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Abstract
We present an approach to ensure safe and deadlock-free navigation for decentralized multi-robot systems operating in
constrained environments, including doorways and intersections. Although many solutions have been proposed that ensure
safety and resolve deadlocks, optimally preventing deadlocks in a minimally invasive and decentralized fashion remains an
open problem. We first formalize the objective as a non-cooperative, non-communicative, partially observable multi-robot
navigation problem in constrained spaces with multiple conflicting agents, which we term as social mini-games. Formally,
we solve a discrete-time optimal receding horizon control problem leveraging control barrier functions for safe long-horizon
planning. Our approach to ensuring liveness rests on the insight that there exists barrier certificates that allow each robot to
preemptively perturb their state in a minimally-invasive fashion onto liveness sets i.e. states where robots are deadlock-free.
We evaluate our approach in simulation as well on physical robots using F1/10 robots, a Clearpath Jackal, as well as a
Boston Dynamics Spot in a doorway, hallway, and corridor intersection scenario. Compared to both fully decentralized and
centralized approaches with and without deadlock resolution capabilities, we demonstrate that our approach results in safer,
more efficient, and smoother navigation, based on a comprehensive set of metrics including success rate, collision rate, stop
time, change in velocity, path deviation, time-to-goal, and flow rate.
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1 Introduction

We consider the task ofmulti-robot navigation in constrained
environments such as passing through narrow doors and hall-
ways, or negotiating right of way at corridor intersections.
We refer to these types of scenarios as social mini-games.
Unlike humans, robots often collide or end up in a deadlock
due to several challenges arising in social mini-games. Two
key challenges, in particular, demand attention. First, without
some form of cooperation, decentralized systems, even with
perfect local sensing, result in deadlocks, collisions, or non-
smooth trajectories. Second, humans are adept at avoiding
collisions and deadlocks without having to deviate too much
from their preferredwalking speed or trajectory. For instance,
when two individuals go through a doorway together, one
person modulates their velocity by just enough to enable the
other person to pass through first, while still adhering closely
to their preferred speed. This type of behavior presents a sig-
nificant challenge for robots, which struggle to emulate such
socially adaptive maneuvers while maintaining a consistent
preferred velocity. The objective of this paper is to propose
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Table 1 Comparing various approaches for multi-robot navigation in social mini-games

Necessary Algorithmic Conditions Assumptions

Approach Collision-free Liveness† Dynamics Control Non§ Observation
Cooperative

DRL (Long et al., 2018;
Chen et al., 2017; Everett
et al., 2021, 2018)

✗ ✗ Differential drive CTDE ✗ Partial

ORCA-MAPF (Dergachev
& Yakovlev, 2021)

✗ ✓ Single-integrator Centralized ✗ Full

Prediction + Planning
(Kamenev et al., 2022)

✗ ✗ − CTDE ✗ Full

Game-theoretic Dist. Opt.
(Le Cleac’h et al., 2022)

✓ ✗ Unicycle Distributed ✓ Full

NH-TTC (Davis et al.,
2019)

✓ ✗ Differential drive Decentralized ✗ Full

Auction-based (Chandra et
al., 2023)

✗ ✓∗ Ackermann Distributed ✓ Partial

Buffered Voronoi Cells
(Chen et al., 2022)

✗ ✓∗ Double-integrator Distributed ✓ Full

NH-ORCA (Alonso-Mora
et al., 2013)

✓ ✗ Differential drive Decentralized ✓ Partial

CBFs (Wang et al., 2017) ✓ ✗ Double-integrator Decentralized ✓ Partial

CBFs+KKT (Grover et al.,
2016)

✓ ✓∗ Single-integrator Decentralized ✓ Partial

DS-MPEPC (Arul et al.,
2023)

✓ ✓∗ Differential drive Decentralized ✓ Partial

RLSS (Şenbaşlar et al.,
2023)

✓ ✗ Differentially flat Decentralized ✗ Partial

Humans ✓ ✓ − Decentralized ✓ Partial

This paper ✓ ✓ Double-integrator Decentralized ✓ Partial

� Under certain conditions
§ Non-cooperative robots: robots optimize their individual objective functions (Yang & Wang, 2020)
† Deadlock-free

a safe and deadlock-free navigation algorithm for multiple
robots in social mini-games.

The goal is for robots to navigate in such social mini-
games as humans do as much as possible. More formally,
we outline a list of necessary conditions along with some
assumptions of the multi-robot navigation problem that can
shift the nature of the problem toward more or less human-
like behavior:

• Necessary conditions:

1. Ensure collision-free controls:Navigation algorithms
must produce controls that guarantee robots traverse
their environment without collisions.

2. Demonstrate liveness: Navigation algorithms must
detect and prevent deadlocks in a minimally invasive
fashion.

3. Obey kinodynamic constraints:Humansoperate under
physical and dynamic constraints. Navigation algo-
rithms must both operate under complex kinody-

namic constraints of the robot such as speed and
acceleration limits, as well as be deployable on real
robots.

• Navigation algorithms can make several assumptions
about the robot’s behavior. We enumerate the possible
assumptions as follows:

1. Control Operation: Robots can operate in a central-
ized, decentralized, or distributed manner, which can
affect the level of coordination required for successful
navigation.

2. Non-cooperative agents: Robots can be non-cooper-
ative where each robot optimizes its own objective
function or cooperative where each robot optimizes
a global system objective.

3. Observability: The level of observability can vary for
robots, with some agents relying on partial or full
observability of their surroundings, impacting their
ability to make decisions and navigate successfully.
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We compare different classes of methods according to these
desiderata and assumptions in Table 1. Although multi-robot
navigation encompasses a vast range of algorithms, we nar-
row our focus to algorithms that have been applied to social
mini-games either on real robots or in simulation. These
includemethods based on deep reinforcement learning (Long
et al., 2018; Chen et al., 2017; Everett et al., 2021, 2018),
multi-agent path finding (Dergachev &Yakovlev, 2021), tra-
jectory prediction (Kamenev et al., 2022), game-theoretic
distributed optimization (Le Cleac’h et al., 2022), auctions
(Chandra et al., 2022), geometric planning (Alonso-Mora et
al., 2013; Van Den Berg et al., 2011; Dergachev &Yakovlev,
2021), and other optimization-based methods (Grover et al.,
2016; Arul et al., 2023; Wang et al., 2017; Chen et al., 2022;
Davis et al., 2019). From Table 1, we note that none of
these methods satisfy all of the necessary conditions for opti-
mal multi-robot navigation in social mini-games. This paper
addresses the following open research question:

Research Question: how can we design an algo-
rithm that can satisfy all of the necessary spec-
ifications for optimal multi-robot navigation in
social mini-games?

Main Contributions: We present the first approach
for optimal, safe, and (preventive) deadlock-free receding-
horizon navigation for robots with double-integrator dynam-
ics in socialmini-games, such as navigating through a narrow
door or negotiating right ofway at a corridor intersection.Our
algorithm is minimally invasive, fully decentralized.1, and
works in realtime both in simulation as well as on physical
robots. Our main contributions include:

1. We formally define social navigation in geometrically
constrained environments through the notion of social
mini-games. Prior research (Grover et al., 2020; Chen et
al., 2022) has only identified social mini-games as causes
of deadlocks, which they can then only resolve once the
deadlock occurs. In this work, we leverage the geometri-
cal properties of social mini-games to detect and prevent
deadlocks from occurring in an online fashion.

2. We present a new class of multi-agent, realtime, decen-
tralized controllers that perform safe and deadlock-free
navigation via a discrete-time, finite-horizon MPC for-
mulation. Safety is modeled via control barrier functions
and liveness is ensured by a geometrically motivated
detection-and-prevention strategy. Both safety and live-

1 while our approach is decentralized in most practical scenarios, we
utilize a centralized auction protocol for tie-breaking in the rare case
when robots speeds are exactly identical up to numeric precision Our
approach then switches to a centralized mode for only as long as the
auction is active, and returns to decentralized mode when the auction
is switched off. The auction, however, is rarely used in practice.

ness are guaranteed in realtime by integrating them as
constraints to the optimal control problem.

3. We evaluate our proposed navigation algorithm in sim-
ulation as well in the real world using F1/10 robots,
a Clearpath Jackal, and a Boston Dynamics Spot in a
doorway, corridor intersection, and hallway scenario.We
show that our approach results in safer and more effi-
cient navigation compared to local planners based on
geometrical constraints, optimization, multi-agent rein-
forcement learning, and auctions. Specifically, we show
that our deadlock resolution is the smoothest in terms of
smallest average change in velocity as well as path devia-
tion. We demonstrate efficiency by measuring makespan
and showing that the throughput generated by robots
using our approach to navigate through these constrained
spaces is identical to when humans navigate these envi-
ronments naturally.

In the remainder of this paper, we discuss related work in
Sect. 2 and formulate the problem in Sect. 3. We present our
controller in Sect. 5 and evaluate its performance in Sect. 6.
We conclude the paper in Sect. 7.

2 Related work

In this section, we review the existing approaches for multi-
robot navigation in social mini-games. We categorize the
approaches based on their mode of operation which could
be decentralized, centralized, distributed, or a special class
pertaining specifically to learning-based methods that rely
on centralized training and decentralized execution (CTDE).
Table 1 summarizes the comparison of these approaches
based on mode of operation along with safety, liveness,
real-world deployment, decentralized decision-making, self-
interested agents, and observation.

2.1 Collision avoidance

Provable safety can be achieved by single-integrator systems
e.g. ORCA framework from Van Den Berg et al. (2011)
and its non-holonomic variant (Alonso-Mora et al., 2013),
which are effective for fast and exact multi-agent navi-
gation. ORCA conservatively imposes collision avoidance
constraints on the motion of a robot in terms of half-planes
in the space of velocities. The optimal collision-free veloc-
ity can then be quickly found by solving a linear program.
The original framework limits itself to holonomic systems
but has been extended in Alonso-Mora et al. (2013) to model
non-holonomic constraints with differential drive dynamics.
ORCA also generates collision-free velocities that deviate
minimally from the robots’ preferred velocities. The major
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limitation of the ORCA framework is that the structure of the
half-planes so constructed often results in deadlocks (Der-
gachev & Yakovlev, 2021).

Proving safety is harder for systemswith double-integrator
dynamics, therefore safety in these systems depends on the
planning frequency of the system. For example, the NH-TTC
algorithm (Davis et al., 2019) uses gradient descent to min-
imize a cost function comprising a goal reaching term and
a time-to-collision term, which rises to infinity as the agent
approaches immediate collision. NH-TTC guarantees safety
in the limit as the planning frequency approaches infinity.
Other optimization-based approaches use model predictive
control (MPC) (Chen et al., 2022); in such approaches, safety
depends not only on the planning frequency but also on the
length of the planning horizon.

Finally, Control Barrier Functions (CBFs) (Grover et al.,
2016; Wang et al., 2017) can be used to design controllers
that can guarantee safety via the notion of forward invariance
of a set i.e. if an agent starts out in a safe set at the initial time
step, then it remains safe for all future time steps, that is, it
will never leave the safe set.

2.2 Deadlock resolutionmethods

Deadlocks among agents arise due to symmetry in the envi-
ronment that may cause conflicts between the agents (Grover
et al., 2020; Chen et al., 2022; Grover et al., 2016). To break
the symmetry, and escape the deadlock, agents must be per-
turbed, which can be done in several ways. The most naive,
and easiest, way is to randomly perturb each agent (Wang
et al., 2017). Random perturbations can be implemented in
decentralized controllers and can generalize to many agents,
but are sub-optimal in terms of path deviation and overall
cost. Next, there are several recent efforts to choreograph the
perturbation according to some set rules such as the right-
hand rule (Chen et al., 2022; Zhou et al., 2017) or clockwise
rotation (Grover et al., 2016). These strategies improve per-
formance over random perturbation and even give formal
guarantees of optimality, but the imposed pre-determined
ordering limits their generalizability; many cannot gener-
alize to more than 3 agents. Another line of research aims
towards deadlock prevention rather than resolution where
an additional objective is to identify and mitigate potential
deadlocks, even before they happen, such as in Chen et al.
(2022).

Another class of deadlock resolution methods rely on pri-
ority protocols and scheduling algorithms similar to those
used in the autonomous intersection management literature
(Zhong et al., 2020). Some prominent protocols include first
come first served (FCFS), auctions, and reservations. FCFS
(Au et al., 2015) assigns priorities to agents based on their
arrival order at the intersection. It is easy to implement but
can lead to long wait times and high congestion if multiple

vehicles arrive at the intersection simultaneously. In auctions
(Carlino et al., 2013; Suriyarachchi et al., 2022), agents bid
to cross the intersection based on a specific bidding strategy.
Reservation-based systems (Dresner & Stone, 2008) are sim-
ilar to the auction-based system in which agents reserve slots
to cross the intersection based on their estimated arrival and
clearance times.

As noted by recent researchers (Chen et al., 2022; Zhou et
al., 2017), developing a provably optimal, decentralized, and
general deadlock resolution technique is currently an open
problem. In this work, we take a large step forward towards
a solution.

2.3 Learning-based approaches

Coupling classical navigation with machine learning is
rapidly growing field and we refer the reader to Xiao et al.
(2022) for a recent survey on the state-of-the-art of learning-
based motion planning. Here, we review two categories of
approaches that have been reasonably succesful in multi-
agent planning and navigation. These are methods based
on deep reinforcement learning (DRL) and trajectory pre-
diction. DRL has been used to train navigation policies in
simulation for multiple robots in social mini-games. Long et
al. (2018) presents a DRL approach for multi-robot decen-
tralized collision avoidance, using local sensory information.
They present simulations in various group scenarios includ-
ing social mini-games. CADRL (Chen et al., 2017), or
Collision Avoidance with Deep Reinforcement Learning, is
a state-of-the-art motion planning algorithm for social robot
navigation using a sparse reward signal to reach the goal
and penalizes robots for venturing close to other robots. A
variant of CADRL uses LSTMs to select actions based on
observations of a varying number of nearby robots (Everett
et al., 2021). Planning algorithms that use trajectory predic-
tion models (Kamenev et al., 2022) estimate the future states
of the robot in the presence of dynamic obstacles, and plan
their actions accordingly. However, DRL-based methods are
generally hard to train requiring tens of thousands of data
samples, hours of training time, do not generalize to out of
distribution environments, and lastly, they impose only soft
constraints (collision checking) on safety, and do not provide
hard guarantees.

On the other hand, Imitation Learning (IL) corresponds
to a machine learning paradigm where an autonomous
agent strives to learn a behavior by emulating an expert’s
demonstrations. IL-based approaches are much faster than
traditional optimization-based approaches. Typically, the
demonstrations comprise state-input pairs, generated by an
expert policy during real-world execution. Addressing the
imitation learning problemhas led to threemajor approaches,
namely, Behavior Cloning (BC) (Ross et al., 2011, ?; Daftry
et al., 2016), which involves direct learning of an imitative
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policy through supervised learning, Inverse Reinforcement
Learning (IRL) (Ziebart et al., 2008;Mehr et al., 2023;Gonon
& Billard, 2023), wherein a reward function is first inferred
from the demonstrations, subsequently used to guide policy
learning via Reinforcement Learning (RL) (Sutton & Barto,
2018), and generativemodels (Ho&Ermon, 2016; Kostrikov
et al., 2019; Dadashi et al., 2020). We refer the reader to
Zheng et al. (2022) for a more comprehensive background
on IL. However, a shared drawback among the IL algorithms
(Kostrikov et al., 2019; Dadashi et al., 2020; Zheng et al.,
2022; Torabi et al., 2018; Karnan et al., 2022) is their inabil-
ity to encode state/safety and input constraints underlying
assumption of having access to the expert’s action data dur-
ing the demonstration phase. Additionally, these methods do
not transfer to domains that are outside the distribution of the
expert demonstrations.

2.4 Game-theoretic distributed optimization

Another class of methods for multi-agent planning for
self-interested agents includes distributed optimization in
general-sum differential games. The literature on general-
sum differential games classify existing algorithms for solv-
ing Nash equilibria in robot navigation into four categories.
First, there are algorithms based on decomposition (Wang
et al., 2021; Britzelmeier et al., 2019), such as Jacobi or
Gauss-Siedel methods, that are easy to interpret and scale
well with the number of players, but have slow convergence
and may require many iterations to find a Nash equilib-
rium. The second category consists of games (Fisac et al.,
2019), such as Markovian Stackelberg strategy, that capture
the game-theoretic nature of problems but suffer from the
curse of dimensionality and are limited to two players. The
third category consists of algorithms based on differential
dynamic programming (Schwarting et al., 2021; Sun et al.,
2015, 2016; Morimoto & Atkeson, 2003; Fridovich-Keil et
al., 2020; Di & Lamperski, 2018) that scale polynomially
with the number of players and run in real-time, but do not
handle constraints well. Lastly, the fourth category contains
algorithmsbasedondirectmethods in trajectory optimization
(Le Cleac’h et al., 2022; Di & Lamperski, 2019, 2020), such
as Newton’s method, that are capable of handling general
state and control input constraints, and demonstrate fast con-
vergence. The algorithms described above give an analytical,
closed-form solution that guarantees safety but not liveness.
Additional limitations include the lack of deployability in the
real world and the requirement of full observation.

The key distinction between our approach and traditional
game-theoretic approaches is that unlike in the latter case,
our approach does not explicitly enforce a Nash equilib-
riumwhich requires direct knowledge of the cost functions of
other agents. Instead, our approach implicitly and indirectly
achieves a solution that resembles a Nash equilibrium. So

we essentially perform a tradeoff - we deviate slightly from
a precise Nash solution to something that looks like a Nash
solution, but our approach works in realtime on real robots
in a fully decentralized manner.

3 Problem formulation and background

In this section, we begin by formulating social mini-games
followed by stating the problem objective. Notations used in
this paper are summarized in Table 2.

3.1 Problem formulation

We formulate a social mini-game by augmenting a partially
observable stochastic game (POSG) (Hansen et al., 2004):〈
k,X , {�i }, {Oi }, {U i }, T , {�̃i }, {J i }〉 where k denotes the
number of robots. Hereafter, i will refer to the index of a
robot and appear as a superscript whereas t will refer to the
current time-step and appear as a subscript. The general state
space X (e.g. SE(2), SE(3), etc.) is continuous; the i th robot
at time t has a state xit ∈ X . A state xit consists of both
visible parameters (e.g. current position, linear and angu-
lar velocity and hidden (to other agents) parameters which
could refer to the internal state of the robot such as preferred
speed, preferred heading, etc.We denote the set of observable
parameters as xit . On arriving at a current state x

i
t , each robot

generates a local observation, oit ∈ �i , via Oi : X −→ �i ,

where Oi
(
xit
) = {

xit
} ∪

{
x j
t : j ∈ N i

(
xit
)}
, the set of

robots detected by i’s sensors. Over a finite horizon T , each
robot is initialized with a start state xi0 ∈ XI , a goal state
xiN ∈ Xg where XI and Xg denote subsets of X con-
taining the initial and final states. The transition function
is given by T : X × U i −→ X , where U i is the con-
tinuous control space for robot i representing the set of
admissible inputs for i . A discrete trajectory is specified as
�i = (xi0, xi1, . . . , xiT

)
and its corresponding input sequence

is denoted by � i = (
ui0, u

i
1, . . . , u

i
T−1

)
. Robots follow the

discrete-time control-affine system,

xit+1 = f
(
xit
)

+ g
(
xit
)
uit (1)

which is obtained after applying a Runge–Kutta discretiza-
tion scheme to a continuous-time system describing their
motion (derived from first principles) which takes the fol-
lowing form:

xi (t) = fc
(
xi (t)

)
+ gc

(
xi (t)

)
ui (t), (2)

where fc and gc are locally Lipschitz continuous func-
tions (note that in general, the state and input vectors of
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Table 2 Summary of notation used in this paper

Symbol Description

Problem formulation (Section 3.1)

k Number of agents

T planning horizon

X general continuous state space

XI set of initial states

Xg set of final states

xit state of agent i at time t

x̄ it observable state of agent i to other agents

�i observation set of agent i

oit observation of agent i at time t

Oi observation function (Oi : X → �i )

N i
(
xit
)

set of robots detected by i

�i agent i’s trajectory

�̃i set of preferred trajectories

T transition dynamics (Eq.1)

U i action space for agent i

J i running cost for agent i
(J i

t : X × U i → R)

J i
f running cost at time T

Ci
(
xit
) ∈ X convex hull of agent i

π i ∈ K controller belonging to set of controllers

Control Barrier Function (Section 4)

hi : X −→ R control barrier function

C i safe set

∂C i boundary of C i

L f hi
(
xit
)
, Lghi

(
xit
)

lie derivatives of hi
(
xit
)
w.r.t f and g

Deadlock Prevention ( Section 5 )

[1; N ] set of integers {1, 2, . . . , N }
C�(t) liveness set

vit linear velocity of agent i

vt joint velocity of all agents

ṽt perturbed joint velocity

hv (xt ) CBF of C�(t)

pit position of agent i

θ it angle of agent i

� j
(
pit , v

i
t

)
liveness function for agent i

σ priority ordering

σopt optimal ordering

αq time-based reward for receiving an order
position q

bi bid made by agent i
(
r i , pi

)
auction specified by allocation and
payment rule

ζ i private priority incentive parameter

the continuous-time and the discrete-time systems that cor-
respond to the same time instant are not the same due to
discretization induced errors). In this paper, we will mainly
utilize the discrete-time model (1), especially for control
design purposes (these methods will rely on optimization
techniques), but we will also refer to the continuous-time
model (2) for analysis purposes. We will also assume that
the continuous-time system (2) is small-time controllable,
which means that set of points reachable from xi (t) within
the time interval [t, t ′] will contain a neighborhood of xi (t)
for any t ′ > t (Laumond et al., 2005). Small-time controlla-
bility allows the following result to hold true:

Theorem 1 (Laumond et al. (2005)) For symmetric small-
time controllable systems the existence of an admissible
collision-free path between twogiven configurations is equiv-
alent to the existence of any collision-free path between these
configurations.

We denote by �̃i as the set of preferred trajectories for
robot i that solve the two-point boundary value problem. A
preferred trajectory, as defined by existing methods (Chen
et al., 2022; Van Den Berg et al., 2011; Alonso-Mora et al.,
2013), refers to a collision-free path a robot would follow in
the absenceof dynamicor static obstacles and is generatedvia
a default planner according to some predefined criteria such
as shortest path, minimum time, etc. A collision is defined
as follows. Let Ci

(
xit
) ⊆ X represent the space occupied by

robot i (as a subset of the state space X ) at any time t which
can be approximated by the convex hull of a finite number of
points that determine the boundary of the robot (e.g., vertices
of a polytopic set). Then, robots i and j are said to collide at

time t if Ci
(
xit
) ∩ C j

(
x j
t

)
	= ∅.

Each robot has a running cost J i : X × U i −→ R that
assigns a cost to a state-input pair

(
xit , u

i
t

)
at each time step

based on user-defined variables e.g. distance of the robots
current position from the goal, change in the control across
subsequent time steps, and distance between the robots pre-
ferred and actual paths. Finally, we define a social mini-game
as follows,

Definition 1 A social mini-game occurs if for some δ > 0
and integers a, b ∈ (0, T ) with b − a > δ, there exists at
least one pair i, j, i 	= j such that for all �i ∈ �̃i , � j ∈ �̃ j ,

we have Ci
(
xit
) ∩ C j

(
x j
t

)
	= ∅ ∀ t ∈ [a, b], where xit , x

j
t

are elements of �i and � j .

We depict several examples and non-examples of social
mini-games in Fig. 1. The first scenario can be characterized
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Fig. 1 Examples/Counter-examples of social mini-games: Arrows
indicate the direction of motion for two agents 1 and 2 toward their
goals marked by the corresponding cross. The first scenario is a social
mini-game since both the preferred trajectories of agents 1 and 2 are
in conflict from some t = a to t = b where b − a ≥ δ. The second
and third scenarios are not social mini-games as there are no conflicts.
In the second scenario, there is no duration where agents intersect one
another. In the third scenario, agent 2 has an alternate conflict-free pre-
ferred trajectory to fall back on

as a social mini-game due to the conflicting preferred tra-
jectories of agents 1 and 2 within a specific time interval
[a, b], where the duration b−a ≥ δ. In this case, the agents’
trajectories intersect, generating a conflict. However, the sec-
ond and third scenarios, in contrast, do not qualify as social
mini-games since no conflicts arise between the agents. In
the second scenario, there is no common time duration where
agents intersect each other, and their trajectories remain inde-
pendent in time. In the third scenario, agent 2 possesses an
alternative preferred trajectory that avoids conflicts during
any time duration, allowing for a seamless transition to a
conflict-free path. A robot has the following best response in
a social mini-game:

Definition 2 Optimal Solution for a Robot in Social Mini-
Games: For the i th robot, given its initial state xi0, an optimal
trajectory �i,∗ and corresponding optimal input sequence
� i,∗ are given by,

(
�i,∗, � i,∗) = arg min

(�i ,�i )

T−1∑

t=0

J i
(
xit , u

i
t

)
+ J i

T

(
xiN

)

(3a)

s.t xit+1 = f
(
xit
)

+ g
(
xit
)
uit , ∀t ∈ [1; T − 1] (3b)

Ci
(
xit
)

∩ C j
(
x j
t

)
= ∅ ∀ j ∈ N i

(
xit
)

∀t (3c)

xiT ∈ Xg (3d)

where J i
T is the terminal cost. A solution to optimal

navigation in socialmini-games is a (finite) sequence of state-
input pairs

((
�1,∗, �1,∗) ,

(
�2,∗, �2,∗) , . . . ,

(
�k,∗, �k,∗)).

3.2 AlgorithmOverview for Solving Social
Mini-games

As solving (3) jointly is computationally intensive (Chen et
al., 2010), we solve the multi-robot navigation problem (3)
for the discrete-time system (1) in a decentralized fashion.
Each robot solves (3) in a receding horizon fashion using
an MPC asynchronously; on the i th robot’s turn, it treats all
other robots as static obstacles that are incorporated into the
safety constraint (3c). At each simulation iteration for the
i th robot, the MPC controller solves the constrained finite-
timeoptimal control problem (3)with horizon T . The optimal
control sequence to this optimizationproblem for the i th robot

is a sequence of inputs � i,∗ =
(
ui,∗t , ui,∗t+1 . . . , ui,∗t+T−1

)
,

ui,∗t ∈ U i
t . Then, the first element of the solution, uit ← ui,∗t ,

is executed by robot i . The optimization is repeated at the next
iteration based on the updated state for all robots.

Solving (3a) asynchronously, however, may lead to dif-
ferent agents making decisions based on different sets of
information at different times. This inconsistency can lead to
a lack of coordination among agents, resulting in safety and
deadlock issues. We address both these issues with a combi-
nation of using a sufficiently small sampling time as well as
using control barrier functions in the following manner:

• Safety (Constraint 3c): We model static and dynamic
safety inEquation 3c in the context of set invariance using
Control Barrier Functions (Ames et al., 2019) (CBFs).

• Deadlock Prevention (Constraint 3d): We detect dead-
locks by exploiting the geometrical symmetry of social
mini-games Grover et al. (2020) in an online fashion,
and design a minimally invasive perturbation strategy
to prevent the deadlock from occurring. The deadlock
prevention algorithm can be integrated with CBFs for
double-integrator (or higher order) dynamical systems.

In the remainder of this article,wedescribe our approaches
for addressing safety via CBFs in Section 4 followed by
our deadlock prevention algorithm in Section 5. We present
results in Section 6 and conclude in Section 7.

4 Safety via control barrier functions
(Constraint 3c)

Control Barrier Functions (CBFs) are a powerful tool used in
control theory for designing controllers that guarantee safety
of controlled nonlinear systems (Ames et al., 2019). CBF-
based controllers constrain the behavior of a robot system to
enable collision-free trajectories. CBF-based controllers also
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guarantee safety and robustness in multi-agent systems and
scale to a large number of robots, while easily adapting to
changes in the environment or robot dynamics. Additionally,
they have been combined with traditional control techniques,
such as Model Predictive Control (MPC) (Zeng et al., 2021)
and PID, for improved safety and performance. In this back-
ground, we will discuss the basic theory of CBFs and their
mathematical formulation.

The safety of a set C i for a given system is closely related
to its forward invariance which is a property that requires the
system starting froma given set of initial conditions insideC i

to remain in C i for all times. We first describe CBFs for the
continuous-time case and then specify the modified variant
for the discrete-time case. Consider a scalar valued function,
hi : X −→ R, where X denotes the set of admissible states
xit ∈ X such that the following conditions hold:

C i =
{
xit ∈ R

n|hi
(
xit
)

≥ 0
}

(4a)

hi
(
xit
)

= 0 ∀ xit ∈ ∂C i (4b)

hi
(
xit
)

< 0 ∀ xit ∈ R
n \ C i (4c)

where C i is the safe set and ∂C i denotes its boundary. The
time derivative of hi

(
xit
)
along the state trajectory of agent

i is given as

d
(
hi
(
xit
))

dt
= L f h

i
(
xit
)

+ Lgh
i
(
xit
)
uit (5)

where L f hi
(
xit
)
and Lghi

(
xit
)
denote the Lie derivatives of

hi
(
xit
)
along f and g, respectively.

Then, hi
(
xit
)
is a CBF if there exists a classK∞2 function

κ such that the following holds true

sup
uit∈U

L f h
i
(
xit
)

+ Lgh
i
(
xit
)
uit + κ

(
hi
(
xit
))

≥ 0 (6)

We define the safe or collision-free control spaceU i over
xit ∈ X to be the set of control inputs uit ∈ U i such that the
following inequality holds:

L f h
i
(
xit
)

+ Lgh
i
(
xit
)
uit + κ

(
hi
(
xit
))

≥ 0 (7)

Equation (7) is known as the safety barrier constraint or
safety barrier certificate. In summary, the set C i ⊆ X is
guaranteed to be safe if U i is non-empty and uit ∈ U i .
The formulation of safety barrier certificates presented above
is for a single robot, but it can be extended trivially to

2 A function α(·) : R → R belongs to the class of K∞ functions if it
is strictly increasing and in addition, α(0) = 0 and lim

r→∞α(r) = ∞

multi-robot scenarios. The only difference is that the bar-
rier function hi

(
xit
)
will change to h(xt ); that is, it will lose

the indexing on i and will become a function of X k −→ R,
which denotes the aggregate states of k robots. Similarly, C i

will become simply C ⊂ X k . As the system we consider in
this paper is discrete-time, due to our MPC-based formula-
tion, instead of (7), we will be using the discrete-time version
of the CBF which is given by,

�his
(
xit , u

i
t

)
≥ −γ his

(
xit
)

(8)

where his
(
xit
)
is chosen as an obstacle avoidance barrier func-

tion (more details in Sect. 6.1), γ > 0, and �his
(
xit , u

i
t

)
is

given by,

�his
(
xit , u

i
t

)
= his

(
xit+1

)
− his

(
xit
)

(9)

The set U i that guarantees safety is thus given by,

U i = {uit ∈ U i |�his
(
xit , u

i
t

)
+ γ his

(
xit
)

≥ 0} (10)

CBFs offer a stronger guarantee of safety than directly
imposing collision avoidance constraints in an MPC formu-
lation. In Zeng et al. (2021), it was conclusively found that
the problem with directly imposing collision avoidance con-
straints into an MPC, as opposed to using CBFs, is that the
constraint will take effect only when the planning horizon
intersects with an obstacle. In other words, the robot will not
take any action to avoid obstacles until it is close to them
(refer to the Figure 2 in Zeng et al. (2021)). One way to
solve this problem is to use a larger horizon, but that will
increase the computational complexity in the optimization.
We refer the reader to Zeng et al. (2021) for more details.

5 Deadlock prevention (Constraint 3d)

In social mini-games, however, U i
t often ends up being an

empty set, i.e. there is no input for which (8) is satisfied,
resulting in deadlocks (Wang et al., 2017; Zhou et al., 2017;
Chen et al., 2022) due to the symmetry in the environment
configuration (Grover et al., 2020). As in previous work
(Wang et al., 2017; Grover et al., 2016, 2020), we define
a deadlock as follows,

Definition 3 Deadlock: A system of k robots executing the
controller given by Equation (3) enters a deadlock if, starting
at time t , there exists at least one agent i such that uit = 0
for some threshold β > 0, typically measured in the order
of a few seconds, while xit /∈ Xg , for each robot i ∈ [1, k].
Mathematically, if there exists at least one pair

(
xit , u

i
t

) ∈
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Di (t) where the set Di (t) is defined as follows

Di (t) =
{(

xit , u
i
t

)
: xit /∈ Xg, uit = 0 for some β > 0

}

(11)

then the system of these k robots is said to be in deadlock.
Furthermore, a trajectory that contains such uit that satisfy
the deadlock condition (11) is said to be inadmissible.

Here, β is typically in the order of a few seconds
(Şenbaşlar et al., 2023). Resolving or preventing deadlocks
involves a two-stage procedure: (i) detecting the deadlock
and (i i) resolving or preventing the deadlock. So far, the
literature (Wang et al., 2017; Arul et al., 2023; Zhou et al.,
2017; Grover et al., 2016; Chen et al., 2022) has focused on
resolving deadlocks after they happen, which then require
resolution strategies that are quite invasive. Commonly used
strategies include perturbing the position of a robot according
to the right-hand rule causing it to deviate from its preferred
trajectories in a clockwise direction resulting in a sub-optimal
controller. In the following section,we formalize an approach
to detect, and the prevent, deadlocks via aminimally invasive
perturbation. To aid readability, we visualize our theoretical
framework in Figure 4.We begin by definingminimally inva-
sive deadlock prevention as follows:

Definition 4 Minimally Invasive Deadlock Prevention (or
Resolution). A deadlock preventive (or resolving) control

strategy uit = [vit , ωi
t

]�
prescribed for robot i at time t with

current heading angle θ it is said to be minimally invasive if:

1. �θ it = θ it+1−θ it = 0 (does not deviate from the preferred
trajectory).

2. vit+1 = vit + δopt(t) where δopt(t) = argmin
∥∥vit + δ

∥∥ , δ

∈ R such that a robotwith speed vit+1 prevents or resolves
a deadlock.

In other words, δopt(t) can be computed by solving the fol-
lowing optimization problem

δopt(t) = argmin
δ∈R

‖vit + δ‖, (12a)

vit+1 = vit + δ (12b)

uit ∈ U i , uit+1 ∈ U i (12c)
(
xit+1, u

i
t+1

)
/∈ Di (t + 1) (12d)

Note that the optimization problem (12d) is a non-trivial
problem to solve as the setDi (t) is not known priori. Further-
more, even if the set Di (t) is known apriori, finding δopt(t)
could be computationally expensive especially when the set
Di (t) is non-convex. Aminimally invasive perturbation does

not cause a robot to deviate from its preferred trajectory
(condition (1)) only allowing it to speed up or slow down
(condition (2)).

Theorem 2 Consider a symmetrical social mini-game, S, as
shown in Fig.2a. We represent robots as single-integrator
car-like objects with lengths l1 = l2 = l, speeds v1t , v

2
t , and

the following system dynamics:

⎡

⎣
ẋ
ẏ
θ̇

⎤

⎦ =
⎡

⎣
v cos(θ)

v sin(θ)

ω

⎤

⎦

such that 0 <
∣∣v1t − v2t

∣∣ ≤ ε. Assume further that they are
at distances d1 = d2 = d from the point of collisionQ (could
be a doorway or intersection). For the robots to reach Q
without colliding in aminimally invasive sense (Definition 4),
one of the robots must slow down (or speed up) by a factor
of ζ ≥ 2 in the limit as (d, ε) → (l, 0).

Proof In a symmetric SMG consisting of two robots, we
assume that the speeds of the robots are nearly identical. In
practice, two speeds will likely differ by some small amount,
which we denote as ε giving 0 < |v1t − v2t | ≤ ε. Suppose,
without loss of generality, that robot 1 is slightly faster than
robot 2 by ε. Thus, v1t − v2t = ε �⇒ v2t = v1t − ε. In order
for robot 1 to clear the distance d in the time that robot 2
reaches the Q, robot 1 must increase its speed by a factor of
ζ . Therefore v1t+1 ← ζv1t while v2t+1 = v1t − ε. We assume
that speed changes are instantaneous as the agents enter the
SMG.

Now time taken by robot 2 to reach Q is t2 = d
v2t+1

=
d

v1t −ε
. And the time taken by robot 1 to clear Q (that is, not

just reach Q, but that the entire length l should clear Q) is
t1 = d+l

v1t+1
= d+l

ζv1t
. Note that t2 ≥ t1. Thus,

d

v1t − ε
≥ d + l

ζv1t

Rearranging terms gives us Equation (13),

ζ ≥
(
1 + l

d

)(
1 − ε

v1t

)
(13)

In the limit, ζ → 2 as (d, ε) → (l, 0). ��

5.1 Deadlock detection

A state is represented as xit at time t of which
(
pit , θ

i
t , v

i
t , ω

i
t

)

∈ R
2 ×S

1 ×R
2 ×R represent the current position, heading,

linear and angular velocities of the i th robot. Previous studies
on deadlock detection (Chen et al., 2022; Grover et al., 2020)
show that deadlocks arise from symmetry in the environment
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Fig. 2 Deriving the threshold, �thresh, in a symmetrical social mini-
gamewhen � j (pit , v

i
t ) = 0. Robots are blue car-like systems of length l.

Green and red circles represent starting and goal positions, respectively.
(left) Step 1: construct the worst case scenario when � j (pit , v

i
t ) = 0.

The second robot on the right must reach Q when the robot on the left

passes fully through Q. (middle) Step 2: Assuming the second robot
slows down by v

1+ l
d
, �thresh is obtained via Equation (16). (right) Sym-

metric SMGs with arbitrary angles with the relative position vector
configurations can be reduced to the SMG in Figure 2b (Color figure
online)

Fig. 3 Velocity projection for two symmetrical SMGs with arbitrary angles θ with respect to the relative position vector. In these two examples,
we examine when θ = π

6 and θ = π
3 (although any arbitrary |θ | < π

2 may be chosen)

configuration. Symmetry is geometrically defined in terms
of the initial positions, goals, and velocities of the agents.
Example of symmetrical configurations are given in Fig. 2.
Figures2a and 2b depict a symmetrical SMG with θ = π

4
whereas Fig. 2c depicts a symmetrical SMG with arbitrary
angles.

An important observation is that any symmetrical SMG
with arbitrary angle θ can be reduced to a symmetrical
SMG with angle π

4 . In any symmetrical SMG with arbi-
trary angle θ, |θ | < π

2 (agents diverge away from each other
for |θ | ≥ π

2 ), with respect to the relative position vector,
suppose two robots i and j have nearly identical velocities
vit ≈ v

j
t (otherwise, it would not be a symmetrical SMG)

or
∣∣∣vit − v

j
t

∣∣∣ ≤ ε. Then, without loss of generality, we can

project a component of each robots velocity such that it sub-

tends an θ ′ with the original corresponding velocity vector.
The advantage of such a projection is that it eliminates the
dependency on the angle, with the only dependency remain-
ing on the scaling factor ζ . We set θ ′ as follows:

1. Case 1: When the arbitrary angle θ < π
4 , then we set

θ ′ = π
4 − θ .

2. Case 2: When the arbitrary angle π
2 > θ ≥ π

4 , then we
set θ ′ = θ − π

4 .

The new transformed velocities are given by v
i,′
t =

vit sec θ ′ and v
j,′
t = v

j
t sec θ ′. Figure3 demonstrates the

velocity projection for two symmetrical SMGs with arbi-
trary angles θ with respect to the relative position vector. In
Figs. 3a and 3b, we examine when θ = π

6 and θ = π
3 , respec-
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Fig. 4 Flowchart of the deadlock detect-and-prevent logic. This dia-
gram illustrates at a high level the process for detecting and preventing
deadlocks in our approach. It includes the foundational definition of

social mini-games, followed by the prevention strategies enforced by
liveness conditions. The interaction between these elements is visual-
ized through connections between theoretical results in Sect. 5

tively, although any arbitrary |θ | < π
2 may be chosen. We

now define a liveness function as follows:

Definition 5 Liveness Function: A liveness function � j :
R
2 × R

2 → R between agents i and j (i 	= j) as follows:

� j (p
i
t , v

i
t ) = cos−1

⎛

⎜⎜
⎝

〈−−−−→
pit − p j

t ,
−−−−−−→
v
i,′
t − v

j,′
t

〉

∥∥∥∥
−−−−→
pit − p j

t

∥∥∥∥

∥∥∥∥
−−−−−−→
v
i,′
t − v

j,′
t

∥∥∥∥+ ε

⎞

⎟⎟
⎠ (14)

where v
i,′
t = vit ·sec(θ ′), v j,′

t = v
j
t ·sec(θ ′) correspond to the

velocity projection component of each robot’s velocity such
that it subtends an angle θ ′ = ± (π4 − θ

)
with the original

velocity vectors, vit and v
j
t , as defined by the velocity trans-

formation procedure, where |θ | < π
2 is the arbitrary SMG

angle. Further, 〈a, b〉 denotes dot product between vectors a
and b and ‖.‖ denotes the Euclidean norm, � j ∈ [0, π ], and
ε > 0 ensures that the denominator is positive. Lastly, note
that � j (pit , v

i
t ) = �i (p

j
t , v

j
t ) for i 	= j .

The liveness function is meant to geometrically capture
the symmetry of an SMG (refer to Figure 2). Formally, the
liveness function measure the angle between the relative dis-

placement (
−→
p12t = −−−−−→

p1t − p2t ) and the relative linear velocity

(
−−→
v12,′ =

−−−−−−→
v
1,′
t − v

2,′
t ) vectors. The angle between

−→
p12t and−−→

v
12,′
t determines the symmetry of the SMG. In the case of
perfect symmetry (v1,′t ≈ v

2,′
t ), we can easily show using

vector geometry that
−→
p12t and

−−→
v
12,′
t will be nearly perfectly

aligned (parallel) in which case the angle between them will
be approximately 0 implying the dot product will be nearly
1. The dot product decreases as the symmetry decreases (as
v
1,′
t and v

2,′
t diverge). The ε in the denominator is the same

ε used in Theorem 2 which represents the practicality of the
fact that there always exists a small difference between v

1,′
t

and v
2,′
t , no matter how close they may be. We now present

the following theorem

Theorem 3 Consider the social mini-game, S, defined in
Theorem 2. Then at time t,

S exists ⇐⇒ � j (p
i
t , v

i
t ) = �i (p

j
t , v

j
t ) ≤ �thresh (15)

where �thresh := π
4 − tan−1 1

2 .

Proof We prove the forward direction first. Using basic
trigonometry, the scaling factor ζ can be used to determine
the threshold �thresh as shown in Fig. 2b. Formally,

� j = π

4
− tan−1 1

ζ
(16)

Using Theorem 2, in the limit limd→l,ε→0 ζ = 2 �⇒ � j =
�i = π

4 − tan−1 1
2 . Now we prove the backward direction.

Assume � j = �i ≤ π
4 − tan−1 1

2 .We can construct a scenario
S geometrically similar to S. It will be equivalent to S when
we can show that one robot will not be able to clearQ in the
time when the other agent reachesQ (by Definition 1) which
happens when ζ ≤ 2 (Theorem 2). As � j = �i ≤ 0.3 �⇒
ζ ≤ 2 is true, S is equivalent to S. ��

We empirically verify in simulation that this threshold,
�thresh ≈ 0.3, in fact, works well in practice, as shown in
Fig. 11. Recall that social mini-games often yield a deadlock
due to their geometrically symmetric configurations (Grover
et al., 2020). Theorem 3 gives us a way to monitor for social
mini-games and therefore, deadlocks.

Corollary 1 Deadlock Detection: A system of 2 robots may
result in a deadlock if � j (pit , v

i
t ) = �i (p

j
t , v

j
t ) ≤ �thresh,

where �thresh is defined as in Theorem 3.
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Proof The proof follows from Theorem 3. ��
Equivalence of Equations (16) and (14): It is important
to observe that Theorem 3 and Definition 5 are equivalent.
Specifically, we will show that Equations (16) and (14) are
equivalent. First, from Definition 5, assuming W.L.O.G that
θ < π

4 �⇒ θ + θ ′ = π
4 , the liveness function can be

equivalently written as,

� j = cos−1

⎛

⎝
cos(θ + θ ′) ·

(
1 + 1

ζ

)

√
1 + 1

ζ 2
+ 2

ζ
cos (2 (θ + θ ′))

⎞

⎠

= cos−1

(√
1

2
+ ζ

ζ 2 + 1

) (17)

We would substitute cos(θ − θ ′) if π
4 ≤ θ < π

2 . Let α =
cos−1

(√
1
2 + ζ

ζ 2+1

)
, then cos(α) =

√
1
2 + ζ

ζ 2+1
. Set β =

tan−1
(
1
ζ

)
. It follows that:

tan(β) = 1

ζ
,

cos(β) = ζ
√

ζ 2 + 1
,

sin(β) = 1
√

ζ 2 + 1
.

(18)

Further, using the trigonometric identity, cos
(

π
4 − β

) =
cosβ+sin β√

2
, we get:

cos
(π

4
− β
)

=
ζ√
ζ 2+1

+ 1√
ζ 2+1√

2
=

ζ+1√
ζ 2+1√
2

=
√
1

2
+ ζ

ζ 2 + 1
= cos(α).

(19)

or π
4 − β = α. Therefore,

cos−1

⎛

⎝
cos(θ + θ ′) ·

(
1 + 1

ζ

)

√
1 + 1

ζ 2
+ 2

ζ
cos (2 (θ + θ ′))

⎞

⎠ = π

4
− β

= π

4
− tan−1

(
1

ζ

)
(20)

And we already have that,

� j (p
i
t , v

i
t ) = cos−1

⎛

⎜⎜
⎝

〈−−−−→
pit − p j

t ,
−−−−−−→
v
i,′
t − v

j,′
t

〉

∥∥∥∥
−−−−→
pit − p j

t

∥∥∥∥

∥∥∥∥
−−−−−−→
v
i,′
t − v

j,′
t

∥∥∥∥+ ε

⎞

⎟⎟
⎠

= cos−1

⎛

⎝
cos(θ + θ ′) ·

(
1 + 1

ζ

)

√
1 + 1

ζ 2
+ 2

ζ
cos (2 (θ + θ ′))

⎞

⎠

(21)

Therefore, finally,

� j (p
i
t , v

i
t ) = cos−1

⎛

⎜⎜
⎝

〈−−−−→
pit − p j

t ,
−−−−−−→
v
i,′
t − v

j,′
t

〉

∥∥∥∥
−−−−→
pit − p j

t

∥∥∥∥

∥∥∥∥
−−−−−−→
v
i,′
t − v

j,′
t

∥∥∥∥+ ε

⎞

⎟⎟
⎠

= π

4
− tan−1

(
1

ζ

)
(22)

In other words, we showed that Equation (14) in Definition 5
is equivalent to Equation (16) in Theorem 3.

5.2 Deadlock prevention

From Theorem 3, we can derive the following lemma,

Lemma 1 If at time t, xit ∈ �̃i and � j
(
xit , v

i
t

) ≥ �thresh, then
agent i is not in a deadlock with agent j , where j ∈ N i

(
xit
)
.

Proof FromTheorem3, a socialmini-game implies� j
(
xit , v

i
t

)

< �thresh. Therefore, by the contrapositive, a preventive solu-
tion can be devised by perturbing both robots such that
� j
(
xit , v

i
t

) ≥ �thresh, thereby resolving the social mini-game.
If there is no social mini-game occurring at time t , then
by Definition 1, there exists some �̃i that is not in conflict
with any other agent j and therefore, collision-free. By our
assumption of small-time controllability of (1) and Theo-
rem 1, there exists an admissible, and collision-free, path
between configurations in XI and XG . ��

We propose a perturbation strategy that can be integrated
as a constraint (CBF constraint for double-integrator or
higher order dynamics) and combined with existing con-
trollers, such as MPC or DWA, to resolve deadlocks. Our
decentralized perturbation strategy is designed to be mini-
mally invasive.

In particular, we design a perturbation that acts on vit ,
and not on pit , through the notion of liveness sets, which are
analogous to the safety sets in CBFs. Formally,
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Definition 6 At any time t , given a configuration of k robots,
xit ∈ X for i ∈ [1, k], a liveness set is defined as a
union of convex sets, C�(t) ⊆ R

k of joint speed vt =[
v1t , v

2
t , . . . , v

k
t

]�
such that vit ≥ ζv

j
t for all distinct pairs

i, j , ζ ≥ 2.

As vit ≥ ζv
j
t ≡ v

j
t ≥ ζvit , we can permute the order of

agents as k!, each resulting in a different convex hull. We
take the union of these convex hulls to generate C�(t).

Corollary 2 If xit ∈ �̃i , then vt ∈ C�(t) guarantees that the
system of robots are deadlock-free.

Proof From Definition 6, since vit ∈ C�(t), we have vit ≥
ζv

j
t . According toTheorem2,we select ζ ≥ 2. Then, accord-

ing to Theorem 3, ζ ≥ 2 �⇒ � j = �i ≥ π
4 − tan−1 1

2 .
Finally, by Lemma 1, � j ≥ π

4 − tan−1 1
2 implies that robot i

is not in a deadlock, i.e.,
{
xit , u

i
t /∈ Di (t)

}
. ��

From Corollary 2, if each vit is such that the joint velocity
vt ∈ C�(t), then there is no deadlock. If, however, vt /∈ C�(t),
then robot i will adjust vit such that vt is projected on to the
nearest point in C�(t) via,

ṽt = arg min
μ∈C�(t)

‖vt − μ‖2 (23)

Theorem 4 A solution to the optimization problem (23)
always exists and is unique if vit 	= v

j
t for any robots i and j

with i 	= j .

Proof The set C�(t) can be described as the complement
of an open convex polytopic set P whose boundary ∂P is
a subset of C�(t), that is, ∂P ⊆ C�(t) and in particular,
∂P ⊆ ∂C�(t). Existence of a minimum distance projection
from any (interior) point of the (open) polytopic set P to its
boundary ∂P ⊆ ∂C�(t) is trivially satisfied given as the set
of edges, K, that determine ∂P is a finite set, which always
yields aminimum. Formally, the Euclidean distance function
q(y) = ‖x − y‖, from a point y ∈ ∂P to a given point
x ∈ int(P) is a continuous function, which always attains its
minimum in ∂P which is a compact (closed and bounded)
set comprising a finite number of edges.

Next, we will show that the minimal distance projection
to ∂P ⊆ ∂C�(t) is unique. First, we note that the projection
of a point to an edge always exists and is unique (the latter
projection either corresponds to the minimal distance pro-
jection to the line containing the line segment, if the latter
projection belongs to the line segment, or one of the end-
points of the segment, otherwise). Therefore, there exists a
unique minimizer, dk , to the edge k ∈ K. By extension, there
exists a unique minimizer d j , j 	= k ∈ [K] to each edge in
K. Define the set D = {

d j , j 	= k ∈ [K]}. As the set D is
finite, a minimizer will always exist. To show uniqueness, let
us assume on the contrary that there exist j, k ∈ [K] with

Fig. 5 Liveness set C�(t) for the 2 robot scenario: Velocities for two
deadlocked agents are shown by the red point vt,I . To resolve the dead-
lock, Equation (23) is used to project vt,I onto v1t = 2v2. Robot 1
increases its velocity component v1, while robot 2 decreases its veloc-
ity component v2 to align with the barrier. If robot 1 deviates from vt,I
and decreases its speed to the new yellow point vt,I I , the new optimal
perturbation will be onto v2t = 2v1. Thus, robot 2 adjusts its strategy
by increasing its speed to align with a new perturbation. Assuming no
speed deviations, there will be a unique projection to one of the safety
barriers (Color figure online)

j 	= k such that d j = dk (this can, for instance, happen if
when P is regular and xc is the center of P , which is where
agents have identical velocities). However, d j = dk implies

that v j
t = vkt , which contradicts our assumption that vit 	= v

j
t

for any robots i and j with i 	= j . ��
Theorem 5 The deadlock-preventing control strategy for
carrying out Eq.23 is minimally invasive.

Proof The control strategy for carrying out the perturbation
in Equation (23) tomodify the speed of a robot does not affect
the rotation of the robot (�θ it = 0), therefore ensuring that
the robot tracks the current trajectory. This proves condition
1 of Definition 4.

To prove that the deadlock-preventing control, say �vt ,
is indeed δopt , as defined by the second optimality criteria
condition in Eq. 12 of Definition 4, we need to show that
�vt satisfies Eqs. 12a, 12b, 12c, and 12d.

Equation 12a. We have to show that �vt is the small-
est change in vt . This follows directly from the geometry
of liveness sets in Figure 5, where �vt corresponds to the
perpendicular projection from vt onto the boundary of the
liveness set.

Equation 12b. This is also straightforward from basic
vector addition, considering the triangle formed with vt as
the hypotenuse and �vt as the base in Figure 5, which gives
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vt+1 as the perpendicular along the boundary of the liveness
set.

Equation 12c. As we consider single- and double-
integrator dynamical systems with unconstrained control
inputs, which are fully actuated systems, there always exist
valid controls to achieve a desired configuration. This fol-
lows directly from properties of fully actuated systems (c.f.
Chapter 1, Tedrake (2023)).

Equation 12d.Thefinal constraint to satisfy states that the
resulting state xit+1 is deadlock-free, that is,

(
xit+1, u

i
t+1

)
/∈

Di (t +1). Suppose after applying�vt , vt+1 ∈ C�(t +1). By
Corollary 2, robots are deadlock-free since vt+1 ∈ C�(t+1),
vit ≥ ζv

j
t (from Definition 6). According to Theorem 2, we

select ζ ≥ 2. Then, according to Theorem 3, ζ ≥ 2 �⇒
� j = �i ≥ π

4 − tan−1 1
2 . Finally, by Lemma 1, � j ≥ π

4 −
tan−1 1

2 implies that robot i is not in a deadlock with robot
j , i.e.,

{
xit+1, u

i
t+1 /∈ Di (t + 1)

}
. ��

Example 1 (two agents):While our approach generalizes to k
robots, we consider an example with 2 robots for simplicity.
In the 2 robot scenario where each robot is equidistant from a
doorway or intersection, the liveness set C �

t , shown in Fig. 5,

is generated by scaling v2t by v1t
ζ
, or vice-versa. We can then

generate the following system of linear inequalities,

v1t ≥ ζv2t

v2t ≥ ζv1t

This can be compactly represented as

A2×2vt ≥ 0 (24)

where A2×2 =
[
1 −ζ

−ζ 1

]
and vt = [v1t , v2t

]�
. Suppose the

current value of vt is p1 as shown in Fig. 5. The point p1
indicates that A2×2 p1 < 0which lies outsideC�(t), implying
that the two robots are in a deadlock according toDefinition 6
and Definition 3. Equation (23) projects p1 onto the nearest
half-plane which is the v1 = ζv2 barrier. Thus, robot 1 will
increase v1 and robot 2 will decrease v2 by projecting p1
down on v1 = ζv2. This projection is the minimal deviation
required on the part of both robots.

Example 2 (three agents):Wecan extend this to 3 robotswith
speeds v1t , v

2
t , v

3
t . Assuming W.L.O.G that v1 > v2 > v3,

We found empirically that scaling v2 by v1

2 , and v3 by v1

3
generates the C�(t) for 3 agents attempting to pass through a
doorway from an equidistant. We can generate the following
system of linear inequalities,

v1t ≥ 2v2t

v1t ≥ 3v3

3v2t ≥ 2v3
(25)

This can be compactly represented as A3×3vt ≥ 0 where

A3×3 =
⎡

⎣
1 −2 0
1 0 −3
0 3 −2

⎤

⎦ and vt = [
v1t , v

2
t , v

3
t

]�
. Note that

there will be 6 possible permutations of A, resulting in 6

tetrahedrons within a cube. Given a point p = [v1, v2, v3]�
floating in this cube that does not lie within any of the 6 tetra-
hedrons, then the optimal perturbation strategy is to project
p onto the face of the nearest tetrahedron.

(
�i,∗, � i,∗) = arg min

(�i ,�i )

T−1∑

t=0

J i
(
xit , u

i
t

)
+ J i

T

(
xiT

)

(26a)

s.t xit+1 = f
(
xit
)

+ g
(
xit
)
uit , ∀t ∈ [1; T − 1] (26b)

�hi
(
xit , u

i
t

)
≥ −γ hi

(
xit
)

(26c)

xiT ∈ Xg (26d)

where constraints (26b) and (26c) must be enforced at all
times. Furthermore,

hi
(
xit
)

=
[
his
(
xi,1t

)
, . . . , his

(
xi,k−1
t

)
, hv (xt )

]�
, (27a)

his
(
xi, jt

)
=
∥∥∥pit − p j

t

∥∥∥
2

2
− r2,∀ j ∈ [1; k] \ i (27b)

hv (xt ) = Āk×4k (xt ) (27c)

where his(x
i, j
t ) represents the CBF for the agent i which

ensures that agent i does not collide with agent j by main-
taining a safety margin distance of at least r .

The program (26) may not be feasible for certain input-
constrained systems,whichwe have discussed in Section 5.6.
For unconstrained systems, feasibility for the program in (26)
can be discussed using the definition of Control Barrier Func-
tions (CBFs) in Equation (8). In other words, Theorem 3 in
Ames et al. (2019) states that if there exists a valid CBF
hi
(
xit
)
that satisfies (4) and a K∞ function κ , then (8) holds

true. If (8) holds true, then that implies that there must exist
a control input uit belonging to the compact set Ui that sat-
isfies (8).

In this approach, we can construct a valid CBF apriori
(typical of the kind of problem formulation under investi-
gation Wang et al. (2017)), and following (8), there always
exists a control input uit that satisfies condition (20c). In gen-
eral, however, we acknowledge that computing a valid CBF
remains a challenging problem. While previous research has
employed neural networks (Robey et al., 2020) and Gaussian
Processes (Jagtap et al., 2020) to learn CBFs, guaranteeing
the validity of learned or analytically derived functions as
CBFs is still an open research question.
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Further, hv (xt ) = Āk×k (xt ) is the expanded form of

Eqs. 24 and 25 where xt = [p1t , v1t , θ1t , ω1
t , p

2
t , v

2
t , θ

2
t , ω2

t

]�

and controls, ut = [
u1t , u

2
t

]�
. Following the 2 agent

example, we can expand the matrix A2×2 as Ā2×8 =[
0 1 0 0 0 −ζ 0 0
0 −ζ 0 0 0 1 0 0

]
to accommodate the aggregate of both

the robots’ states and controls. Theweights or entries in theA
matrix control the sensitivity to deadlocks. Specifically, tun-
ing thematrix towards an identitymatrix (ζ −→ 1) decreases
the sensitivity–the robots do not perturb their velocities and
the robotswould either end up in a deadlock or collide (if they
were moving fast enough). On the other hand, increasing the
relative weights (ζ >> 0) makes the robots increasingly
sensitive to deadlocks–that is, the robots would tend to react
to false positive scenarios (scenarios that might be tending
towards a deadlock, but are not strictly so).

For cases of single integrator dynamicswhere vit is a input,
the constraint Avt ≥ 0 (where vt = [v1t , v2t ]T for two agents)
cannot be directly incorporated as a CBF, instead (27c) is
invoked after the MPC selects an optimal control. However
in cases of double or higher-order robotic systems (such as
bipedal robots (Grizzle et al., 2014), Boston Dynamics Spot
etc.), since vit is also a state, guaranteeing the invariance of
the set Ak×kvt ≥ 0 becomes trivial by modeling (27c) as a
CBF constraint.

Remark Despite the inherent non-convexity of the MPC-
CBF program (26) due to the collision constraint (27b), our
decentralized strategy converges to a local solution within
each planning window.We elevate a conventional local solu-
tion by endowing it with critical safety and liveness attributes
through ourCBFconstraint (27c), thereby rendering the solu-
tion not only viable but preferable. This strategy represents a
substantial improvement over methods that necessitate con-
vergence to a static global solution–a process often marked
by inefficiency and impracticality due to the complexities
associated with computing global solutions.

Remark For vit 	= v
j
t for all i, j , there is always a unique

perturbation. Consider in Example 1 that robot 1 decides to
deviate from its current speed in vt,1 and decides to decrease
its speed, shown by the new point vt,2. In that case, robot 2’s
optimal strategy will no longer be to decrease its speed as
before. Now, the nearest safety barrier becomes v2t = ζv1,
and to project vt,2 to this barrier, robot 2 will instead increase
its speed. Therefore, assuming a robot does not deviate from
its current speed, there will be a unique projection to one of
the safety barriers.

5.3 Tie-breaking via priority orderings

If vit = v
j
t for some i, j , then there are multiple solutions

and we implement the following tie breaking protocol. In
social mini-games, we define a conflict zone as a region ϕ in
the global map that overlaps goals corresponding to multiple
robots. A conflict, then, is defined by the tuple 〈Ctϕ, ϕ, t〉,
which denotes a conflict between robots belonging to the set
Ctϕ at time t in the conflict zone ϕ in G. Naturally, robots must
either find an alternate non-conflicting path or must move
through ϕ according to a schedule informed by a priority
order. A priority ordering is defined as follows,

Definition 7 Priority Orderings (σ ): A priority ordering is
a permutation σ : Ctϕ → [1, k] over the set Ctϕ . For any
i, j ∈ [1, k], σ i = j indicates that the i th robot will move on
the j th turn with σ−1( j) = i .

For a given conflict 〈Ctϕ, ϕ, t〉, there are ∣∣Ctϕ
∣∣ factorial differ-

ent permutations. There exists, however, an optimal priority
ordering, σopt.

Definition 8 Optimal Priority Ordering (σopt): A priority
ordering, σ , over a given set Ctϕ is optimal if bidding bi = ζ i

is a dominant strategy and maximizes
∑

|Ct
ϕ | ζ iαi , where ζ i

is a private incentive or priority parameter known only to
agent i , and αq is a time-based reward for receiving an order
position σ i = q.

We run an auction, (r i , pi ), with an allocation rule
r i (bi ) = σ i = q and payment rule pi defined by

pi (bi ) = ∑|Ct
ϕ |

j=q b̂
σ−1( j+1)

(
α j − α j+1

)
. The payment rule

is the “social cost” of reaching the goal ahead of the robots
arriving on turns q + 1, q + 2, . . . , q + Ctϕ . The bids,

b̂σ−1(q+1), b̂σ−1(q+2), . . . , b̂
σ−1

(
q+|Ct

ϕ |
)

represent proxy robot
bids sampled from a uniform distribution, since robots do not
have access to the bids of other robots. Using (r i , pi ) defined
as above, each robot solves

bi,∗ = argmin
bi

(
αr i (bi ) − pi (bi )

)
(28)

It is known Roughgarden (2016); Chandra and Manocha
(2022) that the auction defined by (r i , pi ) yields bi,∗ = ζ i

and maximizes
∑

|Ct
ϕ | ζ iαi . To summarize the algorithm, the

robot with the highest bid, that is, the highest incentive ζ i ,
is allocated the highest priority and is allowed to move first,
followed by the second-highest bid, and so on.
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Fig. 6 Velocity perturbation for robot in human environments corre-
sponding to the case when the robot slows down in response to the
human (blue line). The point P corresponds to the current joint velocity

of the robot and the human. The length
−→
PB corresponds to the velocity

difference, �ṽrobott , and
−→
PA corresponds to the solution obtained via

Equation (23) given by minμ∈C �(t) ‖vt − μ‖2

Remark The tie breaking protocol via auctions is not decen-
tralized as there is an assumption of an auction program that
receives bids and distributes the ordering among the agents.
Since control is still decentralized, we consider this a dis-
tributed optimization problem instead.

5.4 Application in human environments: relaxing
the perturbation

Humans are unpredictable and often make irrational deci-
sions; it is impractical to assume that humans will precisely
execute the perturbation strategy in Equation (23). By shift-
ing the responsibility for ensuring vt ∈ C�(t) entirely to the
robot, we can still guarantee deadlock prevention in human
environments, albeit at the cost of trading awayminimal inva-
siveness. More specifically, assume that the human does not
perturb their velocity. Then, the robot faces two options.

If vrobot < vhuman, then the robot will decrease its speed
such that ζvrobot ≤ vhuman. Formally

�ṽrobott = minμ∈C�(t) ‖vt − μ‖2
cosψ

(29)

where ψ = tan−1 ζ . We visualize this derivation geomet-
rically in Figure 6. ψ represents the slope of the boundary
lines of the liveness set, which could be either ζ or 1

ζ
, which

is shown in Figure 6 as the angle subtended by the black dot-

ted lines. Since the liveness set is symmetric, we can select
either slope without loss of generality. Thus, ψ = tan−1(ζ ).
When the robot slows down in response to the human (ver-
tical blue line), as shown in Figure 6, it is trivial to see that
the angle between the blue and the red lines is also ψ . From
trigonometry, we obtain Equation (29).

If vrobot > vhuman, then the robot will increase its speed
such that vrobotlimit ≥ vrobot ≥ ζvhuman. Formally,

�ṽrobott = min

{
minμ∈C�(t) ‖vt − μ‖2

sinψ
, vrobotlimit − vrobot

}

(30)

where ψ = tan−1 ζ . We can similarly derive Equation (30)
which represents the alternative scenario when the robot
speeds up in response to the human.Here the difference is that
the blue line will now be a horizontal line from P, intersect-
ing the boundary of the liveness set hyperplane. Using basic
euclidean geometry, it is easy to see that the cosψ in the
formula will change to sinψ . We apply the minimum oper-
ator because we have to take into consideration the physical
upper limits of the robots speed.

It is easy to observe that this is a relaxation since the
perturbation is larger for the robot in this case. Let ν =
minμ∈C�(t) ‖vt − μ‖2. Then,

minμ∈C�(t) ‖vt − μ‖2
cosψ

≥ ν

as well as

min

{
minμ∈C�(t) ‖vt − μ‖2

sinψ
, vrobotlimit − vrobot

}
≥ ν.

Here, the relaxation refers to the trading away of minimal
invasiveness by shifting of the responsibility for ensuring
vt ∈ C�(t) entirely to the robot.

5.5 Safety analysis for perturbation via
equation (23)

Finally, we discuss the safety of the control strategy nec-
essary to carry out the perturbation in Equation (23). In
double-integrator (or higher order) dynamical systems, the
constraints (24) and (25) can be incorporated as CBFs. For-
mally, we generate the liveness set C�(t) as,

C�(t) = {vt s.t. hv (xt ) ≥ 0}
hv(xt ) = Āk×k (xt )

(31)

where hv (xt ) is the CBF associated with the safe setC�(t)
that can be used to ensure the forward invariance of C�(t),
xt = [

p1t , v
1
t , θ

1
t , ω1

t , p
2
t , v

2
t , θ

2
t , ω2

t

]�
and controls, ut =
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Fig. 7 Visualizing the concept of robust control barrier functions
(RCBFs) used in single-integrator dynamics to ensure safety despite per-
turbation via Equation (23). The blue area represents the safety region
Ci with no input uncertainty (ρ = 0). When input uncertainty ρ ≤ 0 is
applied, this safe region is bounded by a red dashed line to expand the
safe set to C̃i (Color figure online)

[
u1t , u

2
t

]�
(Fig. 7). Following the 2 agent example, we can

expand the matrix A2×2 as Ā2×8 =
[
0 1 0 0 0 −ζ 0 0
0 −ζ 0 0 0 1 0 0

]

to accommodate the aggregate of both the robots’ states and
controls. The CBF hv(xt ) is then integrated as constraint in
the optimization (26) as follows,

�hi
(
xit , u

i
t

)
≥ −γ hi

(
xit
)

(32)

where hi
(
xit
) =

[
his
(
xi,1t

)
, . . . , his

(
xi,k−1
t

)
, hv (xt )

]�
.

This guarantees that the control strategy necessary to ensure
that vt ∈ C�(t) does not escape the safe set.

However, for single-integrator dynamics, we can use
robust CBFs to guarantee safety for the perturbation control
strategy. Assume that δuit represents the perturbation neces-
sary to achieve the velocity governed by Eq.23. The system
dynamics with uncertainty in the input is described by:

xit+1 = f
(
xit
)

+ g
(
xit
) (

uit + δuit
)

,

where δuit represents the input uncertainty bounded by∣∣δuit
∣∣ ≤ |p| for a known bound p. Then,

�hi
(
xit
)

= h
(
xi+1
t

)
− h

(
xit
)

= h
((

xit
)

+ g
(
xit
) (

uit + δuit
))

− h
(
xit
)

= h
((

xit
)

+ g
(
xit
) (

uit + δuit
))

− h
((

xit
)

+ g
(
xit
) (

uit
))

h
(
xit
)

+ h
((

xit
)

+ g
(
xit
) (

uit
))

h
(
xit
)

− h
(
xit
)

= �originalh
i
(
xit
)

+ �modificationh
i
(
xit , u

i
t

)

(33)

where

�modificationh
i
(
xit , u

i
t

)
=
(
h
((

xit
)

+ g
(
xit
) (

uit + δuit
))

−h
((

xit
)

+ g
(
xit
) (

uit
)))

,

�originalh
i
(
xit
)

=
(
h
((

xit
)

+ g
(
xit
) (

uit
))

− h
(
xit
))

.

The above no longer satisfies the condition (7). In the
literature, this problem is often addressed by adding a com-
pensation term to the barrier function hi

(
xit
)
such that the

superlevel set Ci expands to accommodate the perturbation.
The resulting barrier function belongs to the class of Robust
CBFs or RCBFs (Alan et al., 2023). An RCBF implies the
following holds for all t ≥ 0:

�hi
(
xit
)

− ρ
(
xit
)

≥ −γ hi
(
xit
)

. (34)

for some ρ : X ×U −→ R. We can derive an expression for
ρ in terms of p to ensure the robustness of the control barrier
function. Given

∣∣δuit
∣∣ ≤ |p|, the worst-case impact occurs

when δu is aligned with g
(
xit
) (
uit
)
in the direction that most

negatively affects hi
(
xit
)
. Thus, ρ must compensate for the

maximum possible deviation in�modificationhi
(
xit , u

i
t

)
due to

δuit . Mathematically, this can be expressed as:

ρ
(
xit
)

= max∣∣δuit
∣∣≤|p|

∣∣∣�modificationh
i
(
xit , u

i
t

)∣∣∣ . (35)

Given that δuit is bounded by |p|, the term ∣∣�modificationhi(
xit , u

i
t

)
δuit
∣∣ can be maximized by taking δuit at its bound.

The linear approximation of this impact, assuming the worst-
case alignment, leads to:

ρ
(
xit
)

≤ |�modificationh
i
(
xit , u

i
t

)
||p|.

Here,
∣∣�modificationhi

(
xit , u

i
t

)∣∣ represents the norm (or a
suitable measure of magnitude) of the Lie derivative of
h along g, indicating how changes in the input directly
influence the safety condition through g(x). The term |p|
represents the maximum magnitude of the uncertainty.

5.6 Dealing with input constraints

Integral Control Barrier Functions (ICBFs) (Zinage et al.,
2024) ensure safety under limited actuation for multi-agent
systems by treating the control input as an auxiliary state.
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With an ICBF, the concept of a safety set extends the tradi-
tional state-based safety to the following definition: S :=
{(xt , ut ) ∈ C×U}, where C represents a state-based safety set
and input constraints in U . We can handle input constraints
by using ICBFs in place of the traditional CBF.

Now, consider a continuously differentiable scalar-valued
function h : Rn × R

m → R defined such that h(xt , ut ) > 0
if (xt , ut ) ∈ S , h(xt , ut ) = 0 if (xt , ut ) ∈ ∂S and
h(xt , ut ) < 0 if (xt , ut ) ∈ (Rn ×R

m)\S . To guarantee that
(xt , ut ) ∈ S , h(xt , ut ) must satisfy the forward invariance
condition i.e. ḣ(xt , ut ) + α(h(xt , ut )) ≥ 0 where ḣ(xt , ut )
is computed along the system trajectories and α is a K∞
function. Formally, ICBF is defined as follows:

Definition 9 (ICBF) (Ames et al., 2020)An Integral Control
Barrier Function (ICBF) is defined as a function h : Rn ×
R
m → R that characterizes a safe set S . Then, h is said to

be an ICBF, for all (xt , ut ) ∈ S if p(xt , ut ) = 0, implies
that

q(xt , ut ) ≤ 0, where

q(xt , ut ) := − (∇xt h(xt , ut ) f (xt , ut )

+ ∇ut h(xt , ut )φ(xt , ut )

+ α(h(xt , ut ))) ,

p(xt , ut ) := (∇ut h(xt , ut )
)�

.

The following theorem provides a method to synthesize safe
controllers via ICBFs

Theorem 6 (Ames et al., 2020) If an integral feedback con-
troller φ(xt , ut ) and a safety set S , defined by an ICBF
h(xt , ut ), exist, then modifying the integral controller to
u̇t = φ(xt , ut ) + v�(xt , ut ), where v�(xt , ut ) is obtained
by solving the following quadratic program (QP):

v�(xt , ut ) = argmin
v∈Rm

‖v‖2, s.t. p(xt , ut )
Tv ≥ q(xt , ut )

guarantees safety, i.e., forward invariance of the set S .

5.7 Complete algorithm

The complete algorithm is presented as pseudocode in Algo-
rithm 1. The first step involves initializing the starting and
goal positions (XI and Xg , Line 1). The algorithm then sets
key simulation parameters: total simulation time (Tsim), sam-
pling time (Ts), and prediction horizon (Thorizon = 3) [Line
2]. Following this setup, it defines the cost matrices and actu-
ator limits, including the velocity limit (vlimit ) and angular
speed limit (ωlimit ) [Line 3]. The model defines the state and
control variables, system dynamics based on the cost matri-
ces ( f , g), and stage-wise cost J i [Lines 4-9]. Next, the

Algorithm 1: Safe and deadlock-free multi-agent navi-
gation.
Result: Run MPC for trajectory tracking or setpoint control with

obstacle avoidance
1 Initialize ← XI ,Xg ;
2 Define simulation parameters: Tsim = 3, Ts = 0.1, Thorizon = 3;
3 Define cost matrices and actuator limits:

f = diag([11, 11, 0.005]), g = [1, 0.5], vlimit = 0.3,
ωlimit = 3.8;

4 Function Model():
5 Define state and control variables;
6 Define system dynamics using f , g in (1);
7 Define stage-wise cost J i ;
8 return model;
9 Function MPC():

10 Call Model();
11 Configure parameters using Tsim, Ts , Thorizon ;
12 Set objective function via Equation (3);
13 Define state and input constraints, vlimit, ωlimit;
14 Add safety constraints via Equation (26c);
15 if double-integrator dynamics then
16 Add liveness constraint via (27c);
17 end
18 Function Step(xt):
19 return uit ;
20 return mpc;
21 Function RunSimulation():
22 for t ← 0 to Tsim do
23 for i ← 0 to k do
24 MPC();
25 uit ←MPC.Step(xt);
26 if single-integrator dynamics & � j

(
pit , v

i
t

)
< �thresh

(deadlock) then
27 if vit = v

j
t then

28 break ties by computing σopt (Section 5.3)
29 end
30 end
31 Perturb uit via Equation (23)
32 end
33 Update state xit+1 ← xit via Equation (1);
34 end
35 Call RunSimulation();

MPC function is configured, importing the model defined
previously. This function sets up the parameters using the
simulation settings, defines the objective function, and estab-
lishes state and input constraints, including safety constraints
[Lines 10-19]. If the system has double-integrator dynamics,
a liveness constraint is also added.

Finally, the algorithm executes the main simulation loop
[Lines 21-31]. During each time step, the MPC controller
computes the safe control input uit for each agent consider-
ing the joint state xt , using the MPC controller [Line 25].
If the system operates with single-integrator dynamics and
detects a deadlock (Theorem 3), the control input (uit ) is per-
turbed to resolve the deadlock breaking ties if necessary by
running the auction described in Section 5.3). The state is
then updated for the next time step using the system dynam-

123



Autonomous Robots            (2025) 49:12 Page 19 of 31    12 

ics. The MPC controller in Line 25 solves an optimal control
problem modified from (3). The best response,

(
�i,∗, � i,∗)

can be solved by addingEquations (8) and (24) as constraints.

6 Evaluation and discussion

We deployed our approach in simulation as well as on
physical robots in social mini-games occurring at door-
ways, hallways, and intersections, and analyze–(i) safety
and efficiency compared to local planners based on reactive
planning, receding horizon planning, multi-agent reinforce-
ment learning, and auction-based scheduling and (i i) the
smoothness of our deadlock resolution approach compared
to alternative perturbation strategies.

6.1 Experiment setup

We numerically validate our approach on differential drive
robots in socialmini-games that occur at doorways, hallways,
intersections, and roundabouts, and analyze its properties.
We use the IPOPT solver (Wächter & Biegler, 2006) for
solving the MPC optimization. We consider the following
differential drive robot:

⎡

⎢⎢⎢⎢
⎣

ṗi,1

ṗi,2

φ̇i

v̇i

ω̇i

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

cosφi 0 0 0
sin φi 0 0 0
0 1 0 0
0 0 1/m 0
0 0 0 I−1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

vi

ωi

u1
u2

⎤

⎥⎥
⎦ , (36)

where subscript i denotes the i th agent, m and I are the
mass and moment of inertia about the center of mass respec-

tively,
[
pi,1, pi,2

]� ∈ R
2 represent the position vector of

the robot, φi ∈ S
1 represents its orientation, vi , ωi are the

linear and angular velocities of the robot, respectively, and
ui = [u1, u2]T ∈ U i is the control input. The discrete-time
dynamics of (36) can be described by:

xit+1 = f
(
xit
)

+ g
(
xit
)
uit (37)

where the sampling time period �T = 0.1s, xit =
[pi,1, pi,2, φi , vi , ωi ]T is the state and uit = [u1, u2]T is
the control input. The objective is to compute control inputs
that solve the following non-linear optimal control problem
minimize the following cost function,

min
u1:T−1

T−1∑

t=0

xit
�
Qxit + uit

�
Ruit

s.t xit+1 = f
(
xit
)

+ g
(
xit
)
uit , ∀ t ∈ [1; T − 1]

xt ∈ X , ut ∈ U i ∀ t ∈ {1, . . . , T }

(38)

The safety for the differential drive robot i is guaranteed by
the satisfaction of CBF constraint (31) as we consider control
inputs that belong to U i . For each agent, the CBF for the

obstacles is characterized by hs
(
xi,mt

)
given by

hs
(
xi,mt

)
=
(
pi,1 − c1,m

)2 +
(
pi,1 − c2,m

)2 − r2

where r > 0, xit is specified by
[
pit , θ

i
t , v

i
t , ω

i
t

] ∈ R
2 × S

1 ×
R
2×R representing the current position, heading, linear and

angular rates of the i th robot and (c1,m, c2,m) is the center
of a circle with radius r > 0 and m ∈ {1, . . . , M} where M
is sufficiently large to cover all the obstacles. Therefore, the
safe region are characterized by the set

X =
{
xit : hs

(
xi,mt

)
> 0, ∀ m ∈ {1, . . . , M}

}

Further, to avoid collisions with another agent, each agent i
treats the other agent j (i 	= j) as an obstacle. Consequently,
the CBF for agent i is given by Equation (27b). The CBF
hv (xt ) for an agent i is given by

hv(x
i
t ) = Avt , i 	= j (39)

where vt = [vit , v
j
t ]�, A ∈ R

2×2 for all the experiments
with two robots, but A ∈ R

3×3 matrix for the experiments
with 3 robots. For our doorway and intersection simulations,

we choose A =
[

1 −2
−2 1

]
.

6.2 Environments, robots, baselines, andmetrics

Environment-Our approach has been rigorously designed
and subjected to tests within two socially relevant mini-
games: a doorway passage and a corridor intersection, both
confinedwithin a spatial areameasuring3meters by3meters.
In the doorway setting, we calibrated the gap size to an
approximate width of 0.5 meters. In the corridor intersec-
tion scenario, the arms branching from the central conflict
zone have been strategically set to range between 1.5 and
2 meters in width, while the conflict zone itself occupies an
area between 2.5 to 4 square meters. For the doorway experi-
ment, robots initiate their navigation from one side uniformly
spaced at an approximate distance of 1.8 meters from the
gap aiming to safely transit to the opposing side. Conversely,
the corridor intersection tests focus on autonomous naviga-
tion through the intersection with a rotational presence of
one robot on each arm. Robots have the freedom to navigate
toward any of the remaining three arms, the overarching goal
being secure passage through this complex spatial layout.
Robots-Our empirical evaluations involved multi-robot tri-
als conducted on an eclectic mix of robotic platforms: UT
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Automata F1/10 car platforms, Clearpath Jackal, and Boston
Dynamics Spot. These platforms were also engaged in
human-robot interaction tests, specifically using the Jackal.
The robots were judiciously selected to capture a diverse
range of shapes, sizes, and kinodynamic behaviors. The Spot
distinguishes itself as a legged robot, while both the Jackal
and F1/10 cars are wheeled, though the Jackal has the unique
capability of executing point turns,which the cars lack. Speed
capabilities also vary: both the Spot and the Jackal have a
maximum speed limit of 1.5 meters per second, whereas the
UT Automata F1/10 cars can accelerate up to 9 meters per
second. Configurations were experimented with broadly, the
sole exception being the co-deployment of Spot and Jackal
with the F1/10 cars, as the latter are not detectable by the
larger robots due to their smaller size.
Evaluation Baselines–In evaluating our novel local navi-
gation algorithm designed for physical robots operating in
real-world environments, we chose to compare it against the
dynamic window approach (DWA), a standard local naviga-
tion algorithm provided by the move_base package in the
Robot Operating System (ROS)3. This decision was moti-
vated by the fact that move_base serves as a well-regarded
baseline that is both widely used and accepted in the robotics
community, thereby allowing us to gauge the relative merits
of our approach in a context that is immediately understand-
able and relevant to researchers and practitioners alike.

In our simulation-based experiments, we compare our
proposed algorithm against both centralized and decen-
tralized local planning algorithms to foster a multifaceted
comparison. On the centralized front, we compare with
ORCA-MAPF (Dergachev&Yakovlev, 2021) that integrates
decentralized collision avoidance facilitated by ORCA with
centralized Multi-Agent Path Finding (MAPF) to robustly
resolve deadlock. Decentralized planners, on the other
hand, can be sub-categorized into reactive and receding-
horizon approaches. Within the reactive domain, we exam-
ine a diverse suite of methods that encompass quadratic
programming-based controllers (Wang et al., 2017), NH-
TTC (Davis et al., 2019), and NH-ORCA (Alonso-Mora et
al., 2013). We also compare with learning-based methods,
such as CADRL (Chen et al., 2017, ?). For receding-horizon
planners, our selection incorporates DWA, courtesy of the
move_base package in ROS, MPC-CBF (Zeng et al.,
2021), and IMPC (Chen et al., 2022), for itsModel Predictive
Control (MPC) framework coupled with deadlock resolution
capabilities.
Evaluation Metrics-To comprehensively assess navigation
algorithms,we employ a carefully curated set ofmetrics, each
averaged across multiple trials, that analyze three essential
dimensions: safety, smoothness, and efficiency. We incorpo-
rate metrics such as the success rate, collision rate, Avg.�V ,

3 http://wiki.ros.org/move_base.

path deviation, makespan ratio, and specific flow rate. Avg.
�V represents the average change in velocity from the start-
ing point to the destination, measuring how fluidly a robot
can adjust its velocity while still reaching its destination,
without the risk of frequent stops or abrupt changes. Path
deviation measures the deviation from a robot’s preferred
trajectory. Makespan ratio encapsulates the time-to-goal dis-
parity between the first and last agent, and specific flow rate
offers amacroscopic view, quantifying the overall ‘volume of
agents’ successfully navigating through a constrained space,
such as a doorway.

While metrics like Avg. �V and path deviation evaluate
an individual robot’s behavior, specific flow rate captures the
collective efficiency of multiple agents navigating through
constrained spaces, such as doorways. This distinction is
significant because achieving a flow rate similar to that of
human crowds implies that the navigation algorithm under
examination is not merely efficient at an individual level, but
also highly effective in optimizing multi-agent movement.

6.3 Liveness sets

We empirically generate the liveness sets for the 2 agent
and 3 agent social mini-games occurring at doorways and
intersections. We deploy different combinations of robots
with varying velocities in the social mini-games and the dis-
tribution of velocities that results in safe navigation is the
empirical liveness set for that social mini-game. In Fig. 8a,
we report the outcomes of trials conducted in the doorway
mini-game using 2 F1/10 car platforms.We conducted 5 trial
runs, averaged across 3 iterations, with varying velocities of
which 3 succeeded and 2 failed. We observed that the trials
succeeded when the cars’ velocities satisfied Equation (24),
whereas the trials failed when the velocities did not satisfy
Equation (24). We repeated this experiment in the intersec-
tion scenario as shown in Fig. 8b and obtained an identical
liveness set. With 3 F1/10 robots we obtained a liveness set
similar to Equation (25).

Finally, we show that the liveness set given by Equa-
tion (24) for the social mini-game at doorways holds for
cross robot platforms. In Fig. 8c, we demonstrate the Spot
and the Jackal robots in the doorway scenario using an iden-
tical setup as with the F1/10 platforms and report the results.
To gather more evidence for the liveness sets, we scaled the
velocities by 1/ζ i in SocialGym 2.04 and observed similar
results. That is, using a 1/ζ i velocity scaling yields a 76%and
96% success rate in the doorway and intersection scenario,
respectively. The variability and reduction in the success rates
is due to the stochastic nature of the reinforcement learning
control policies employed in SocialGym 2.0, a reinforcement
learning simulator, that are unable to provide hard guarantees

4 https://github.com/ut-amrl/social_gym.
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Fig. 8 Generating liveness sets using 2 F1/10 car platforms, Jackal,
and the Spot for the doorway social mini-game: We record successful
and failed trials along with the makespan in the case of successful tri-

als. Figures8a and 8b use F1/10 cars while Fig. 8c shows results for
the Jackal versus the Spot. We notice that robots succeed when the
velocities (“velocity 1” and “velocity 2”) satisfy Eq.24

on safety. We clarify that the purpose of the experiments in
SocialGym2.0 is only to validate the concept of liveness sets.
That is, in those instances where the agents did not collide
due to stochasticity, agents respected the liveness sets.

6.4 Real world experiments

Multi-Robot Setting-In our evaluation against the
move_base DWA algorithm, a trial is deemed a success if
robots navigate through the doorway or intersection without
encountering collisions or deadlocks, while any instance of
these eventsmarks a failure. As illustrated in Fig. 9, the initial
three rows capture the successful performance of our algo-
rithm across intersection and doorway scenarios, employing
the F1/10 car platforms, the Jackal, and the Spot. Conversely,
the last row reveals a failure case where DWA experiences a
collision in the doorway scenario, thereby serving as a con-
trasting backdrop to the successful outcomes exhibited in the
second row using our algorithm in identical configurations.

Crucially, our experimental findings reveal that our pro-
posed navigation framework exhibits a level of efficiency
strikingly similar to human navigation. Grounded in research
that has studied human navigational speeds and makespan
durations in bottleneck scenarios and narrow doorways
(Garcimartín et al., 2016; Kretz et al., 2006), the aver-
age human specific flow rate5 has been observed to range
between 2.0−2.1 (m·s)−1 in environments analogous to our
test setups. In comparative terms, our navigation algorithm
enabled physical robots to traverse doorways with an aver-
age specific flow rate of 2.0 (m·s)−1, essentially mirroring
the navigational efficiency commonly exhibited by humans.
This result amplifies the significance of the specific flow rate

5 specific flow rate is measured in N
zT , where N is the number of robots,

T is the makespan in seconds, and z is the gap width in meters.

metric, highlighting its utility in benchmarking the collective
efficiency of robotic navigation against human standards.
Human-Robot Setting-In an extension of our work to
human-robot interactions, we recreate the doorway and inter-
section social mini-game scenarios6, as depicted in Fig. 10.
Here, we compare our algorithm against the traditional
Dynamic Window Approach (DWA), introducing a human
participant into the equation for a more nuanced assessment.
Figures10a, 10b, and 10c, corresponding to rows 1 and 2 for
the doorway situation, eloquently highlight how our control-
theoretic, deadlock-avoidance strategy equips the robot with
the finesse to decelerate strategically. This allows the robot
to defer to the human participant seamlessly, thereby main-
taining an uninterrupted flow of motion. This stands in stark
contrast to the results achieved byDWA,where the robot ends
up making physical contact with the human, as illustrated in
Figs. 10d, 10e, and 10f.

Of particular significance is our algorithm’s capability
to adapt to varied human behaviors. As Figs. 10j and 10k
demonstrate, our robot is not merely programmed to yield; it
can also dynamically accelerate when the situation warrants,
particularly when human participants display hesitancy or a
conservative pace. This preemptive speeding up averts poten-
tial deadlocks that could otherwise ensue. Conversely, DWA
lacks the agility for such assertive, situationally-responsive
maneuvers, often resulting in a halted state and thereby cre-
ating a deadlock scenario.

6.5 Simulation results

We implement the MPC-CBF controller using double-
integrator system dynamics in Equation (1), cost func-
tion in Equation (26), and constraints in Equation (27).

6 We suggest the reader to watch the full video at
https://www.youtube.com/watch?v=fA7BbM8iTwg.
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Fig. 9 Deployment in multi-robot scenarios: (rows 1, 2, 3) We demonstrate our approach at a corridor intersection and doorway using the F1/10
cars, Spot, and the Jackal robots. (row 4) DWA from the ROS move_base package results in a collision

All experiments have been performed on a AMD Ryzen
machine@2.90GHz with 16.0GB of RAM.
Analysis–Fig. 11 presents simulation results and analysis of
interaction between two agents at a narrow doorway. In the
first experiment where distance d is set to 1.11m and the
difference in goal position �xg is 0, shown in Fig. 11a, a
deadlock is detected at t = 5. This is indicated by the live-
ness value dipping below the threshold (0.3) at this time. At
this point, agent 2 already starts to slow down according to
Eq.23, as indicated by the green curve. The deadlock occur-
rence is around t = 10, which is when agent 2 slows down
even further, while agent 1’s speed (blue curve) shows a sig-
nificant peak, in order to prevent the deadlock. Figure11c
demonstrates the same scenario in the absence of deadlock
prevention. In this case, both agents slowdownaround t = 10
and eventually come to a halt. Throughout this period, the
liveness value remains below the threshold.

Figures 11b and 11d follow a similar pattern with a larger
distance d = 2.55m and a slight difference in goal position

�xg = 0.2m. The goal with this second experiment is to
convey that our perturbation algorithm is invariant to changes
in the configuration.
Versus baselines with deadlock resolution–We compare
our deadlock resolution method (MPC-CBF) with quadratic
programming-based controllers (QP-CBF) (Wang et al.,
2017) using random perturbation as well as a variant
where we implement our approach (QP-CBF), infinite-
horizon MPC and buffered voronoi cells (Chen et al.,
2022), a multi-agent reinforcement learning-based algo-
rithm, CADRL (Chen et al., 2017, ?), and finally, with an
ORCA-based approach (Dergachev & Yakovlev, 2021) that
uses multi-agent path finding (MAPF) to resolve deadlocks.
We perform experiments in social mini-games at doorways,
hallways, and intersections, and report the mean ± standard
deviation for average change in velocity (�V ), path devi-
ation (meters), and average time steps across 2 agents in
Table 3. For all three settings, deadlock resolution results
in the smallest average velocity and path deviation, which
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Fig. 10 Deployment in human-robot scenarios: (Doorway) Figs. 10a,
10b, and 10c demonstrate our deadlock avoiding strategy enables the
robot to yield to the human by slowing down, rather than stopping, and
smoothly follows the human through the door. Figures10d, 10e, and 10f
demonstrates a baseline DWA planner that results in the robot colliding
with the human. (Intersection) Figs. 10j, 10k, and 10l demonstrate our

game-theoretic deadlock avoiding strategy enables the robot to proac-
tively speed up when it notices the human slow down. Figures10d, 10e,
and 10f demonstrates a baseline DWA planner that results in the robot
stopping abruptly in front of the human, only moving forward once the
human steps back
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Fig. 11 Deadlock is detected around t = 4. Agent 2 projects its original velocity to a scaled velocity such that differs from agent 1’s velocity by at
least a factor of ζ . Deadlock is prevented between t = 5 and t = 10 as confirmed from � j

(
pit , v

i
t

) ≥ �thresh = 0.3 (Color figure online)

implies that our approach allows agents to modulate their
velocities more efficiently that results in a trajectory that
more closely resembles the preferred trajectory. Note that
path deviation for ORCA-MAPF will always be zero due to
the discrete nature of the MAPF. Additionally, we observe
that the average completion time depends on the social mini-
game. For instance, random perturbation takes longer in the
doorway setting due to the increased number of constraints
in space. In the intersection and hallway settings, however,
perturbation is slower or comparable since random perturba-
tion agents move faster, albeit along inefficient trajectories.
Lastly, we observe thatMPC+ liveness results in a very small
makespan at the cost of high average �V and path devia-
tion. This suggests that simply adding liveness constraints to
the MPC solver encourages goal reaching but at the cost of
smoothness.
Versus baselines without deadlock resolution-Our study
compares our navigation strategy against other multi-robot
navigation algorithms that lack any explicit deadlock reso-
lution mechanisms. This includes a range of methods like
MPC-CBF (Zeng et al., 2021), NH-ORCA (Alonso-Mora et
al., 2013), NH-TTC (Davis et al., 2019), CADRLand its vari-
ants (Chen et al., 2017; Everett et al., 2021, 2018), andDWA.
Of these methods, MPC-CBF, NH-ORCA, and NH-TTC fail

to reach their goals, either colliding or ending in a deadlock.
We visually demonstrate these comparisons in Fig. 12. With
ourmethod, green agents yield to red agents, enabling smooth
passage through constricted spaces like doorways or intersec-
tions. Conversely, approaches like MPC-CBF, NH-ORCA,
andNH-TTC falter, leading to either collisions or unresolved
deadlocks. For example, Figs. 12b and 12f display a deadlock
when using MPC-CBF due to the symmetrical challenges
posed by the environment. Likewise,methods that emphasize
collision-free navigation, such as NH-ORCA and NH-TTC,
encounter deadlocks as displayed in Figs. 12c, 12g, 12d,
and 12h. The inherent symmetry of the environment leaves
these agents with empty feasible action sets, leading to a
deadlock unless specific perturbation strategies are deployed.

6.6 Dealing with input constraints

We performed a simulation using an empty environment and
a complexmaze environment which is a 10m×10m grid. For
each experiments 5 trials are conducted with each trial being
randomized with respect to start and goal position in both
of the environments. All experiments have been conducted
on an AMD Ryzen machine @2.90GHz with 8 cores and
16.0 GB of RAM. The maximum number of agents tested
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Table 3 We observe that alternate perturbation strategies are less
smooth due to larger average changes in velocity and path deviation
compared to game-theoretic perturbation. The Label column describes

the amount of centralization and information required–Decentralized
(D), Centralized (C), Full Information (F) or Partial Information (P)

Baseline Label CR(%) DR(%) Avg. �V Path Deviation Makespan Ratio

DOORWAY Wang et al. (2017) D/P 0 0 0.380 ± 0.12 1.874 ± 0.28 2.680 ± 1.00

ORCA-MAPF (Dergachev
& Yakovlev, 2021)

C/F 0 0 0.100 ± 0.00 0.000 ± 0.00 3.040 ± 0.00

Auction-based (Wang et al.,
2017)

D/P 0 0 0.220 ± 0.01 0.145 ± 0.00 3.370 ± 0.01

IMPC-DR (Chen et al.,
2022)

D/F 0 0 0.080 ± 0.00 0.160 ± 0.00 1.530 ± 0.00

CADRL (Chen et al., 2017) CTDE/P 50 0 0.036 ± 0.00 1.000 ± 0.00 3.500 ± 0.00

GBPPlanner (Patwardhan et
al., 2022)

D/F 0 0 0.015 ± 0.00 2.670 ± 0.00 1.250 ± 0.00

MPC + liveness (γ = 1) D/P 0 0 0.270 ± 0.01 0.912 ± 0.00 1.274 ± 0.01

NH-ORCA (Alonso-Mora
et al., 2013)

D/P 0 100 - - -

NH-TTC (Davis et al.,
2019)

D/F 0 100 - - -

MPC-CBF (Zeng et al.,
2021)

D/P 0 100 - - -

Ours D/P 0 0 0.001 ± 0.00 0.089 ± 0.02 1.005 ± 0.00

INTERSECTION (Wang et al., 2017) D/P 0 0 0.300 ± 0.10 0.400 ± 0.14 1.900 ± 0.04

ORCA-MAPF (Dergachev
& Yakovlev, 2021)

C/F 0 0 0.250 ± 0.00 0.000 ± 0.00 2.220 ± 0.00

Auction-based (Wang et al.,
2017)

D/P 0 0 0.290 ± 0.05 0.111 ± 0.04 2.240 ± 0.04

IMPC-DR (Chen et al.,
2022)

D/F 0 0 0.080 ± 0.00 0.151 ± 0.00 1.130 ± 0.00

CADRL (Chen et al., 2017) CTDE/P 0 0 0.031 ± 0.00 1.220 ± 0.00 2.000 ± 0.00

GBPPlanner (Patwardhan et
al., 2022)

D/F 0 0 0.017 ± 0.00 7.520 ± 0.00 0.710 ± 0.00

MPC + liveness (γ = 1) D/P 0 0 0.340 ± 0.01 0.922 ± 0.00 1.298 ± 0.01

NH-ORCA (Alonso-Mora
et al., 2013)

D/P 0 100 - - -

NH-TTC (Davis et al.,
2019)

D/F 0 100 - - -

MPC-CBF (Zeng et al.,
2021)

D/P 0 100 - - -

Ours D/P 0 0 0.002 ± 0.00 0.066 ± 0.01 1.005 ± 0.01

HALLWAY Wang et al. (2017) D/P 0 0 0.055 ± 0.01 0.327 ± 0.32 1.160 ± 0.04

ORCA-MAPF (Dergachev
& Yakovlev, 2021)

C/F 0 0 0.110 ± 0.00 1.990 ± 0.00 1.030 ± 0.00

Auction-based (Wang et al.,
2017)

D/P 0 0 0.008 ± 0.000 0.190 ± 0.00 1.440 ± 0.04

IMPC-DR (Chen et al.,
2022)

D/F 0 0 0.135 ± 0.00 0.194 ± 0.00 2.080 ± 0.00

CADRL (Chen et al., 2017) CTDE/P 0 0 0.047 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

GBPPlanner (Patwardhan et
al., 2022)

D/F 0 0 0.018 ± 0.00 1.590 ± 0.00 1.000 ± 0.00

MPC + liveness (γ = 1) D/P 0 0 0.290 ± 0.01 0.824 ± 0.00 1.315 ± 0.01
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Table 3 continued

Baseline Label CR(%) DR(%) Avg. �V Path Deviation Makespan Ratio

NH-ORCA (Alonso-Mora
et al., 2013)

D/P 0 100 - - -

NH-TTC (Davis et al.,
2019)

D/F 0 100 - - -

MPC-CBF (Zeng et al.,
2021)

D/P 0 100 - - -

Ours D/P 0 0 0.001 ± 0.00 0.047 ± 0.00 1.005 ± 0.00

Fig. 12 Comparing with methods without deadlock resolution
capabilities–Our approach, control-theoretic MPC-CBF enables the
green agent to yield to the red agent, which is in contrast to the baselines
where the agents enter a deadlock. Similar observation in the intersec-

tion scenario. Conclusion: Our control-theoretic controller presented
in Sect. 5 encourages queue formation thereby resolving a deadlock
situation in a decentralized and smooth manner (Color figure online)

Fig. 13 Average number of input constraint violations versus the number of agents in different settings

in our experiments is 1024. We assume each agent’s con-
trol policy satisfies the input constraints i.e.

∣∣uit
∣∣ ≤ umax

where umax > 0. We set the input constraints in the range
of [−0.2, 0.2] meters per second for the linear velocity and

[−12, 12] degrees for the angular velocity. Figure 13 shows
that the proposed approach successfully constrains all agents
within these bounds. In contrast, baselines GCBF (Zhang et
al., 2023), MACBF (Qin et al., 2021), and MARL (Yu et
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Fig. 14 Comparison of Definition 5 with velocity projection with Theorem 3 for different values of θ

al., 2022; Liu et al., 2020) methods (InfoMARL, MAPPO,
PIC) show an exponential increase in the number of input
constraint violations. We refer the reader to (Zinage et al.,
2024) for additional details.

6.7 Effect of velocity projection

In Fig. 14a, we plot the liveness values obtained via Def-
inition 5 with velocity transformation (blue), Definition 5
without velocity transformation (green), andTheorem3 (red)
for θ = π

6 . Similarly, in Fig. 14b, we plot the liveness val-
ues obtained via Definition 5 with velocity transformation
(blue), Definition 5 without velocity transformation (green),
and Theorem 3 (red) for θ = π

3 .
We ran additional experiments where we tested our

approach in SMGs where the agents made the follow-
ing angles with the relative poistion vector:

{
π
3 , π

6 , π
5

}
. In

Fig. 15, we plot trials conducted with varying speed scaling
factors (each (v1, v2) point characterizes a speed scaling) and
angle. A green “+” trial indicates when an SMG occurrence
was correctly identified (true positives and true negatives)
using velocity transformation whereas a red “x” indicates
when an SMG was incorrectly identified (false positives and
false negatives) without velocity transformation.

For example, of the three green points, Definition 5 with
velocity transformation identifies a true positive occurrence
of an SMG at v1=1.75 m/s and v2=1m/s (ζ = 1.75, θ = π

3 )
and two true negative SMGs at v1=2.25 m/s and v2=1m/s
(ζ = 2.25, θ = π

5 ) and v1=3 m/s and v2=1 m/s (ζ = 3, θ =
π
6 ), respectively. On the other hand, of the three red points,
Definition 5without velocity transformation identifies a false
negative occurrence of an SMG at v2=1.75 m/s and v1=1m/s
(ζ = 1.75, θ = π

3 ) and two false positive SMGs at v2=2.25
m/s and v1=1m/s (ζ = 2.25, θ = π

5 ) and v2=3m/s and
v1=1m/s (ζ = 3, θ = π

6 ), respectively.

Fig. 15 Effect of velocity projection: the red trials correspond to false
negatives and false positives of an SMG occurrence using Definition 5
without velocity projection, whereas the green trials correspond to true
positives and true negatives of an SMG occurrence using Definition 5
with velocity projection (Color figure online)

7 Conclusion, limitations, and future work

In this work, we presented an approach to address the chal-
lenges of safe and deadlock-free navigation in decentralized,
non-cooperative, and non-communicating multi-robot sys-
tems in constrained environments. We introduced the notion
of social mini-games to formalize the multi-robot naviga-
tion problem in constrained spaces. Our navigation approach
uses a combinedMPC-CBF formulation for optimal and safe
long-horizon planning. Our approach to ensuring liveness
rests on the insight that there exists barrier certificates that
allow each robot to preemptively perturb their state in a
minimally-invasive fashion onto liveness sets i.e. stateswhere
robots are deadlock-free.
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There are a few limitations of our work. First, we only
guarantee safety and liveness for asynchronously perform-
ing robots at a local level. And second, the current approach
is applicable only in certain geometries such as doorways,
hallways, intersections. Some other geometries that our
approach can handle, but have not been studied in this paper,
include L-shaped corners and corridors, T-shaped junctions,
blind corners, and roundabouts. For future work, we plan
on investigating the following open questions: (i) inves-
tigating the integration of machine learning techniques to
enhance decision-making capabilities, adaptability of the
decentralized controllers, and extending scalability to multi-
ple agents (i i) establishing theoretical connections between
game-theoretic solutions (e.g. Nash equilibrium) and our
control-theoretic solution to establish global optimality, (i i i)
extending our solution to a broader and more general class of
geometries, and (iv) investigating robust control methods to
establish a bound on ζ to address perception or sensor errors
in observing neighbors’ velocities.
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