

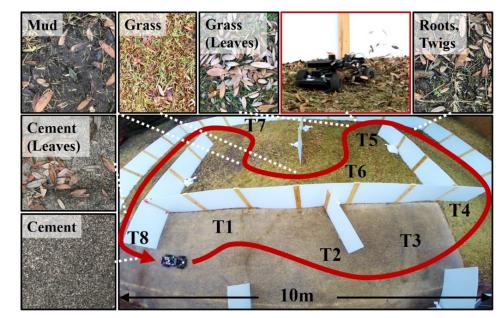
LEARNING INVERSE KINODYNAMICS FOR ACCURATE HIGH-SPEED OFF-ROAD NAVIGATION ON UNSTRUCTURED TERRAIN

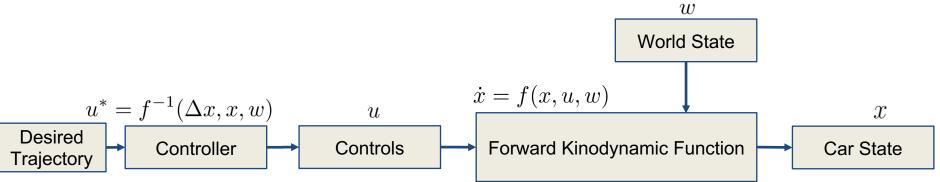
Xuesu Xiao¹, Joydeep Biswas¹, and Peter Stone^{1,2} ¹The University of Texas at Austin, ²Sony AI

JOYDEEP BISWAS Assistant Professor, The University of Texas at Austin

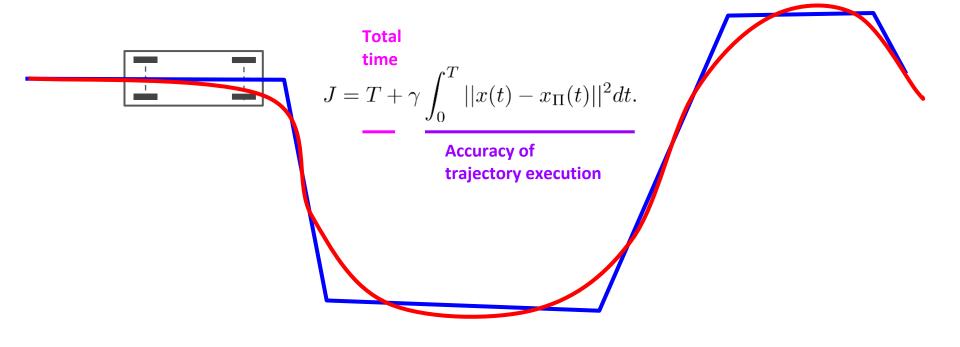
Motivation

- Navigation becomes challenging under three combined conditions
 - Accurate
 - High-Speed
 - Off-Road (Unstructured Terrain)

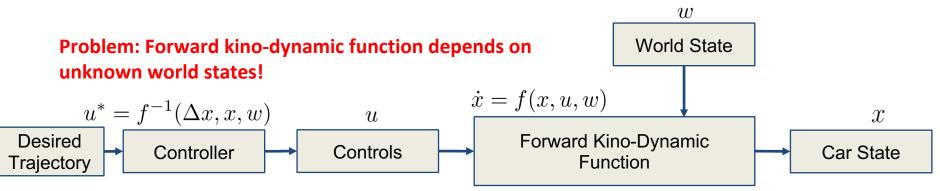




Controller Objective



Challenges With Off-Road Driving



Related Work: Terrain Classification

Classification

[Bai, et al. Access19, Shi, et al. Electronics20, etc.]

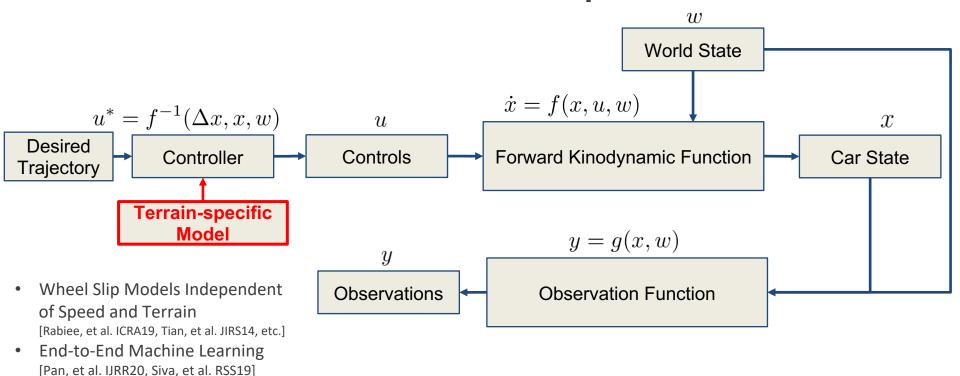
- Vision-Based Semantic Mapping [Maturana, et al. FSR18, Wolf, et al. IOP20, etc.]
- Perceived as discrete classes/costs for subsequent planning, no related kinodynamic effect considered

Terrain Classification

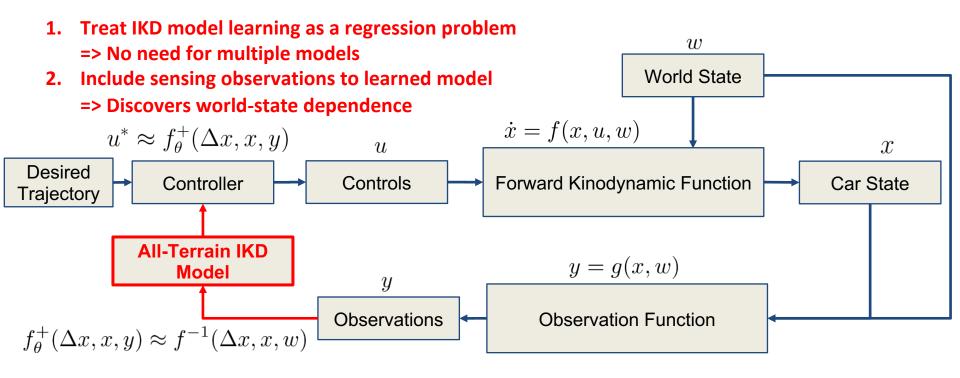
World State $\dot{x} = f(x, u, w)$ \mathcal{X} uControls Car State Forward Kinodynamic Function y = g(x, w)y**Observations Observation Function**

W

Related Work: Terrain-Specific Models



Our Approach: Learning All-Terrain Inverse Kinodynamics



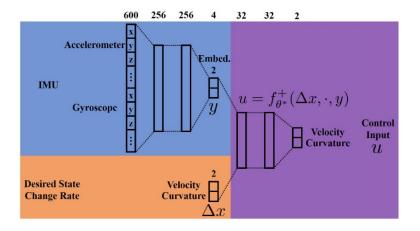
Training From "Off-Track Time"

- 1. Manually drive around the car on a variety of terrain types Collect:
 - a. Joystick controls u^i
 - b. State of the car x^i
 - c. Observations y^i
 - d. Actual outcomes from real-world forward kinodynamics $[\Delta x^i]$
- 2. Train regression model with this as supervised loss:

Pretend actual outcomes were desired, regression model should output the joystick controls

$$\theta^* = \underset{\theta}{\arg\min} \sum_{\substack{(\Delta x^i, x^i, y^i) \in \mathcal{T}}} \|f^{-1}(\cdot, \cdot, \cdot) - f^+_{\theta}(\Delta x^i, x^i, y^i)\|_H$$
$$= \underset{\theta}{\arg\min} \sum_{\substack{(u^i, \Delta x^i, x^i, y^i) \in \mathcal{T}}} \|u^i - f^+_{\theta}(\Delta x^i, x^i, y^i)\|_H,$$

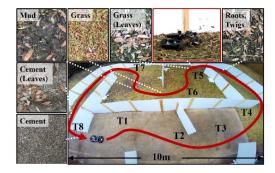
Implementation

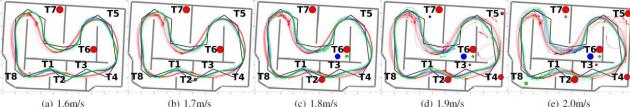


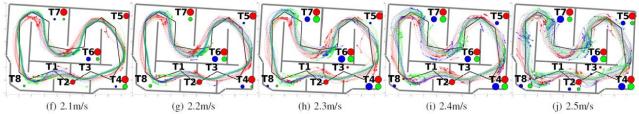
Neural Network Architecture

UT Automata

Experiment Results Seen Terrain, Unseen Track



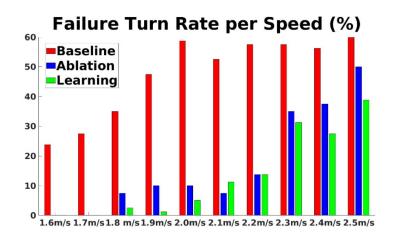


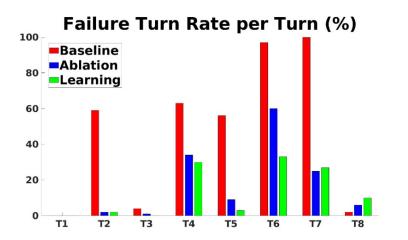


Red (Baseline) : No learned model Blue (Ablation) : Learned model, no sensing inputs Green (Ours) : Learned model with sensing inputs

Experiment Results

• Seen Terrain, Unseen Track





Cement (Leaves)

Cement

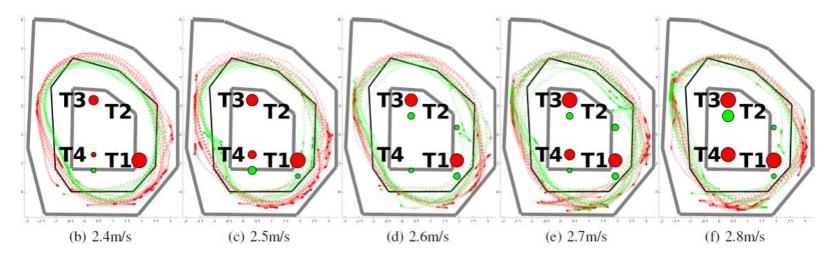
Grass (Leaves

TI

10m

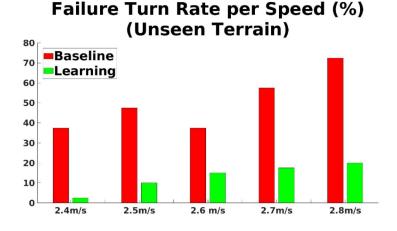
Experiment Results

• Unseen (Easier) Terrain, Unseen Track

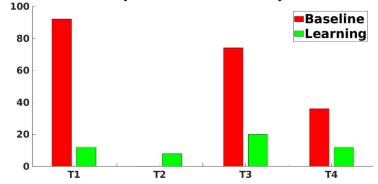


Experiment Results

• Unseen (Easier) Terrain, Unseen Track



Failure Turn Rate per Turn (%) (Unseen Terrain)



Conclusions

- Using inertia-based observation embeddings to capture elusive and stochastic world state during off-road navigation on unstructured terrain
- Learning inverse kinodynamic model for accurate and high-speed navigation in a data-driven manner
- Improving navigation performance in seen/unseen terrain and track layout
- Future Work
 - Adding vision-based observation to prepare for future wheel-terrain interactions
 - Generalization from easier to harder environments

