene
understanding in real-world social robot navigation scenarios. SocialNav-SUB
provides a unified framework for evaluating VLMs against human and rule-based
baselines across VQA tasks requiring spatial, spatiotemporal, and social reason-
ing in social robot navigation. Through experiments with state-of-the-art VLMs,
we find that while the best-performing VLM achieves an encouraging probability
of agreeing with human answers, it still underperforms simpler rule-based ap-
proach and human consensus baselines, indicating critical gaps in social scene
understanding of current VLMs. Our benchmark sets the stage for further re-
search on foundation models for social robot navigation, offering a framework
to explore how VLMs can be tailored to meet real-world social robot navigation
needs. An overview of this paper along with the code and data can be found at
https://larg.github.io/socialnav-sub.

1 Introduction

Social robot navigation, defined as the ability for robots to move effectively and safely within
human-populated environments while adhering to social norms, is a fundamental yet challenging
task in robotics [1, 2]. As shown in Figure 1, navigating through social navigation scenarios re-
quires robots to interpret human intentions, adhere to social norms, and reason about spatial and
temporal interactions to respond to dynamic environments. While promising, learning-based meth-
ods that are trained on small datasets and conventional methods are often validated in controlled
scenarios with a small number of people, thus falling short in handling the complexity and nuance
in dynamic real-world social navigation scenarios [1, 3].

Recently, the research community has begun to explore whether advances in large Vision-Language
Models (VLMs) can be leveraged as part of a solution to social robot navigation, as they have
demonstrated strong capabilities in contextual understanding, commonsense reasoning, and chain-
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Figure 1: Examples of social robot navigation scenarios from SCAND [4]. The ability to de-
termine socially compliant navigation actions requires understanding each dynamic scene by spa-
tiotemporal reasoning (e.g. the movements of people in the scene) and social reasoning (inferring
the navigation intentions of people in the scene).

of-thought reasoning [5, 6, 7]. Trained in diverse large-scale multimodal datasets that span various
real-world scenarios, large VLMs often learn underlying patterns of human behavior that may im-
plicitly encode an understanding of social norms [8]. However, in social navigation, the scene un-
derstanding capabilities of VLMs remains underexplored: Recent works like VLM-Social-Nav [9]
have shown that using large VLMs for social robot navigation is promising, but their evaluations
are limited to a small number of controlled scenarios and offer only preliminary insights. Moreover,
studies such as SPACE [10] indicate that state-of-the-art large VLMs still lack robust spatial rea-
soning, raising questions about whether VLMs can understand scenes of complex, realistic social
navigation scenarios at all or propose socially compliant actions for robots.

In light of these limitations, it remains essential to systematically evaluate whether VLMs can ro-
bustly handle what we consider as three critical dimensions of social robot navigation: (1) spatial
reasoning [11], (2) spatiotemporal reasoning [12], and (3) the ability to interpret complex human in-
tentions [13, 14]. Existing evaluations have offered only partial assessments [9, 10], often focusing
on controlled settings or lacking temporal components, leading to an incomplete picture of how ef-
fectively large VLMs can infer human intentions and comply with social norms in realistic, dynamic
scenarios. This gap underscores the need for a comprehensive benchmark that rigorously tests these
capabilities and may guide the development of VLMs tailored to social robot navigation.

In this paper, we introduce the Social Navigation Scene Understanding Benchmark (SOCIALNAV-
SUB), a novel Visual Question Answering (VQA) benchmark designed to evaluate VLMs on social
robot navigation tasks. Shown in Figure 2, our benchmark utilizes data from a human-subject study
conducted using social navigation scenarios from the SCAND dataset [4, 15], a robot social naviga-
tion dataset of socially compliant navigation demonstrations with dense crowds and diverse social
settings. We use our comprehensive human-labeled VQA dataset to serve as ground-truth labels to
systematically evaluate the performance of VLMs on scene understanding for social robot navigation
for real-world scenarios. We run experiments on state-of-the-art large VLMs which reveal notable
performance gaps between state-of-the-art large VLMs and both human and rule-based baselines.

SocialNav-SUB is a first-of-its-kind benchmark that enables roboticists to systematically evaluate
and refine VLMs for real-world social robot navigation scenarios. By bridging the gap between
VLM capabilities and the challenges of social robot navigation, our work provides a foundation for
advancing the use of VLMs for social robot navigation. Our contributions are as follows:

1. Social Navigation Scene Understanding Dataset: We provide a human-labeled VQA
dataset of 4968 unique questions and the accompanied human responses (serving as
ground-truth labels) for social robot navigation tasks.

2. Social Navigation VQA Benchmark for VLMs: We introduce the first VQA benchmark
for assessing VLMs’ capabilities in social robot navigation scenarios using 60 unique sce-
narios from SCAND that evaluates agreement with human answers.

3. Experiments using state-of-the-art large VLMs on our benchmark: We evaluate sev-
eral large VLMs (e.g., Gemini 2.0 and 2.5 [7], GPT-4o [6], OpenAI o4-mini [16], LLaVa-
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Figure 2: An overview of SOCIALNAV-SUB, which facilitates the systematic evaluation of VLMs
in social robot navigation scenarios. Using SCAND data, human-labeled VQA datasets, and var-
ious VLMs, this framework offers the evaluation of VLMs across multiple dimensions of scene
understanding for social robot navigation that can enable advancements in prompt designs, social
reasoning, and social robot navigation research in general.

Next-Video [17]) on our benchmark against human and rule-based baselines. All models
perform worse than human oracle and rule-based performance.

2 Related Work
VLMs in Robotics. In robotics, VLMs have demonstrated considerable potential for various tasks
such as robotic manipulation [18], task planning [19], and human-robot interaction [20, 21, 22]. The
success of VLMs can be attributed to their ability to associate vision and language and generalize to
unseen data in a zero-shot manner. For navigation, VLMs have been used for waypoint specification
[18, 23], and instruction following [24, 25, 26]. However, these approaches often struggle in com-
plex real-world environments, particularly in dynamic environments, due to limitations in VLMs’
spatial reasoning capabilities [10, 27, 28]. This gap highlights the need for specialized evaluations
and improvements of VLMs for tasks in dynamic environments, especially social navigation.

Social Robot Navigation. Early social robot navigation approaches relied on model-based tech-
niques, such as the Social Force Model (SFM) [29] and proxemics-based methods [30], which used
hand-engineered features to plan paths for robots. Learning-based techniques for social robot nav-
igation, including Learning from Demonstration (LfD) [31, 4] and Reinforcement Learning (RL)
[32, 33, 34, 35, 36], have shown promise in enabling robots to acquire and adapt socially compliant
behaviors but are often trained on small and specialized data or simulations and struggle to gen-
eralize to complex dynamic scenarios. To address this, datasets for social robot navigation [4, 37]
have been developed to provide more diverse and realistic social navigation scenarios, which can
lead to improved generalization in social navigation models [38]. More recently, VQA datasets for
social robot navigation have been explored [39], but are limited to qualitative evaluation and single
images, when crucial information, such as a person’s trajectory, may require a video representation.
Fine-tuned VLMs have been explored for social robot navigation [9, 39], but are often evaluated in
a limited number of simple, controlled scenarios. These scattered findings suggest that while VLMs
may enhance social robot navigation, the specific capabilities that drive any observed improvements
have yet to be clearly identified. Our work addresses this limitation by introducing a specialized
benchmark to systematically evaluate whether VLMs can effectively perform spatial reasoning, spa-
tiotemporal reasoning, and social reasoning for numerous social navigation scenarios.

VQA Benchmarks for VLMs. Recent years have seen the development of various VQA bench-
marks to evaluate VLMs, assessing capabilities such as spatial reasoning [10], temporal reasoning
for robot navigation [40, 41], scene understanding for autonomous driving [42, 43], and physical
world comprehension [44]. While these benchmarks have advanced our understanding of VLMs’
capabilities, they often lack specific focus on social robot navigation. Our work addresses this gap
by introducing a specialized VQA benchmark for social robot navigation.
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Figure 3: The data processing pipeline for VQA prompts in SOCIALNAV-SUB. We first mine
social robot navigation scenarios from SCAND [4], then use the PHALP algorithm [46] to provide
human tracking and estimations of 3D locations, which are used to construct BEV representations
of the scene and annotated images. Along with the annotated images and BEV representations, a
set of carefully designed questions (more details in Appendix 7.7) that evaluate spatial reasoning,
spatiotemporal reasoning, and social reasoning are used to provide VQA prompts.

3 SocialNav-SUB

To evaluate VLMs on scene understanding for social robot navigation, we present the Social Navi-
gation Scene Understanding Benchmark (SOCIALNAV-SUB), a VQA benchmark for evaluating
VLMs in social navigation scenarios. Following recent works that have demonstrated the effective-
ness of visual grounding and object-centric representations [18, 45, 42], we provide numbered labels
within visual markers for objects of relevance (in our case, pedestrians) for prompting and object-
centric annotations; this provides the benchmarked VLMs clear visual references and contextually
rich instructions. SOCIALNAV-SUB is built on top of social navigation scenarios from SCAND that
provide varying levels of crowd density and social navigation interactions and features the follow-
ing: Challenging social navigation scenarios that capture the complexities of crowded and dynamic
human environments; Object-centric representations combining both the robot’s visual perspective
and a bird’s-eye view (BEV) containing pedestrian coordinate tracking for a richer object-centric
representation; A diverse question set probing spatial reasoning, temporal understanding, and social
reasoning; and A robust human baseline, where multiple annotators provide ground-truth responses
for each scenario. All above features are expanded in the following subsections below.

3.1 Challenging Social Navigation Scenarios

To effectively evaluate VLMs’ scene understanding capabilities in practical social robot naviga-
tion settings, we leverage the SCAND dataset [4] to construct SOCIALNAV-SUB. SCAND features
social robot navigation data collected by teleoperated mobile robots navigating in diverse and poten-
tially crowded scenarios. In particular, we extract segments from SCAND that showcase moderate
to high crowd density (average of 6.65 humans per scene, std. dev.: 2.80), close pedestrian prox-
imity, and dynamically changing human motion. As illustrated in Figure 1, these densely occupied
scenarios typically involve pedestrians that obstruct the robot’s direct path to its goal. Hence, the
teleoperated robots show complex, socially compliant interactions with the pedestrians, making
these samples valuable for evaluating VLMs’ scene understanding capabilities in real-world social
navigation scenarios.

3.2 Rich and Object-Centric Visual Representations

The samples extracted from the SCAND dataset are in the form of RGB image sequences captured
by the front-view camera mounted on the robot. While 2D image sequences may suffice for humans
to infer the underlying spatial and social relations between the robots and pedestrians, state-of-the-art
large VLMs are not necessarily good at extracting spatial or fine-grained object-level information
from the same visual queries [10]. To mitigate this issue, some recent studies have shown that
augmenting images with additional annotations (e.g., bounding boxes, color-coded labels) using
off-the-shelf models can improve VLM performance in VQA tasks [18, 45].
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Building on these visual prompting insights, we augment the original data samples with additional
object-centric representations leveraging off-the-shelf vision models. As shown in Figure 3, we be-
gin by employing the human tracking algorithm, PHALP [46], which tracks pedestrians and provides
estimations of their 3D poses relative to the camera frame using monocular video input. Using the
robot odometry data from SCAND, we transform the relative human poses at future timesteps into
global poses relative to the robot pose in the initial frame, and apply Kalman smoothing to smooth
the human poses. Afterwards, we use the camera intrinsics and extrinsics provided by SCAND to
project the 3D coordinates of pedestrians into both front-view and BEV images. Finally, we annotate
human positions in both views with numbered, color-coded circles. The resulting images with com-
bined views preserve the original scene context while providing additional spatial and object-level
information in a clear and structured format. In practical robotics stacks, such BEV representations
can be constructed in real-time by either with learning-based methods [47] or by utilizing tracking
cameras, depth sensors, and camera matrices to estimate global positions [48, 49]. Therefore, by
querying VLMs with these enriched, object-centric visual inputs, SOCIALNAV-SUB can provide
practical insights into how to best leverage and complement state-of-the-art large VLMs for practi-
cal application in social robot navigation. To ensure fair comparisons between VLMs’ outputs and
human responses, the same set of visual inputs are provided to human annotators.

3.3 Diverse Scene Understanding Questions

Following the aforementioned data processing pipeline, we construct a set of samples consisting of
multi-view image sequences with object-centric annotations, each representing a 2.5 s segment sam-
pled at 4 Hz. To comprehensively evaluate VLMs’ scene understanding capabilities in social robot
navigation, we design a set of multiple-choice questions (see Table 7.7 for more details and Ap-
pendix 7.5 for an example VQA prompt) that probe across three categories: 1) Spatial reasoning:
Questions about describing the spatial relations in a single frame; 2) Spatiotemporal reasoning:
Questions about describing the motion of the robot and pedestrians over time; and 3) Social reason-
ing: Questions that infer whether the robot and pedestrians are interacting and how they interact.

These categories of questions map onto what we see as key challenges of social robot navigation:
perceiving spatial relations among participants (spatial reasoning), tracking their evolution as people
move (spatiotemporal reasoning), and recognizing how humans and robots interact in social navi-
gation (social reasoning). By evaluating VLMs across these dimensions, we gain a fine-grained
understanding of where models excel or struggle in interpreting social navigation scenes.

3.4 Robust Human Baseline from Human-Subject Study

We conducted human-subject studies to collect human responses as ground-truth labels for these
questions under an IRB-approved protocol. Given the subjective nature of many questions, particu-
larly those related to social reasoning, we collected responses from at least five human participants
for each scenario. Participants were recruited via Prolific [50] and were asked to complete a ques-
tionnaire containing questions for multiple randomly sampled scenarios.

By gathering this distribution of human responses, we can measure how closely each VLM output
aligns with human judgments by computing the agreement between VLM answers and all human
answers for a given question, which indicates the extent to which a model’s performance approaches
human-level responses. We define two metrics, Probability of Agreement (PA) and Consensus-
Weighted PA, to measure how closely a set of answers (from a VLM, a particular human, or a rule-
based baseline) aligns with human responses overall. Let NQ be the total number of questions; NH

be the number of human respondents per question; Aq be the evaluated answer (from a VLM or one
human) to question q; and Ah

q,i be the i-th human’s answer for question q, where i ∈ {1, . . . , NH}.

We define Probability of Agreement (PA) as the following:

PA =
1

NQ

NQ∑
q=1

( 1

NH

NH∑
i=1

I[Aq = Ah
q,i ]

)
, (1)
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where I[·] is an indicator function which outputs 1 if Aq (the evaluated answer) exactly matches the
i-th human’s response Ah

q,i, and 0 otherwise for the corresponding multiple-choice question q. Sum-
ming over all human responses for each question yields the fraction of total (answer, human answer)
pairs that agree. PA is essentially the expected cosine similarity between the model’s predictions and
the distribution of human responses. A higher PA indicates that the evaluated answers coincide more
frequently with the collected human responses. We empirically found that it is common for humans
to disagree on answers, indicating there is a degree of judgement involved for particular questions.
This motivates a metric that can be more forgiving for subjective questions that humans disagree on
and emphasize questions that have a strong consensus, to which we establish Consensus-Weighted
Probability of Agreement (CWPA). We start by defining

HAq = max
α

{#(humans who answered α for question q)

NH

}
,

i.e., HAq is the fraction of human respondents that chose the most common answer α for question
q. We then define:

CWPA =
1

NQ

NQ∑
q=1

( 1

NH HAq

NH∑
i=1

I[Aq = Ah
q,i ]

)
. (2)

In this formulation, each agreement with a human response for question q is scaled by 1/HAq .
Consequently, questions on which humans mostly concur (i.e., high HAq) impose a greater penalty
for incorrect answers, while questions where humans are more divided have a lower penalty. This
weighting ensures that VLM (or human) answers are held to a higher standard on “easier” ques-
tions where strong human agreement exists. Similar agreement-based metrics have been adopted to
account for variability among human annotators when constructing VQA benchmarks [51]. Unlike
their metrics, PA does not rely on a heuristically selected threshold to saturate the accuracy. CWPA
further extends this by introducing a novel weighting scheme based on human consensus.

In addition to evaluation metrics, we utilize the human responses to construct two human baselines:
An Average Human Baseline, which measures on average how often one human’s response agrees
with all other human responses and serves as an indicator of average human performance but may
be susceptible to noise in responses from online human participants; and A Human Oracle Baseline,
which selects the most common answer for each question from the human distribution and serves as
a more robust estimate of expert-level human performance.

4 Empirical Results
Our central research question examines how well state-of-the-art large VLMs that support image
sequences capture spatial reasoning, scene understanding, and social reasoning in social robot
navigation scenarios. Focusing on this question, we aim to rigorously assess the capabilities and
limitations of VLMs for understanding complex social robot navigation environments. We estab-
lish the benchmark with several representative models supporting video inputs across three cate-
gories: 1) closed-source, general-purpose VLMs, including GPT-4o [6] and Gemini 2.0 [7], which
demonstrate strong overall performance in VQA tasks; 2) reasoning VLMs, including OpenAI o4-
mini [16] and Gemini 2.5 [7], which are fine-tuned to enhance vision-language reasoning capabili-
ties. While too computationally intensive for real-time deployment, they may be distilled into faster
models [52] suitable for robotics applications; and 3) open-source, deployable VLMs, including
LLaVa-Next-Video [17], which can run locally and are thus well-suited for robotics applications.

4.1 Experiment Process
Our experiment process begins by presenting survey prompts alongside their visual and BEV repre-
sentations to the VLM, using the data processing pipeline previously shown in Figure 3. The format
given to the VLMs closely resembles the same visual and text format that was received by human
participants, ensuring fair comparison. Furthermore, we use chain-of-thought (CoT) reasoning as a
prompting technique to carry out our experiments, since this is highly similar to the sequential man-
ner in which humans provided answer labels, allowing for fair comparison. Specifically, our usage
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Table 1: Average Performance Across Question Categories. The metrics used are PA and CWPA
for all questions and for each question category, along with standard error across the questions. We
highlight in bold the strongest VLM PA results, which may be statistically tied.

Category Model All Spatial Reasoning Spatiotemporal Reasoning Social Reasoning
PA CWPA PA CWPA PA CWPA PA CWPA

Baseline
Human Oracle 0.74 ± 0.00 1.0 ± 0.00 0.71 ± 0.01 1.0 ± 0.00 0.73 ± 0.01 1.0 ± 0.00 0.76 ± 0.01 1.0 ± 0.00

Average Human 0.60 ± 0.00 0.80 ± 0.00 0.56 ± 0.01 0.79 ± 0.00 0.59 ± 0.01 0.80 ± 0.00 0.62 ± 0.00 0.81 ± 0.00
Rule-Based 0.64 ± 0.00 0.84 ± 0.00 0.57 ± 0.01 0.79 ± 0.01 0.62 ± 0.01 0.84 ± 0.01 0.71 ± 0.00 0.92 ± 0.00

VLM
Gemini 2.0 0.58 ± 0.00 0.79 ± 0.00 0.55 ± 0.01 0.77 ± 0.01 0.46 ± 0.01 0.64 ± 0.01 0.63 ± 0.01 0.84 ± 0.01
Gemini 2.5 0.54 ± 0.00 0.73 ± 0.01 0.51 ± 0.01 0.72 ± 0.01 0.52 ± 0.01 0.73 ± 0.01 0.55 ± 0.01 0.73 ± 0.01

GPT-4o 0.50 ± 0.00 0.69 ± 0.01 0.56 ± 0.01 0.79 ± 0.01 0.51 ± 0.01 0.71 ± 0.01 0.47 ± 0.01 0.63 ± 0.01
o4-mini 0.62 ± 0.01 0.82 ± 0.01 0.54 ± 0.01 0.74 ± 0.01 0.59 ± 0.01 0.79 ± 0.01 0.66 ± 0.01 0.87 ± 0.01

LLaVa-Next-Video 0.46 ± 0.01 0.61 ± 0.01 0.35 ± 0.01 0.46 ± 0.01 0.58 ± 0.01 0.79 ± 0.01 0.48 ± 0.01 0.62 ± 0.01

of CoT provides the previous answers of the VLM for future questions which may help it deduce
the answer to question; for example, the pedestrian is at the left in the beginning and the end and the
goal is on the right, so the pedestrian is likely not obstructing the path to the goal. The responses
generated by the VLM are then compared against human responses from the human dataset using
the PA and CWPA metrics, previously defined in Equations 1 and 2

Humans can naturally infer the underlying spatial and social relations between the robots and pedes-
trians, making them excellent reference points of performance. On the other hand, are large VLMs
truly necessary for analyzing these social robot navigation scenarios, or can a simpler, rule-based
system suffice? To address both of these, we utilize the two human baselines previously defined in
Section 3.4, the Human Oracle Baseline and the Average Human Baseline, as well as a Rule-Based
Baseline, which uses the position data of pedestrians in the scene and uses a set of hand-crafted rules
to generate answers to VQA prompts (for more details, see Appendix 7.10).

4.2 Benchmarking Results

We run our experiments by querying each VLM model once per unique question using default hyper-
parameters for each VLM. The average results over all questions and question categories is shown
in Table 1. Among the models evaluated, OpenAI o4-mini achieves the highest overall performance,
but still has a considerable gap compared to the human oracle and rule-based baselines. This per-
formance gap suggests that state-of-the-art large VLMs are not yet fully ready for the challenges of
scene understanding for social robot navigation.

When examining performance across the three question categories, models consistently lag behind
the human oracle and the rule-based baseline, though the extent of the gap varies by category and
perform up to par with the average human baseline. In spatial reasoning, the consensus among hu-
mans (human oracle) far exceeds that of the best models, indicating that current large VLMs strug-
gle to accurately interpret spatial relationships compared to human observers. A similar finding is
observed in spatiotemporal reasoning, where models show greater difficulty at capturing dynamic
changes over time. In contrast, in social reasoning tasks, models perform relatively closer to human
oracle levels and can even slightly outperform the average human baseline, suggesting that large
VLMs are somewhat more adept at interpreting social cues and interactions than they are at under-
standing spatial relationships, although there remains a noticeable gap. Empirically, we found many
cases of VLMs failing on questions with high human consensus in all three reasoning categories,
especially in cases of high crowd densities, we provide qualitative examples within Appendix 7.6.

4.3 Discussion

Overall, our evaluation reveals that while state-of-the-art large VLMs like OpenAI o4-mini and
Gemini 2.0 show promising advances, they still fall short of human oracle and rule-based perfor-
mance across key reasoning tasks. Although models come closer to human oracle performance in
social reasoning tasks, the results suggest that significant improvements are needed before these
large VLMs can reliably support complex, real-world social robot navigation.
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Table 2: Ablation experiment of querying strategies. The metric used is Probability of Agreement
(PA). The baseline row BEV+CoT represents the performance with both CoT and BEV prompts
enabled. The subsequent rows show the effects of removing either CoT or BEV components.

Model Ablation Spatial Spatiotemporal Social
Reasoning Reasoning Reasoning

GPT-4o
CoT+BEV 0.56 ± 0.01 0.51 ± 0.01 0.47 ± 0.01
No CoT 0.58 ± 0.01 0.53 ± 0.01 0.35 ± 0.01
No BEV 0.51 ± 0.01 0.44 ± 0.01 0.42 ± 0.01

LLaVa-Next-Video
CoT+BEV 0.35 ± 0.01 0.58 ± 0.01 0.48 ± 0.01
No CoT 0.35 ± 0.01 0.58 ± 0.01 0.38 ± 0.01
No BEV 0.35 ± 0.01 0.61 ± 0.01 0.46 ± 0.01

Gemini 2.0
CoT+BEV 0.55 ± 0.01 0.46 ± 0.01 0.63 ± 0.01
No CoT 0.56 ± 0.01 0.48 ± 0.01 0.58 ± 0.01
No BEV 0.56 ± 0.01 0.46 ± 0.01 0.64 ± 0.01

We also performed a series of ablation experiments to study the impact of querying strategies to the
model performance. The results are summarized in Table 13 (more details in Appendix 7.9). Our
first ablation experiment analyzed the impact of CoT reasoning and found that it significantly en-
hances social reasoning performance for all models, likely due to the structured inference it provides
for complex tasks. We also performed another ablation experiment investigating the impact of BEV
scene representations and found that some models may benefit significantly, while other models
show minimal changes. This suggests that BEV effectiveness depends on the VLM, but can be vali-
dated through SOCIALNAV-SUB. A further ablation experiment looked at the effectiveness of better
spatial and spatiotemporal reasoning capabilities and found stronger performance on social reason-
ing questions, suggesting that current VLMs are limited by spatial reasoning capabilities but may
be improved with fine-tuning on spatial reasoning data [53, 27] while maintaining performance on
higher-level scene understanding. These experiments highlight the usefulness of SOCIALNAV-SUB
in informing how VLMs can be best utilized and further improved for social robot navigation.

Finally, we revisited our original assumption described in Section 1 that accurate scene understand-
ing is a prerequisite for the practical usage of VLMs in real-world navigation tasks. To validate this
claim, we carried out an experiment to examine the impact of scene understanding on the task of
waypoint selection (see Appendix 7.1). Results indicated that providing additional scene context
improved the alignment of answers with those chosen by human operators across all models, espe-
cially for reasoning models. These findings reinforce the value of our SOCIALNAV-SUB benchmark
in advancing VLMs for real-world social robot navigation tasks.

5 Conclusion

This paper introduced the Social Navigation Scene Understanding Benchmark (SOCIALNAV-SUB),
a novel VQA benchmark designed to evaluate VLMs within complex social robot navigation scenar-
ios. Drawing on crowded and dynamic environments from the SCAND dataset, SOCIALNAV-SUB
provides object-centric visual representations, including augmented front-view images and BEV
prompts, paired with a diverse set of questions targeting spatial, spatiotemporal, and social rea-
soning. By grounding these evaluations with a human-subject study, the benchmark offers clear,
quantifiable metrics that reflect human-like understanding and decision-making in social navigation.
SOCIALNAV-SUB advances the state of the art by highlighting specific strengths and weaknesses of
current VLMs in handling intricate social scenes, thereby setting a clear agenda for future research.
It enables researchers to systematically compare models, refine prompting strategies, and develop
new methods to bridge the gap between machine and human understanding of social navigation
scenes and allows for the iterative improvement of VLMs in real-world applications, ultimately
guiding the development of more socially aware and reliable robotic systems.
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6 Limitations and Future Work

While SOCIALNAV-SUB advances the evaluation of VLMs for social robot navigation, it has two
limitations. First, the benchmark currently relies on scenarios from the SCAND dataset, which,
despite the diverse scenarios and dense crowds (examples can be seen in the Appendix), is limited to
social navigation in a university campus setting. Second, while initial experiments provide valuable
insights, they are based on a limited set of models and scenarios; further exploration with a broader
range of large VLMs, datasets, and refined methodologies is necessary to overcome these challenges
and enhance the benchmark’s applicability.

Looking ahead, several promising avenues can further enhance and leverage the capabilities of
SOCIALNAV-SUB. First, expanding the dataset to include additional social robot navigation datasets
could expand its diversity and robustness, offering a more comprehensive evaluation of model capa-
bilities. Additionally, fine-tuning VLMs on the human dataset provided in SOCIALNAV-SUB may
lead to VLMs that are more capable of social robot navigation. Another promising avenue is expand-
ing upon the VLM models evaluated; some VLMs of interest include VLMs fine-tuned for spatial
reasoning and VLMs fine-tuned for social robot navigation. Lastly, an interesting future direction
is evaluating hybrid approaches that utilize VLMs in specific ways (such as social reasoning) while
having dedicated modules to cover their weaknesses. By offering a targeted evaluation framework
across multiple reasoning categories, SOCIALNAV-SUB can not only systematically evaluate VLM
performance and highlight weaknesses but also guide future improvements in VLMs for both scene
understanding and socially compliant navigation, enabling the development of more reliable real-
world robotics systems. Since we will open-source SOCIALNAV-SUB and plan to reliably maintain
it, much of the infrastructure and support to pursue these future endeavors will be readily available.
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7 Appendix

7.1 Waypoint Selection Experiments

To further demonstrate the practical value of SOCIALNAV-SUB in real-world social robot naviga-
tion, we conduct preliminary experiments examining how scene understanding influences VLMs’
performance in waypoint selection [18, 45]. Specifically, given visual observations and a set of
candidate future waypoints annotated on the images, we prompt VLMs to select the waypoint that
makes progress towards the goal while being considerate of the humans in the scene (see Figure 4).
One of the candidate waypoints corresponds to the ground-truth future position of the robot as de-
termined by the human operator. We evaluate the VLMs by comparing their selections to those
made by the human operator. In addition to visual input, we incorporate scene context from various
sources into the text prompts to assess their impact on waypoint selection. In this preliminary study,
we condition the prompts on spatial reasoning and social reasoning context derived from predicted
interactions among agents in the scene. These are provided in the form of answers to the Person
End Goal Obstruction and Robot Action to Person at End.

The experimental results are presented in Table 3. Overall, when scene context is extracted from
the human oracle’s responses, VLM performance significantly improves compared to using no con-
text or randomly generated context, and also shows slight improvement over using scene context
predicted by the model itself. While preliminary, these findings suggest that accurate social scene
context helps VLMs infer the ground-truth waypoints more effectively. This implies that enhancing
a VLM’s scene understanding capabilities can enable it to more accurately interpret social context
and subsequently select appropriate navigation actions, thereby improving overall navigation per-
formance. Our SOCIALNAV-SUB benchmark provides the community with a valuable dataset and
evaluation toolkit to support exploration along this direction.

Figure 4: An example of the waypoint selection VQA task. This particular example highlights
using scene context from the human oracle. Having no context removes the middle portion of the
text prompt that includes the context, and having random context randomizes each relational action
for the context (such as “avoiding”).

Table 3: Accuracy of various VLMs in selecting the same waypoint as the human operator under
social scene contexts from different sources: a random generator, the model itself, or the consensus
from human participants (i.e., human oracle). The evaluation results are averaged over 5 runs, and
we report mean accuracy ± standard error.

Model No Context Random Same-Model Human Oracle
o4-mini 36.14% ± 1.31% 30.88% ± 2.12% 38.95% ± 1.51% 46.32% ± 1.19%
Gemini 2.0 37.19% ± 4.75% 34.74% ± 4.09% 41.05% ± 2.58% 46.67% ± 3.62%
Gemini 2.5 34.39% ± 1.97% 32.28% ± 1.72% 37.19% ± 1.70% 42.11% ± 2.88%

7.2 Selecting Challenging Scenes for SOCIALNAV-SUB

We curated 60 challenging scenes from SCAND to construct SOCIALNAV-SUB. Candidate sce-
narios were ranked using a weighted linear score over features we hypothesized to correlate with
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difficulty for social robot navigation: (i) crowd size, (ii) the number of people within close proxim-
ity to the robot, and (iii) the robot’s lateral (left–right) movement. We computed a weighted sum
of these features and selected top-scoring scenes. The resulting set of scenarios spans across var-
ious environment types (e.g., outdoor walkways, narrow doorways/corridors, sidewalks, and street
crossings) and a wide range of crowd densities (i.e., 1–13 pedestrians with mean = 6.65, SD = 2.80).
Figure 5 shows four representative examples.

Figure 5: Examples of scenes from SOCIALNAV-SUB. These illustrate variation in environment
type, crowd density, and human–robot proximity. SOCIALNAV-SUB comprises 60 social robot
navigation scenarios in total.

7.3 Validation of 3D Pose Estimation Pipeline

As described in Section 3.2, we estimate 3D human pose trajectories from videos using PHALP and
apply Kalman smoothing to filter the estimated trajectories. Since SCAND does not provide 3D hu-
man pose labels, we validated this pipeline and tuned the hyperparameters on the CODa dataset [41],
which provides high-quality labels 3D human pose annotations derived from human-annotated 3D
bounding boxes and human-in-the-loop SLAM-based localization. We tuned the Kalman smoothing
hyperparameters on CODa by minimizing a weighted sum of average displacement error and angu-
lar displacement error over trajectories across multiple scenarios. The resulting hyperparameters are
then used in the SOCIALNAV-SUB pipeline. Figure 6 shows a CODa scenario with our estimates
and the labels provided by CODa. Estimates achieve an average displacement error of 0.67±0.14m
across all samples. Empirically we have observed errors are lower for well-observed pedestrians and
larger under heavy occlusion.

7.4 Human-Subject Study Details

As mentioned in Section 3.4, we conducted a human-subject study under an IRB-approved protocol
to collect human data to establish an evaluation method for SOCIALNAV-SUB. We conducted our
human-subject study using Prolific [50] with 153 participants that were randomly selected across
the U.S whose age’s range from 18 to 80 (avg. 37.70, std. dev 13.40) with gender ratios of 44%
male, 54% female, and 2% other. Figure 7 shows an example of the interface the humans were
provided for the human-subject study. Humans sequentially answered questions for each scenario
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Figure 6: CODa example for 3D pose pipeline validation. Left: input image with PHALP bound-
ing box detections. Right: BEV positions and headings after Kalman smoothing. Estimates are
generally close (< 1m displacement error) to pseudo–ground truth for well-observed pedestrians;
errors increase for heavily occluded subjects.

in the following order: spatial reasoning questions, spatiotemporal reasoning questions, and social
reasoning questions.

Figure 7: An example of a survey page shown to human participants. Prior to answering the
survey questions, human subjects were given human-subject study participation instructions, re-
quirements, and instructions about the survey content.

7.5 VQA Prompt Details

To provide fair comparison between humans and VLMs, we provided VLMs with highly similar
input. In Figure 8, we provide a full VQA example of what the VLM receives as input. Chain-
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of-thought reasoning was used in the main experiments outlined in Section 4.3 and this particular
usage consisted of sequentially asking the VLM questions, where later questions require higher-level
reasoning, and providing the VLM its answers to the relevant questions within the prompt.

Figure 8: An example of a full VQA prompt shown to VLMs. This context closely resembles the
instructions that were provided to human participants for the human-subject study. In addition to the
image shown on the left, the VLM also receives the next 9 images in the sequence.

7.6 Failure Case Analysis

As mentioned in Section 4.2, we found cases of VLMs in the experiment failing on questions with
high human consensus in all reasoning categories, especially in cases of high crowd densities; we
show these failure cases in Figure 9. We also highlight cases where VLMs can provide success,
shown in Figure 10. These cases were automatically selected based on the entropy of the VLM
answers and human answers.
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Figure 9: Examples of failure cases for VLMs. Top-left: Failing to recognize that person 5 is on the
left. Top-right: Failing to recognize that person 4 ends up further away. Bottom-left: Answering that
the distant person 3 should be avoided. Bottom-right: Incorrectly answering that an action should be
taken with respect to person 7, although all humans did not think they were relevant. These examples
were selected automatically based upon the entropy of the VLM answers and human answers.

Figure 10: Examples of success cases for VLMs. Top-left: All VLMs correctly infer that person
1 is not obstructing the path to the goal. Top-right: Gemini correctly predicts that person 1 should
be avoided (the other VLMs incorrectly predict this). Bottom-left: GPT-4o correctly answers that
person 5 is on the left, whereas both Gemini and LLaVa-Next-Video answer that person 5 is behind
the robot. Bottom-right: Most VLMs (but not all) predict that person 6 is being considered as the
robot is moving towards the goal, similar to the distribution among human answers. These examples
were automatically selected based upon the entropy of the VLM answers and the human answers.
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Quantitative summary. We summarize quantitative findings shown in Tables 4 and 5 for VLM fail-
ure cases (defined as the model’s chosen answer received zero human probability); we report failure
rates in percent and means ± standard errors. Robot Action to Person denotes the model’s classi-
fication of the robot’s action relative to a human (e.g., yielding to, overtaking, avoiding, following,
not considering).

Table 4: Environment summary across VLMs. Overall FR is the model’s failure rate with standard
error in smaller type. Environment cells show failure rate increase (FRI) relative to the model’s
overall FR, with raw FR ± SE in smaller parentheses. FRI = 1 equals overall; > 1 is worse-than-
average; < 1 is better-than-average for that model.

Model Overall FR Indoors Outdoors Blind corner

o4-mini 6.42% ± 0.33% 0.87× (5.58% ± 0.90%) 1.02× (6.53% ± 0.36%) 1.45× (9.28% ± 1.56%)
GPT-4o 23.63% ± 0.60% 1.39× (32.91% ± 2.15%) 0.96× (22.65% ± 0.62%) 1.13× (26.67% ± 2.95%)
LLaVa-Next 33.78% ± 0.67% 0.91× (30.82% ± 2.11%) 1.01× (34.09% ± 0.71%) 0.99× (33.33% ± 3.14%)
Gemini 2.0 15.00% ± 0.51% 1.22× (18.24% ± 1.77%) 0.98× (14.65% ± 0.53%) 1.16× (17.33% ± 2.52%)
Gemini 2.5 9.02% ± 0.41% 0.91× (8.18% ± 1.25%) 1.01× (9.11% ± 0.43%) 1.13× (10.22% ± 2.02%)

Table 5: Robot Action to Person. Cells report failure rate (FR); parentheses show the occurrence
(%) of the VLM choosing that action. “—” denotes the action was never chosen.

Model Yielding to Overtaking Following Avoiding Not Considering

o4-mini 57.14% (3.2%) 50.00% (1.8%) 31.25% (3.6%) 20.59% (7.7%) 2.70% (83.7%)
GPT-4o 84.85% (8.3%) 80.00% (1.3%) 20.00% (1.3%) 48.84% (53.9%) 1.42% (35.3%)
LLaVa-Next — — — 53.13% (88.2%) 6.38% (11.8%)
Gemini 2.0 66.67% (0.8%) 100.00% (0.5%) — 46.62% (33.3%) 3.83% (65.4%)
Gemini 2.5 62.50% (2.0%) 47.37% (9.5%) 0.00% (2.8%) 15.56% (33.8%) 0.97% (51.9%)

GPT-4o. Overall 24% failure rate; higher indoors than outdoors (32.9% vs 22.6%) and at blind
corners (26.7% vs 23.5%); for Robot Action to Person: yielding to 85%, overtaking 80%, avoiding
48.8%, not considering 1.4%.

o4-mini. Overall 6.4% failure rate; higher at blind corners (9.3% vs 6.2%); Robot Action to Per-
son: yielding to 57%, overtaking 50%, following 31%, avoiding 21%, not considering 2.7%.

LLaVa-Next. Overall 33.8% failure rate; very limited Robot Action to Person diversity—only
avoiding (53.1%) and not considering (6.38%).

Gemini 2.0. Overall 15.0% failure rate; higher at blind corners (17.3% vs 14.9%); failure cases
show more people in scene (12.26 vs 11.91); Robot Action to Person: avoiding 46.6%, not consid-
ering 3.83%, with rare but often wrong yielding to (66.7%) and overtaking (100%).

Gemini 2.5. Overall 9.0% failure rate; Robot Action to Person shows higher action diversity but
some labels remain difficult: yielding to 62.5%, overtaking 47.4%, versus avoiding 15.6%, not
considering 1.0%, following 0%.

7.7 Survey Question Details

Here we show the details and qualitative descriptions of questions used throughout the benchmark
by providing a question for each VQA prompt, shown in Table 6. We categorize these questions
according to their reasoning capability.
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Table 6: Qualitative descriptions of the text components for questions used in SOCIALNAV-
SUB, their pertaining primary reasoning capability, and the number of unique questions through
SOCIALNAV-SUB. All questions are multiple-choice questions, with each VQA prompt providing
the possible answers. An example of a VQA prompt can be found in Figure 2 and a full example
can be found in Appendix 7.5.

VLM Reasoning
Capability

Qualitative Description of Question # of
Ques-
tions

Spatial

Person Initial Position: The position of the person at the begin-
ning of the video.

399

Person Ending Position: The position of the person at the end of
the video.

399

Goal Initial Position: The initial position of the goal with respect
to the robot’s view.

60

Goal End Position: The end position of the goal with respect to
the robot’s view.

60

Person End Goal Obstruction: Whether the person is obstruct-
ing the robot’s path towards the goal at the end of the video.

399

Spatiotemporal

Robot Moving Direction: The direction the robot is moving in
the video.

60

Person Distance Change: The relative distance change of the
person to the robot from the beginning of the video to the end.

399

Person Goal Obstruction: Whether the person is obstructing the
robot’s path towards the goal during the video.

399

Social

Robot Affected by Person: Whether the robot’s (human opera-
tor’s) actions are affected by the person.

399

Robot Action to Person: The high-level relational action of the
robot with respect to the person (e.g., the robot avoided person 2).

399

Person Affected by Robot: Whether the robot’s (human opera-
tor’s) actions are affected by the person.

399

Person Action to Robot: The high-level relational action of the
person with respect to the robot (e.g., person 2 avoided the robot).

399

Robot Affected by Person at End: Whether the robot’s (human
operator’s) actions are affected by the person at the end of the
video.

399

Robot Action to Person at End: The high-level relational action
of the robot with respect to the person at the end of the video.

399

Person Action to Robot at End: The high-level relational action
of the person with respect to the robot at the end of the video.

399

Table 7: Full spatial reasoning questions in SOCIALNAV-SUB, with question type and options.
Here, PERSON can be any labeled person in the scene, e.g. Person 3.

Question Type Options
In the beginning, {PERSON} is the robot. Multiple

Choice
ahead of; to the left of; to the
right of; behind

At the end, {PERSON} is the robot. Multiple
Choice

ahead of; to the left of; to the
right of; behind

In the beginning frame, the goal is of the robot. Multiple
Choice

ahead; to the left; to the right

At the end frame, the goal is of the robot. Multiple
Choice

ahead; to the left; to the right

At the end frame, is {PERSON}’s position in the
way of the robot’s path to the goal?

Multiple
Choice

yes; no
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Table 8: Full spatiotemporal reasoning questions in SOCIALNAV-SUB, with question type and
options. Here, PERSON can be any labeled person in the scene, e.g. Person 3. We convert the
Multiple Select question into Multiple Choice by taking the power set of all options.

Question Type Options
The robot is (Select all that apply) Multiple

Select
moving ahead; turning left;
turning right

At the end, {PERSON} ends up the robot
compared to the beginning.

Multiple
Choice

closer to; further away from;
about the same distance to

Is {PERSON}’s path in the way of the robot’s path
to the goal?

Multiple
Choice

yes; no

Table 9: Full social reasoning questions in SOCIALNAV-SUB, with question type and options.
Here, PERSON can be any labeled person in the scene, e.g. Person 3.

Question Type Options
Is the robot’s movement affected by {PERSON}? Multiple

Choice
yes; no

The robot is most likely {PERSON}. Multiple
Choice

avoiding; overtaking; not con-
sidering; following; yielding
to

Is {PERSON}’s movement affected by the robot? Multiple
Choice

yes; no

{PERSON} is most likely the robot. Multiple
Choice

avoiding; overtaking; not con-
sidering; following; yielding
to

In the future (after the end of the video), should
the robot’s movement towards the goal be affected
by {PERSON}?

Multiple
Choice

yes; no

In the future (after the end of the video), the robot
should {PERSON} as it makes progress to-
wards the goal.

Multiple
Choice

avoid; overtake; not consider;
follow; yield to

In the future (after the end of the video),
{PERSON} will most likely the robot as the
robot attempts to make progress towards the goal.

Multiple
Choice

avoid; overtake; not consider;
follow; yield to

7.8 Main Experiment Question Results

We provide the question-level performance for the main experiment results from Section 4.2 for the
VLMs shown in Table 10, reasoning-based VLMs shown in 11, and the baselines shown in Table
12.
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Table 10: Performance Across Individual Questions for non-reasoning VLMs. These results
highlight the deficiencies of non-reasoning VLMs: 1) Gemini [7] has stronger social reasoning than
other non-reasoning VLMs for most questions but has worse spatial reasoning performance across
most tasks compared to GPT-4o; 2) LLaVa-Next-Video [17] has poor spatial reasoning performance
for most questions, determining the moving direction of the robot, and poor ability to infer the future
action of the robot, but performs well for certain questions such as determining whether somebody is
obstructing the goal and some social reasoning questions; 3) GPT-4o [6] has moderate performance
across tasks but lacks strong social reasoning.

Category Question Name Gemini 2.0 GPT-4o LLaVa-Next-Video

PA CW PA PA CW PA PA CW PA

Spatial

Person Initial Position 0.52 ± 0.01 0.81 ± 0.01 0.54 ± 0.01 0.84 ± 0.01 0.05 ± 0.00 0.10 ± 0.01
Person Ending Position 0.38 ± 0.01 0.64 ± 0.02 0.43 ± 0.01 0.71 ± 0.02 0.24 ± 0.01 0.44 ± 0.02
Goal Initial Position 0.69 ± 0.04 0.85 ± 0.04 0.74 ± 0.03 0.92 ± 0.03 0.14 ± 0.02 0.20 ± 0.04
Goal End Position 0.56 ± 0.04 0.73 ± 0.05 0.65 ± 0.04 0.83 ± 0.04 0.15 ± 0.02 0.22 ± 0.04
Person End Goal Obstruction 0.74 ± 0.01 0.86 ± 0.02 0.68 ± 0.02 0.78 ± 0.02 0.80 ± 0.01 0.93 ± 0.01

Spatiotemporal
Robot Moving Direction 0.46 ± 0.05 0.64 ± 0.05 0.57 ± 0.04 0.81 ± 0.04 0.24 ± 0.04 0.38 ± 0.05
Person Distance Change 0.31 ± 0.01 0.53 ± 0.02 0.46 ± 0.01 0.74 ± 0.02 0.47 ± 0.01 0.75 ± 0.02
Person Goal Obstruction 0.62 ± 0.02 0.76 ± 0.02 0.54 ± 0.02 0.67 ± 0.02 0.74 ± 0.01 0.89 ± 0.01

Social

Robot Affected by Person 0.64 ± 0.02 0.78 ± 0.02 0.50 ± 0.02 0.63 ± 0.02 0.75 ± 0.01 0.91 ± 0.01
Robot Action to Person 0.51 ± 0.01 0.75 ± 0.02 0.37 ± 0.01 0.57 ± 0.02 0.25 ± 0.01 0.42 ± 0.02
Person Affected by Robot 0.74 ± 0.01 0.88 ± 0.01 0.58 ± 0.02 0.71 ± 0.02 0.79 ± 0.01 0.94 ± 0.01
Person Action to Robot 0.62 ± 0.01 0.86 ± 0.02 0.45 ± 0.02 0.65 ± 0.02 0.67 ± 0.01 0.92 ± 0.01
Robot Affected by Person at end 0.72 ± 0.01 0.87 ± 0.01 0.55 ± 0.02 0.68 ± 0.02 0.79 ± 0.01 0.94 ± 0.01
Robot Action to Person at end 0.60 ± 0.01 0.85 ± 0.02 0.41 ± 0.02 0.59 ± 0.02 0.08 ± 0.01 0.14 ± 0.01
Person Action to Robot at end 0.62 ± 0.01 0.87 ± 0.01 0.40 ± 0.02 0.59 ± 0.02 0.03 ± 0.00 0.05 ± 0.01

Table 11: Performance Across Individual Questions for Large Reasoning Models. These results
indicate that o4-mini displays worse performance across most spatial reasoning question but has
strong performance on determining if a person is obstructing the path to the goal. We hypothesize,
with evidence in Appendix 7.1, that better performance in these questions can result in better social
reasoning performance and may be a limiting factor for o4-mini. Gemini 2.5 shows worse perfor-
mance across spatiotemporal reasoning and social reasoning compared to o4-mini but comparable
performance in spatial reasoning. Gemini 2.5 has a particularly difficult time in determining the
moving direction of the robot compared to other models. Although we evaluated using o4-mini and
Gemini 2.5 flash, we expect that these may be lower bounds on the performance for their higher-end
model variations.

Category Question Name Gemini 2.5 o4-mini

PA CW PA PA CW PA

Spatial

Person Initial Position 0.49 ± 0.01 0.78 ± 0.02 0.49 ± 0.01 0.76 ± 0.02
Person Ending Position 0.36 ± 0.01 0.59 ± 0.02 0.36 ± 0.01 0.58 ± 0.02
Goal Initial Position 0.70 ± 0.04 0.86 ± 0.04 0.48 ± 0.05 0.58 ± 0.06
Goal End Position 0.52 ± 0.04 0.67 ± 0.05 0.48 ± 0.05 0.60 ± 0.06
Person End Goal Obstruction 0.66 ± 0.02 0.77 ± 0.02 0.81 ± 0.01 0.93 ± 0.01

Spatiotemporal
Robot Moving Direction 0.34 ± 0.04 0.50 ± 0.06 0.56 ± 0.04 0.80 ± 0.04
Person Distance Change 0.47 ± 0.01 0.75 ± 0.02 0.45 ± 0.01 0.71 ± 0.02
Person Goal Obstruction 0.60 ± 0.02 0.73 ± 0.02 0.73 ± 0.01 0.87 ± 0.01

Social

Robot Affected by Person 0.57 ± 0.02 0.71 ± 0.02 0.73 ± 0.01 0.89 ± 0.01
Robot Action to Person 0.44 ± 0.02 0.67 ± 0.02 0.58 ± 0.01 0.84 ± 0.02
Person Affected by Robot 0.70 ± 0.02 0.83 ± 0.02 0.77 ± 0.01 0.91 ± 0.01
Person Action to Robot 0.58 ± 0.02 0.80 ± 0.02 0.60 ± 0.02 0.83 ± 0.02
Robot Affected by Person at end 0.56 ± 0.02 0.68 ± 0.02 0.77 ± 0.01 0.91 ± 0.01
Robot Action to Person at end 0.44 ± 0.02 0.62 ± 0.02 0.62 ± 0.01 0.87 ± 0.01
Person Action to Robot at end 0.58 ± 0.01 0.81 ± 0.02 0.58 ± 0.02 0.82 ± 0.02
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Table 12: Performance Across Individual Questions for Baselines. For the Human Oracle and
Average Human baselines, these results highlight questions that humans disagreed on more often,
showing that determining spatial labels for humans was more disagreeable than social reasoning
questions. The rule-based baseline performance indicates that it struggles with determining what
the initial and ending position of humans are as well as determining if a person gets closer to further
away, showing that it is not as trivial as determining a cutoff value for this from rules described in
7.10.

Category Question Name Human Oracle Average Human Rule-Based

PA CW PA PA CW PA PA CW PA

Spatial

Person Initial Position 0.64 ± 0.01 1.00 ± 0.00 0.46 ± 0.01 0.73 ± 0.00 0.49 ± 0.01 0.78 ± 0.01
Person Ending Position 0.61 ± 0.01 1.00 ± 0.00 0.43 ± 0.01 0.71 ± 0.01 0.41 ± 0.01 0.67 ± 0.02
Goal Initial Position 0.80 ± 0.02 1.00 ± 0.00 0.68 ± 0.03 0.85 ± 0.01 0.68 ± 0.04 0.83 ± 0.05
Goal End Position 0.77 ± 0.02 1.00 ± 0.00 0.62 ± 0.02 0.82 ± 0.01 0.56 ± 0.04 0.72 ± 0.05
Person End Goal Obstruction 0.86 ± 0.01 1.00 ± 0.00 0.77 ± 0.01 0.89 ± 0.00 0.80 ± 0.01 0.93 ± 0.01

Spatiotemporal
Robot Moving Direction 0.69 ± 0.03 1.00 ± 0.00 0.52 ± 0.03 0.74 ± 0.02 0.62 ± 0.04 0.87 ± 0.03
Person Distance Change 0.63 ± 0.01 1.00 ± 0.00 0.46 ± 0.01 0.74 ± 0.00 0.48 ± 0.01 0.76 ± 0.02
Person Goal Obstruction 0.83 ± 0.01 1.00 ± 0.00 0.73 ± 0.01 0.88 ± 0.00 0.78 ± 0.01 0.94 ± 0.01

Social

Robot Affected by Person 0.82 ± 0.01 1.00 ± 0.00 0.72 ± 0.01 0.87 ± 0.00 0.76 ± 0.01 0.91 ± 0.01
Robot Action to Person 0.67 ± 0.01 1.00 ± 0.00 0.50 ± 0.01 0.74 ± 0.01 0.57 ± 0.01 0.82 ± 0.02
Person Affected by Robot 0.84 ± 0.01 1.00 ± 0.00 0.74 ± 0.01 0.88 ± 0.00 0.79 ± 0.01 0.94 ± 0.01
Person Action to Robot 0.72 ± 0.01 1.00 ± 0.00 0.56 ± 0.01 0.77 ± 0.01 0.67 ± 0.01 0.93 ± 0.01
Robot Affected by Person at end 0.84 ± 0.01 1.00 ± 0.00 0.73 ± 0.01 0.88 ± 0.00 0.79 ± 0.01 0.94 ± 0.01
Robot Action to Person at end 0.70 ± 0.01 1.00 ± 0.00 0.53 ± 0.01 0.75 ± 0.01 0.67 ± 0.01 0.94 ± 0.01
Person Action to Robot at end 0.71 ± 0.01 1.00 ± 0.00 0.54 ± 0.01 0.76 ± 0.01 0.70 ± 0.01 0.98 ± 0.01

7.9 Ablation Experiments

Table 13: Ablation experiment of querying strategies. The metric used is Probability of Agree-
ment (PA). The baseline row BEV+CoT represents the VLM’s performance with both CoT and BEV
prompts enabled, while the subsequent rows show the effects of removing either CoT or BEV com-
ponents.

Model Ablation Spatial Spatiotemporal Social
Reasoning Reasoning Reasoning

GPT-4o
CoT+BEV 0.56 ± 0.01 0.51 ± 0.01 0.47 ± 0.01
No CoT 0.58 ± 0.01 0.53 ± 0.01 0.35 ± 0.01
No BEV 0.51 ± 0.01 0.44 ± 0.01 0.42 ± 0.01

LLaVa-Next-Video
CoT+BEV 0.35 ± 0.01 0.58 ± 0.01 0.48 ± 0.01
No CoT 0.35 ± 0.01 0.58 ± 0.01 0.38 ± 0.01
No BEV 0.35 ± 0.01 0.61 ± 0.01 0.46 ± 0.01

Gemini 2.0
CoT+BEV 0.55 ± 0.01 0.46 ± 0.01 0.63 ± 0.01
No CoT 0.56 ± 0.01 0.48 ± 0.01 0.58 ± 0.01
No BEV 0.56 ± 0.01 0.46 ± 0.01 0.64 ± 0.01

To understand the impact of specific querying strategies on model performance, we conducted ab-
lation experiments, systematically removing components such as chain-of-thought (CoT) reasoning
and BEV prompts. Table 13 summarizes how these ablations affect PA in spatial, spatio-temporal,
and social reasoning tasks.

CoT reasoning. The results indicate that removing the CoT component does not significantly affect
spatial and spatiotemporal reasoning performance. However, the removal of CoT leads to a notable
decrease in social reasoning performance across all models. We hypothesize that social reasoning
tasks more often require multi-step reasoning to which CoT can help structure complex chains of
inference.

BEV visual prompts. The results from removing BEV prompts indicate that there is not a signif-
icant effect across the capabilities for LLaVa-Next-Video and Gemini 2.0, but provides a notable
decrease in performance for GPT-4o across all capabilities. While these results may not indicate a
clear winner for all models, it suggests that prompt design remains an open question which needs to
be further studied, an endeavor that can be pursued using our benchmark.

23



Table 14: Gemini ablation experiments when using ground truth spatial and spatiotemporal
answers for CoT reasoning. Our results indicate that better spatial reasoning and spatiotemporal
reasoning leads to better performance on social reasoning questions.

Question Name CoT CoT with Ground-Truth Spatial(Temporal) Reasoning

PA CW PA PA CW PA

Robot Affected by Person 0.64 ± 0.02 0.78 ± 0.02 0.78 ± 0.01 0.94 ± 0.01
Robot Action to Person 0.51 ± 0.01 0.75 ± 0.02 0.60 ± 0.01 0.88 ± 0.01
Person Affected by Robot 0.74 ± 0.01 0.88 ± 0.01 0.78 ± 0.01 0.94 ± 0.01
Person Action to Robot 0.62 ± 0.01 0.86 ± 0.02 0.65 ± 0.01 0.90 ± 0.01
Robot Affected by Person at end 0.72 ± 0.01 0.87 ± 0.01 0.78 ± 0.01 0.93 ± 0.01
Robot Action to Person at end 0.60 ± 0.01 0.85 ± 0.02 0.65 ± 0.01 0.91 ± 0.01
Person Action to Robot at end 0.62 ± 0.01 0.87 ± 0.01 0.65 ± 0.01 0.91 ± 0.01

Spatial Reasoning’s Affect on Performance. We ran an additional experiment to see if a lack of
strong performance for spatial and spatiotemporal reasoning was affecting performance on social
reasoning questions. Table 14 shows the results of running this experiment where we used the hu-
man consensus answer’s for the answers for spatial and spatiotemporal reasoning questions for the
VLM, which was also provided as chain-of-thought reasoning to the VLM in the form of context;
the VLM was then evaluated on social reasoning questions. These results indicate that a strong spa-
tial and spatiotemporal reasoning capabilities can lead to significantly better performance on social
reasoning questions. The “Person Goal Obstruction” question may provide sufficient information
for the VLM to easily answer the “Robot Affected By Person” question, to which we run an addi-
tional experiment and empirically found that, although it was not as drastic, there were performance
gains across all questions. These results indicate that hybrid VLM systems that help VLM’s with
their weaknesses (such as dedicated perception modules) may be more effective rather than entirely
relying on the VLM for all questions.

7.10 Rule-Based Baseline Details

As mentioned in Section 4.1, we developed a rule-based baseline which uses a set of hand-crafted
rules to determine answers for VQA questions. Although our simple approach demonstrates better
performance than VLMs, it is by no means comprehensive and more complex rules can be devised
to further push performance. We briefly summarize the simple rules to determine answers for our
Rule-Baed baseline:

• Spatial Reasoning Position Questions: Determine deviation in the horizontal direction and
use it along with cutoff values to determine whether to answer they are to the left, ahead,
or behind.

• Goal Obstruction Questions: Draw a line from the robot to the goal and a line from the
person’s trajectory, if the lines intersect, consider the person obstructing the goal.

• Person Distance Change: Look at the initial relative position and end relative positions for
the person, determine the appropriate answer based on the distance between the two points.

• Robot Moving Direction: Use the horizontal deviation between the the initial relative posi-
tion of the robot and the end relative position to determine if the robot is turning.

• Social Reasoning “Affected” Questions: If the person is obstructing the goal, then answer
that the robot will be affected by them.

• Social Reasoning “Action” Questions: If the person is obstructing the goal, then avoid the
person. For person action questions, use the same answer as the robot action questions.
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