Fast Motion Planning Using Diffusion Models Based on Key-Configuration Environment Representation

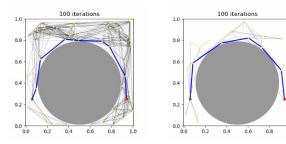
> Mingyo Seo^{*1}, Yoonyoung Cho^{*2}, Yoonchang Sung¹, Peter Stone¹, Yuke Zhu^{†1}, and Beomjoon Kim^{†2}

Motion Planning in Practical Environments

© Dexterity Inc.

- Complex geometry due to cluttered objects
- Eimited computational time
 - Consistent fixture setup

Motivation: Challenges in Motion Planning

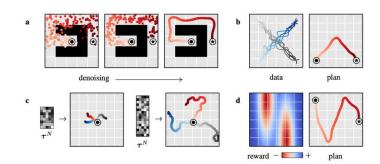


sample-based planners [1,2]

🔍 narrow-passage, high

dimensionality optimization-based planners [3]

Q dependence on seed trajectories, local minima



generative models [4]

data-driven trajectory sampling priors

Solution poor constraint handling, weak generalization

[1] Kavraki et al., Probabilistic roadmaps for path planning in high-dimensional configuration spaces, 1996

[2] LaValle et al., Rapidly-exploring random trees: A new tool for path planning, 1998

[3] Schulman et al., Motion Planning with Sequential Convex Optimization and Convex Collision Checking, 2013

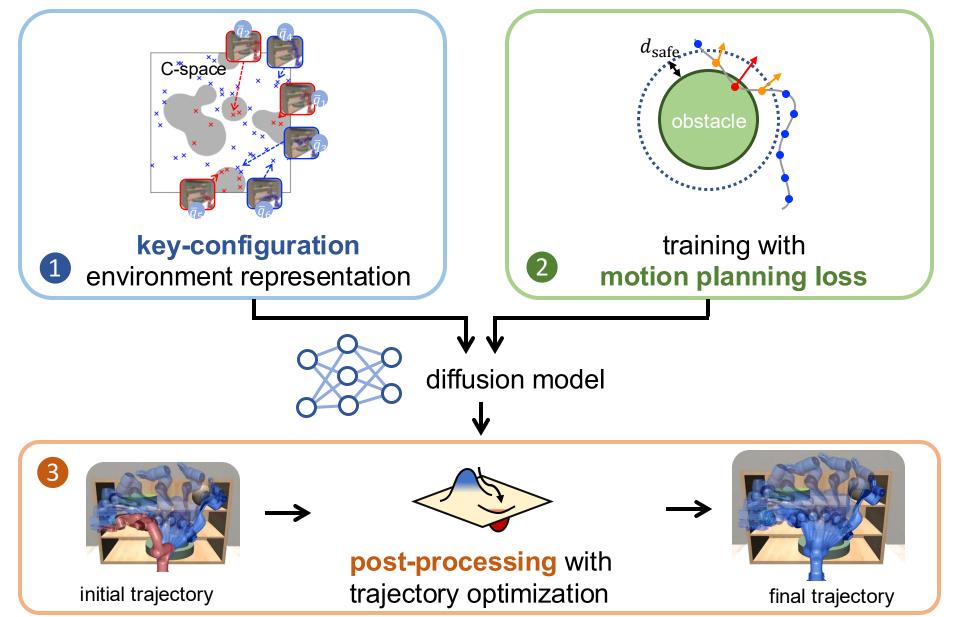
[4] Janner et al., Planning with Diffusion for Flexible Behavior Synthesis, 2022

Research Questions

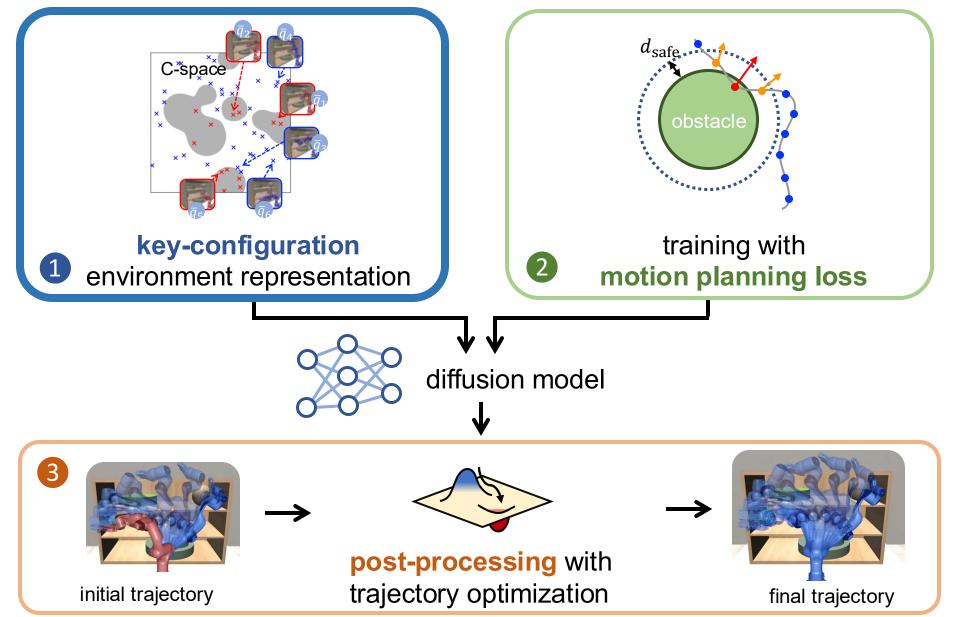
What are **good representations** for generalizing to unseen environments?

How can generative models learn task constraints like collision avoidance? (:-)

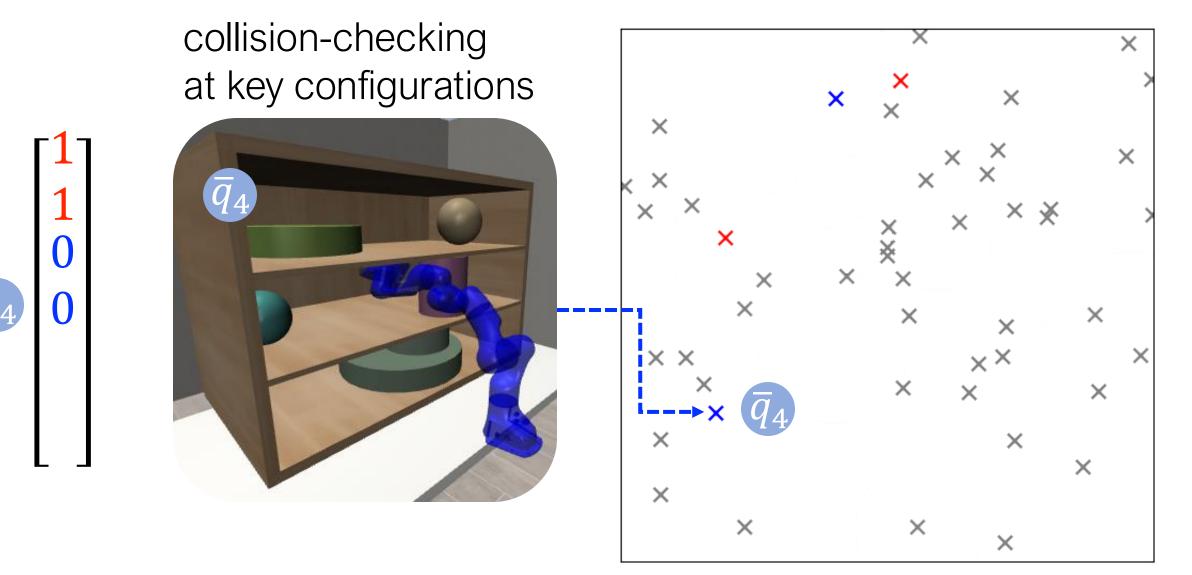
Planning with Environment Representation, Sampling, and Trajectory Optimization



Planning with Environment Representation, Sampling, and Trajectory Optimization

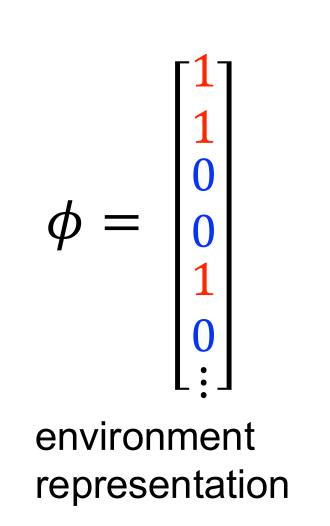


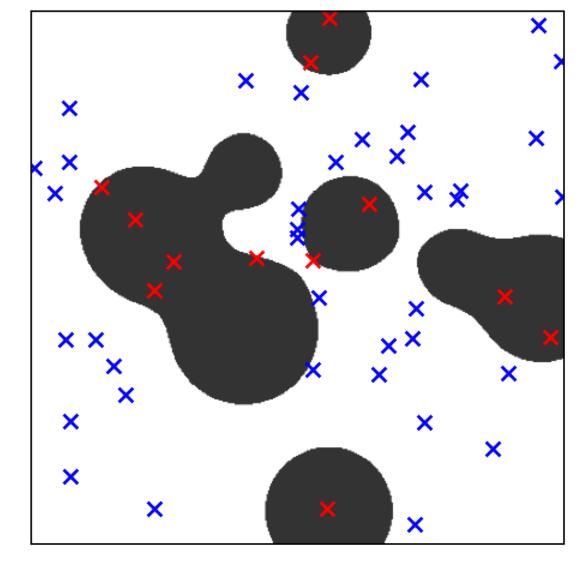
Key-configuration environment representation



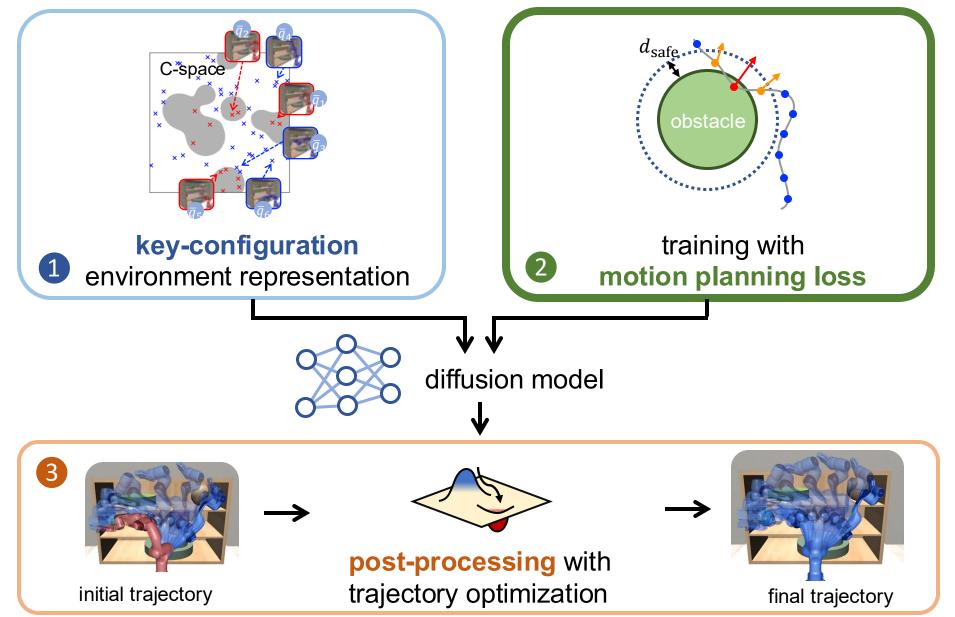
unknown C-space

Key-configuration environment representation

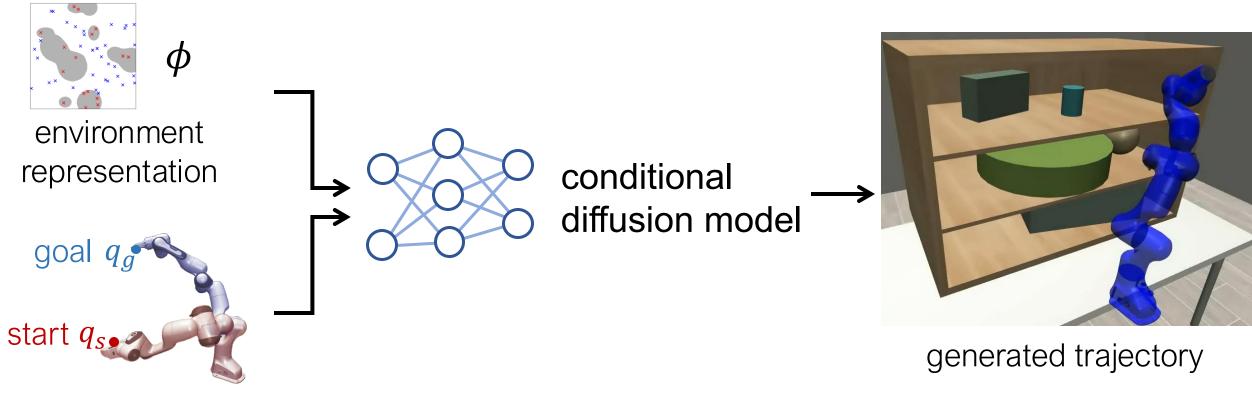




Planning with Environment Representation, Sampling, and Trajectory Optimization

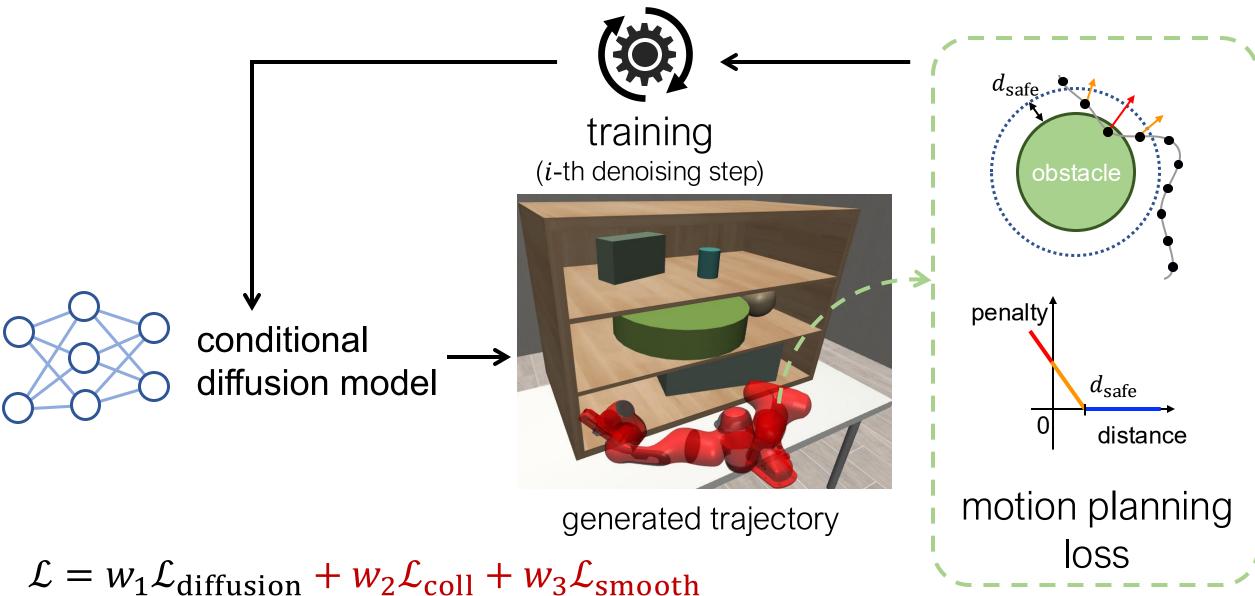


Training with TrajOpt-based motion planning loss

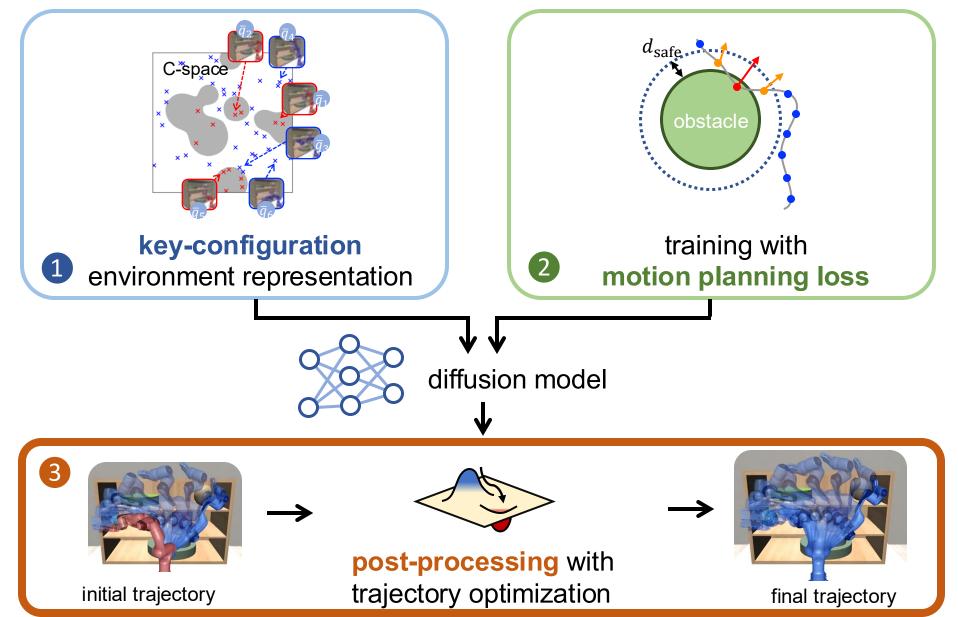


endpoint constraints

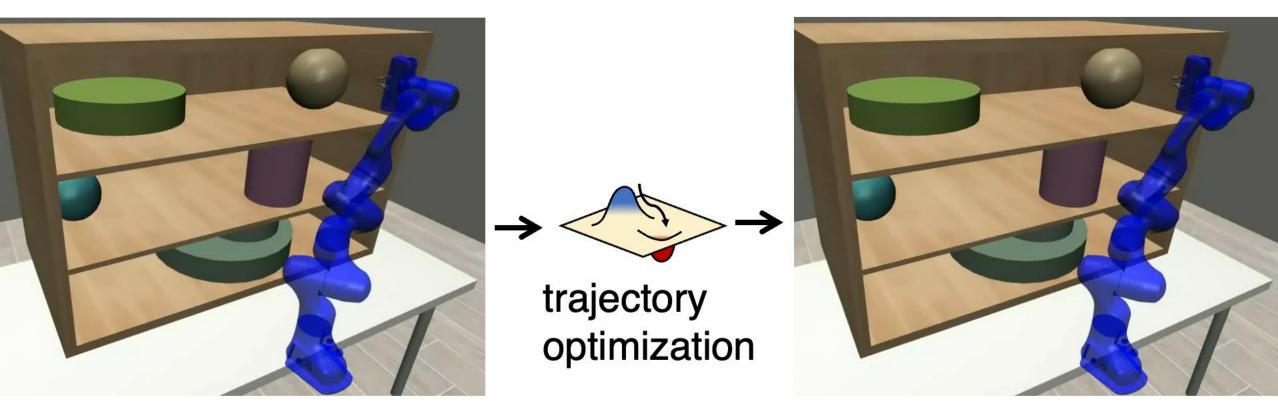
Training with TrajOpt-based motion planning loss



Planning with Environment Representation, Sampling, and Trajectory Optimization



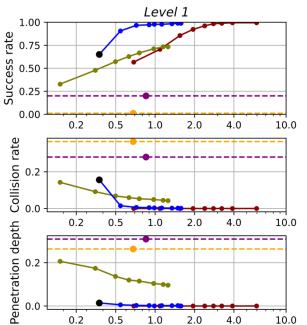
Post-processing with trajectory optimization



initial trajectory

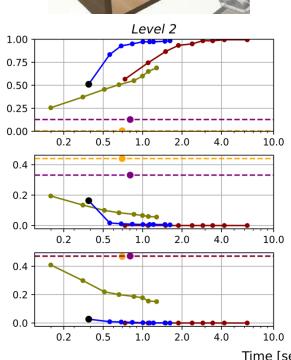
final trajectory

Quantitative Evaluation



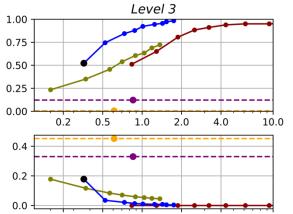
🗕 Bi-RRT

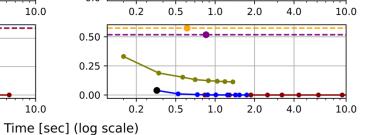
--- TrajOpt



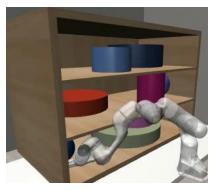
---- SceneDiffuser

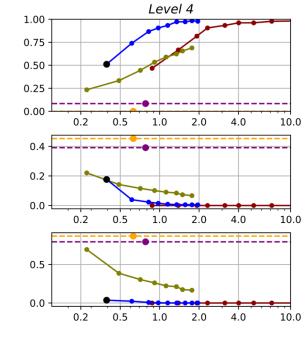
--- MPD





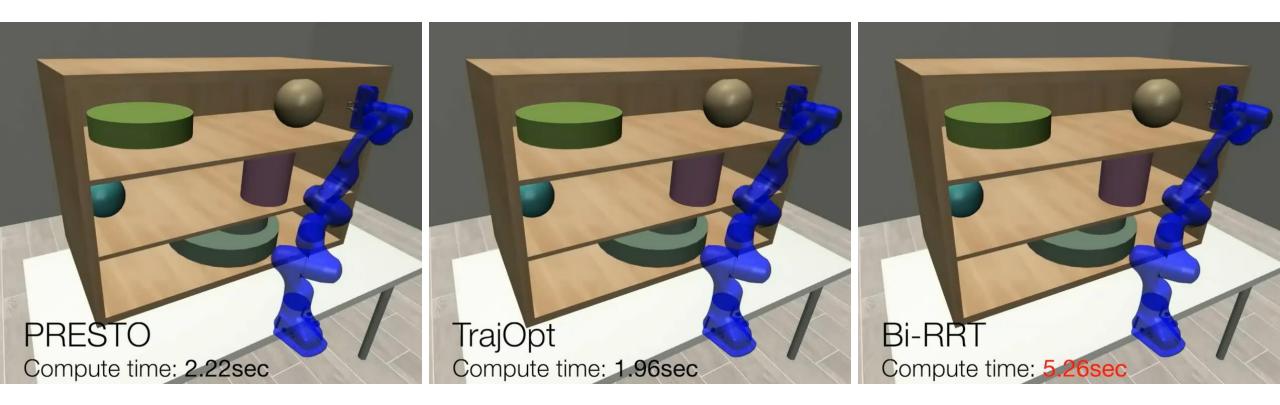
• PRESTO (Without Post-Processing)





--- PRESTO

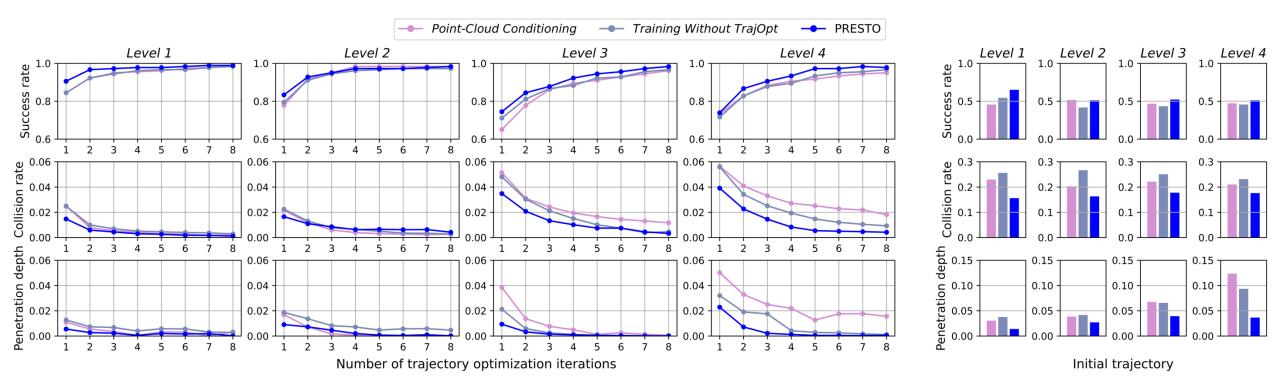
Qualitative Evaluation



colliding/collision-free

Ablation Studies

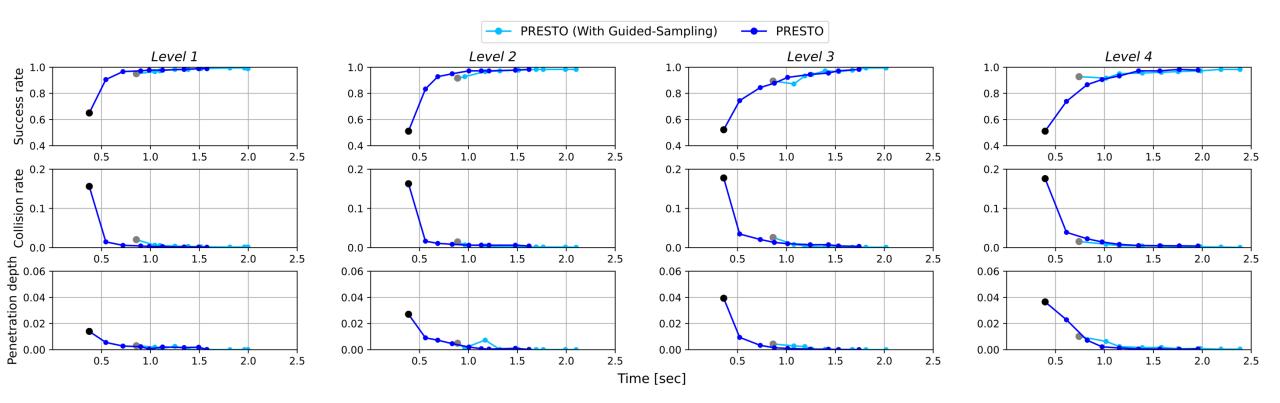
Key-configuration representations vs Point-cloud representations? Is training with motion-planning costs helpful?



Test-Time Guidance

Improvement on trajectory generation through test-time guidance

Additional computational overhead for guidance



Conclusion

Key ideas

- **task-related** environment representation in **C-space**
- Fraining with motion-planning loss
- **post-processing** with trajectory optimization

Main results

- ✓ faster computation compared with pure planners
- ✓ outperforming generative-model-based motion planners

* Project page: https://kiwi-sherget.github.io/PRESTO