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Abstract

Task planning and motion planning are two of the most important problems in robotics, where task planning methods help
robots achieve high-level goals and motion planning methods maintain low-level feasibility. Task and motion planning
(TAMP) methods interleave the two processes of task planning and motion planning to ensure goal achievement and motion
feasibility. Within the TAMP context, we are concerned with the mobile manipulation (MoMa) of multiple objects, where it
is necessary to interleave actions for navigation and manipulation. In particular, we aim to compute where and how each
object should be placed given underspecified goals, such as “set up dinner table with a fork, knife and plate.” We leverage the
rich common sense knowledge from large language models (LLMs), for example, about how tableware is organized, to
facilitate both task-level and motion-level planning. In addition, we use computer vision methods to learn a strategy for
selecting base positions to facilitate MoMa behaviors, where the base position corresponds to the robot’s “footprint” and
orientation in its operating space. Altogether, this article provides a principled TAMP framework for MoMa tasks that
accounts for common sense about object rearrangement and is adaptive to novel situations that include many objects that
need to be moved. We performed quantitative experiments in both real-world settings and simulated environments. We
evaluated the success rate and efficiency in completing long-horizon object rearrangement tasks. While the robot
completed 84.4% real-world object rearrangement trials, subjective human evaluations indicated that the robot’s per-
formance is still lower than experienced human waiters.
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Introduction

Robots require task planning methods to sequence symbolic
actions for accomplishing complex tasks. They also need
motion planning methods to compute trajectories that realize
these symbolic actions while ensuring motion-level feasi-
bility. Task and motion planning (TAMP) refers to a family

of algorithms that integrate task and motion planning pro-
cesses to compute motion trajectories that can be directly
executed on robot hardware to achieve task-level goals
(Garrett et al., 2021; Zhao et al., 2024). While most existing
TAMP algorithms are designed for purely manipulation
(i.e., requiring no navigation) domains, robots may need to
handle objects located far apart, requiring a combination of
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Figure |. An illustration of our mobile manipulation (MoMa) domain, where a mobile manipulator is tasked with setting a dining table.
The robot must arrange several tableware items, including a knife, a fork, a plate, a cup mat, and a mug. These objects are located on
other tables, and the environment also includes randomly generated obstacles (e.g., chairs), which are not accounted for in the pre-built
map. The robot must compute semantically specified goal configurations of the objects and (task and motion) plans for rearranging the
objects on the target table. The computed plan includes both navigation and manipulation behaviors.

navigation and manipulation actions. In this article, we
study mobile manipulation (MoMa) domains in which ro-
bots perform both navigation and manipulation tasks. This
article focuses on addressing MoMa challenges by devel-
oping TAMP methods that are visually grounded and ca-
pable of leveraging common sense knowledge to achieve
underspecified goals.

Multi-object rearrangement is an essential skill for ser-
vice robots to perform everyday tasks such as setting tables,
organizing bookshelves, and loading dishwashers (Szot
et al., 2022; Weihs et al., 2021). These tasks require ro-
bots to demonstrate both manipulation and navigation ca-
pabilities. For instance, a robot tasked with setting a dinner
table may need to retrieve tableware items like forks and
knives from different locations and place them onto a table
surrounded by chairs, as illustrated in Figure 1. To complete
this task, the robot must accurately position the tableware in
semantically specified configurations (e.g., placing the fork
to the left of the knife) and efficiently navigate indoor spaces
while avoiding obstacles such as chairs or humans, whose
locations are not known in advance.

A variety of mobile manipulation systems have been
developed for object rearrangement tasks (Goodwin et al.,
2022; Liu et al., 2022b; Wei et al., 2023; Huang et al., 2019;
Gu et al., 2022; King et al., 2016; Cheong et al., 2020;
Vasilopoulos et al., 2021). Most of these systems require
explicit instructions, such as arranging similarly colored
items in a line or placing them in a specific shape on a table
(Cheong et al., 2020; Goodwin et al., 2022; Gu et al., 2022;

Huang et al., 2019; Liang et al., 2022; Vasilopoulos et al.,
2021). However, real-world user requests are often under-
specified; for example, there are many ways to set a table,
but some are preferred more than others. How does a robot
determine that a fork should be placed to the left of a plate
and a knife to the right? Reasoning about such societal
conventions requires substantial common sense knowledge.
Existing research has shown that large language models
(LLMs), such as ChatGPT (OpenAl, 2023), possess a
significant amount of such common sense knowledge (Liu
et al., 2021a). In the past, researchers have equipped mobile
manipulators with semantic information using machine
learning methods (Liu et al., 2022b, 2022a; Wei et al., 2023;
Zhang and Chai, 2021). However, these methods rely on
training data, limiting their applicability for robots per-
forming diverse service tasks in open worlds, where data
collection can be difficult.

To compute semantically specified goal configurations
and enable mobile manipulation for object rearrangement,
we introduce LLM-GROP, which stands for Large Lan-
guage Model for Grounded RObot Task and Motion
Planning, our approach leverages common sense knowledge
for planning object rearrangement tasks. LLM-GROP first
uses an LLM to generate symbolic spatial relationships
among objects, for example, placing a fork and a knife to the
left and right of a plate, respectively. These symbolic re-
lationships are then mapped to geometric spatial relation-
ships, whose feasibility is evaluated by a motion planning
system. For example, some areas of a table may be more
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Figure 2. An overview of the LLM-GROP approach. LLM-GROP takes service requests from humans for setting tables and produces a
task-motion plan that the robot can execute. LLM-GROP is comprised of two key components: the LLM and the Task and Motion
Planner. The LLM is responsible for creating both symbolic and geometric spatial relationships between the tableware objects. This
provides the necessary context for the robot to understand how the objects should be arranged on the table. The Task and Motion
Planner generates the plan for the robot to execute based on the information provided by the LLM. An important component of
LLM-GROP is GROP that takes a top-down view image as the input and suggests standing positions to facilitate MoMa behaviors. GROP is
trained exclusively using simulation data. In the real world, the robot estimates poses of objects and builds a digital twin for task and

motion planning. Details of GROP are shown in Figure 3.

feasible for object placement than others. Finally, computer
vision methods are employed to optimize the feasibility and
efficiency of task-motion plans, maximizing long-term
utility by balancing motion feasibility and task-
completion efficiency.

We applied LLM-GROP in a dining domain where a
mobile manipulator is tasked with setting a table based on
user instructions. The robot is provided with a set of ta-
bleware objects and must compute a tabletop configuration
that adheres to common sense rules while also generating a
task-motion plan to execute the arrangement. To evaluate
the performance of our approach, we collected user ratings
of different table settings for subjective evaluation. Our
results showed that LLM-GROP improved user satisfaction
compared to existing object rearrangement methods while
maintaining similar or lower cumulative action costs. Ad-
ditionally, LLM-GROP was demonstrated and evaluated on
a real robot.

This article builds on our previous research, which in-
troduced the initial version of LLM-GROP (Ding et al.,
2023b) and its vision component, GROP (Zhang et al.,
2022b). GROP used visual perception to identify optimal
standing positions, maximizing the feasibility and efficiency
of both manipulation and navigation actions. LLM-GROP
extends this by incorporating LLMs to generate tabletop
configurations that adhere to common sense principles and
are feasible for TAMP systems. Compared to the two

conference papers, the primary contribution of this article is
the unification of these two algorithms and systems, pro-
viding a cohesive presentation of all LLM-GROP compo-
nents. We have updated illustrative examples and overview
figures for improved clarity (Figures 1, 2, and 5). Additional
experiments were conducted to evaluate LLM-GROP using
different LLMs (Table 5), on robot hardware (Figure 6), and
through subjective evaluations of real-robot performance
with human participants (Table 4). Challenges and oppor-
tunities are discussed toward the end of the article.

Related work

In this section, we first summarize task and motion planning
literature, then introduce the mobile manipulation problem
in object rearrangement domains, and finally discuss
foundation models for robot planning.

Task and motion planning (TAMP)

TAMP methods aim to compute plans that fulfill task-level
goals while maintaining motion-level feasibility, as re-
viewed in recent articles (Garrett et al., 2021; Lagriffoul
et al., 2018; Zhao et al., 2024). Several TAMP algorithms
have been introduced in recent years (e.g., (Chitnis et al.,
2016; Chitnis et al., 2019; Dantam et al., 2018; Ding et al.,
2022; Erdem et al., 2011; Garrett et al., 2018; Gravot et al.,
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2005; Kim et al.,, 2019; Kim and Shimanuki, 2020;
Lagriffoul et al., 2014; Plaku et al., 2007; Srivastava et al.,
2014; Wang et al., 2018; Zhu et al., 2020). We distinguish a
few subareas of TAMP that are closest to our research on
learning to visually ground symbolic spatial relationships
towards planning efficient and feasible task-motion be-
haviors under uncertainty.

When high-level actions only take a few seconds,
TAMP algorithms can focus mostly on action feasibility
constraints without fully optimizing high-level plan
efficiency. However, when there are actions that take
significant time to execute (e.g., long-distance naviga-
tion), task-completion efficiency cannot be overlooked.
Some recent methods have considered efficiency in
different aspects of TAMP, such as planning task-level
optimal behaviors in navigation domains (Lo et al.,
2020), integrating reinforcement learning with sym-
bolic planning in dynamic environments (Jiang et al.,
2019a), computing safe and efficient plans for urban
driving (Ding et al., 2020), and optimizing robot navi-
gation actions under the uncertainty from motion and
sensing (Thomas et al., 2021). In contrast to those
methods that do not have a perception component, the
main difference is that LLM-GROP visually grounds
symbols (about spatial relationships) to probabilistically
evaluate action feasibility for task-motion planning.
Another difference is that LLM-GROP leverage LLMs
for  computing semantically =~ meaning goal
configurations.

While most TAMP methods assume a fully observ-
able and deterministic world (Garrett et al., 2021), some
have been developed to account for the uncertainty from
perception and action outcomes (Akbari et al., 2020;
Garrett et al., 2020; Hadfield-Menell et al., 2015;
Kaelbling and Lozano-Pérez, 2013; Nouman et al., 2021;
Phiquepal and Toussaint, 2019). For instance, the work
of Kaelbling and Lozano-Pérez extended the “hierar-
chical planning in the now” approach to address both
current-state uncertainty and future-state uncertainty
(Kaelbling and Lozano-Pérez, 2013). Going beyond
those methods that aim to maintain plan feasibility to
complete tasks under high-level uncertainty, we consider
uncertainty in the robot motion and also incorporate
task-completion efficiency into the optimization of robot
behaviors. As a result, our LLM-GROP algorithm is
particularly suitable for TAMP domains that require
robot operations over extended periods of time, such as
long-distance navigation.

Existing research has shown that visual information can
be used to help robots predict plan feasibility, including task-
level feasibility (Driess et al., 2020a; Zhu et al., 2020), and
motion-level feasibility (Driess et al., 2020b; Wells et al.,
2019). Those methods were developed to maximize task
completion rate in manipulation domains, and actions that
take relatively long time (such as long-distance navigation)

were not included in their evaluations. LLM-GROP in-
corporates efficiency into plan optimization, while
leveraging common sense from LLMs for computing goal
configurations. For instance, when highly feasible plans
have very high costs, LLM-GROP supports the flexibility of
executing slightly less feasible plans with much lower costs.
LLM-GROP achieves this desirable trade-off between
feasibility and efficiency by probabilistically evaluating
plan feasibility, which is not supported by the above-
mentioned methods.

MoMa for object rearrangement

Rearranging objects is a critical task for service robots, and
much research has focused on moving objects from one
location to another and placing them in new positions.
Examples include the Habitat Rearrangement Challenge
(Szot et al., 2022) and the AI2-THOR Rearrangement
Challenge (Weihs et al., 2021). There is rich literature on
object rearrangement in robotics (Cheong et al., 2020;
Goodwin et al., 2022; Gu et al., 2022; Huang et al., 2019;
Liang et al., 2022; Vasilopoulos et al., 2021; Zhang et al.,
2022b). A common assumption in those methods is that a
goal arrangement is part of the input, and the robot knows
the exact desired positions of objects. ALFRED (Shridhar
et al., 2020) proposed a language-based multi-step object
rearrangement task, for which a number of solutions have
been proposed that combine high-level skills (Blukis et al.,
2022; Min et al., 2021), and which have recently been
extended to use LLMs as input (Inoue and Ohashi, 2022).
However, these operate at a very coarse, discrete level,
instead of making motion-level and placement decisions,
and thus can’t make granular decisions about common-
sense object arrangements. By contrast, our work accepts
underspecified instructions from humans, such as setting a
dinner table with a few provided tableware objects. LLM-
GROP has the capability to do common sense object re-
arrangement by extracting knowledge from LLMs, and
operates both on a high level and on making motion-level
placement decisions.

Object arrangement is a task that involves arranging
items on a tabletop to achieve a specific functional, se-
mantically valid goal configuration. This task requires not
only the calculation of object positions but also adherence to
common sense, such as placing forks to the left and knives to
the right when setting a table. Previous studies in this area,
such as Kapelyukh et al. (2022), Liu et al. (2022a, 2022b),
and Wei et al. (2023), focused on predicting complex object
arrangements based on vague instructions. For instance,
StructFormer (Liu et al., 2021b) is a transformer-based
neural network for arranging objects into semantically
specified structures based on natural-language instructions.
By comparison, our approach LLM-GROP utilizes an LLM
for common sense acquisition to avoid the need of dem-
onstration data for computing object positions. Additionally,
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we optimize the feasibility and efficiency of plans for
placing tableware objects.

There exist methods for predicting complex object ar-
rangement using web-scale diffusion models (Kapelyukh
et al., 2022). Their approach, called DALL-E-Bot, enables a
robot to generate goal images using DALL-E (Ramesh et al.,
2022) based on a text description derived from an initial
scene. The robot aligns objects between the initial and
generated images and accordingly arranges objects in a
tabletop scenario based on the inferred poses. Similar to
DALL-E-Bot, LLM-GROP achieves zero-shot performance
using pre-trained models, but it is not restricted to a single
top-down view of a table. Additionally, LLM-GROP le-
verages LLMs to generate symbolic and geometric goal
specifications from underspecified instructions, operates in
full-room mobile manipulation settings, and integrates task
and motion planning (TAMP) to reason about feasibility and
uncertainty in both navigation and manipulation, producing
efficient and physically executable plans.

Robot planning with foundation models

Many LLMs have been developed in recent years, such as
BERT (Devlin et al., 2018), GPT-3 (Brown et al., 2020),
ChatGPT (OpenAl, 2023), CodeX (Chen et al., 2021),
and OPT (Zhang et al., 2022a). These LLMs can encode a
large amount of common sense (Liu et al., 2021a) and
have been applied to robot task planning (Ahn et al.,
2022; Ding et al., 2023a; Huang et al., 2022a, 2022b;
Kant et al., 2022; Liu et al., 2022a, 2023; Rana et al.,
2023; Singh et al., 2022; Wu et al., 2023; Zhao et al.,
2023). For instance, the work of Huang et al. showed that
LLMs can be used for task planning in household domains
by iteratively augmenting prompts (Huang et al., 2022a).
SayCan is another approach that enabled robot planning
with affordance functions to account for action feasibility,
where the service requests are specified in natural lan-
guage (e.g., “make breakfast”) (Ahn et al., 2022).
Compared with those methods, LLM-GROP optimizes
both feasibility and efficiency while computing seman-
tically valid geometric configurations.

More recently, vision-language models (VLMs) have
been incorporated into robot planning (Huang et al., 2023,
2024; Yang et al., 2024; Zhang et al., 2024). Among those,
the most relevant is VLM-TAMP (Yang et al., 2024), which
is a hierarchical planning approach that leverages a VLM to
generate semantically-specified and intermediate subgoals
that guide a task and motion planner. VLM-TAMP used a
VLM to unify the processing of both text and image
prompts, and is strong in tabletop visual scene analysis
compared with our work. Compared with their approach,
ours is capable of visual understanding for MoMa behav-
iors, such as probabilistically evaluating their feasibility.

Next, we present a statement of the MoMa problem
(namely object rearrangement) in the Problem Statement

section, including assumptions, formats of its input and
output, and success criteria, before we discuss our approach
in the Method section.

Problem statement

While we are generally concerned with a mobile ma-
nipulation domain, algorithms and systems developed
in this article are demonstrated and evaluated using a
specific task of object rearrangement. Specifically, the
objective is to rearrange multiple tableware objects,
which are initially scattered at different locations, into a
tabletop configuration that is semantically valid and
aligns with common sense. The domain includes N
objects Obj. There are obstacles (tables and chairs in our
case) that prevent the robot from navigating to some
positions in the domain. The robot is provided with prior
knowledge about table shapes and locations. Chairs, on
the other hand, can only be sensed at planning time.
Location / is a symbolic concept that corresponds to a
set of obstacle-free 2D poses (X), where each pose (x €
X) specifies a 2D position and an orientation. The robot
needs to move each object o € Obj from its initial lo-
cation to a goal position.

Actions

The robot is equipped with skills of performing a set of
symbolic (task-level) actions denoted as 4: A" U A",
where A" and A™ are navigation actions and manipu-
lation actions respectively. A navigation action aj , € 4"
is specified by its initial and goal locations, [, I € L,
where L includes a set of symbolic locations. A ma-
nipulation action, a;’, € 4™, is specified by an object to
be manipulated, o € Obj, and a symbolic location, / € L,
to which the robot navigates and performs the manip-
ulation action. We consider two types of manipulation
actions of loading and unloading, represented by a”"
and @™~ respectively. Actions are defined via precon-
ditions and effects. For instance, the action 1oad(o;)
has preconditions of at (robot,/;) and at(oy, /1),
meaning that to load the object 01, the object must be co-
located with the robot at the location /;. The effects of
load(o;) include o being moved into the robot’s hand,
that is, inhand(o;).

Perception

The robot visually perceives the environment through
top-down views over the areas where manipulation and
navigation actions are performed. We use IM to rep-
resent a 2D image that captures the current obstacle
configuration, such as chairs around tables, as shown in
the “Image Input” of Figure 2 (bottom right). To fa-
cilitate robot learning, we provide a dataset (as
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Figure 3. An overview of the data collection and training process in GROP. A task corresponds to one “unloading goal” on the
table, as well as a configuration of obstacles (chairs in our case). Given a task, every pixel is considered a navigation goal—the
robot attempts to navigate there, and unload an object from there. This navigation-manipulation process is referred to as a
trial. The robot performs multiple trials for each navigation goal, which yields a feasibility value for that particular location. The
feasibility values together form one heatmap for each task. In our dataset, each instance is a top-down view image, whose label

is the corresponding heatmap. The “Dataset” box shows a few “combined heatmaps” where heatmaps are overlaid onto the
corresponding images. Training with the dataset generates an FCN that is used for two purposes: (1) evaluating the feasibility of
task-level actions and (2) selecting motion-level navigation goals. Finally, GROP incorporates both efficiency (measured by
action costs) and feasibility to compute task-motion plans for a mobile manipulator.

illustrated in the “Dataset” box of Figure 2). Each in-
stance includes a top-down view image, and a target
object with a predefined position, while each label is in
the form of a heatmap. Each pixel of a heatmap is as-
sociated with a 2D position, and has a “feasibility” value
that represents the success rate of the robot navigating to
the 2D position, and manipulating the target object from
there.

A map is generated in a pre-processing step, and pro-
vided to the robot as prior information for navigation
purposes using rangefinder sensors.

Uncertainty

We consider uncertainty in navigation and manipulation
behaviors. For instance, the robot can fail in navigation (at
planning or execution time) when its goal is too close to
tables or chairs, and it can fail in manipulation when it is not
close enough to the target position. Note that uncertainties
are treated as black boxes in this work.

Specifically, the outcome of performing navigation
action aj, to goal pose x is deterministic at the task
level, but is non-deterministic at the motion level. In
other words, the robot will end up in position x’, which is
not necessarily the same as x. This setting captures the
fact that a mobile robot never achieves its exact 2D

navigation goal (due to its imperfect localization and
actuation capabilities), though successfully navigating
to an area (/) is generally possible.

We focus on the interdependency between navigation
and manipulation actions. For instance, the execution-
time uncertainty from navigation actions results in
different standing positions of the robot, which makes
the outcomes of manipulation actions non-
deterministic. This challenge generally exists in mo-
bile manipulators. We assume no noise in the execution
of manipulation actions (loading and unloading) to
objects within a reachable area.

Large language models

It is assumed that an off-the-shelf large language model
(LLM) is available and can be used by a robot to extract
common sense knowledge. An LLM is a type of com-
putational model designed for natural language pro-
cessing tasks such as language generation. The input of
LLMs in this object rearrangement domain includes a
description of the problem as well as the format of the
output. It is evident that an LLM’s performance can be
boosted by providing a few inference examples (Kaplan
et al., 2020), so MoMa practitioners might want to
extend the input by further including such examples.
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Format of solution

A solution is in the form of a task-motion plan p = {p,
p™), where task plan p' is of the form (a, ay,d’,ay, ...),
indicating that navigation and manipulation actions are
interleaved. Motion plan p™ is of the form
(€0. 0. E1, ¢, ..), and & (or &) is a trajectory in
continuous space for implementing symbolic action a
(or a").

Quality of solution

The quality of task-motion plan p is evaluated using a utility
function U(p), which considers both feasibility and effi-
ciency of plan p:

Up) =R-Fp) - Clp), (M

where F(p) € [0, 1] is the plan feasibility (i.e., the proba-
bility that p can be successfully executed), C(p) is the overall
plan cost of executing p, and R — R is a success bonus
reflecting the reward from a successful execution. An op-
timal algorithm reports a task-motion plan of the highest
utility:

p* = argmax U(p)
P

Next, we present LLM-GROP that computes goal
configurations of objects, and task-motion plans for
realizing the goal, through visually grounding spatial
relationships while considering both efficiency and
feasibility.

Method

In this article, we develop LLM-GROP, a task and
motion planning (TAMP) approach that is semantically
specified and visually grounded, as applied to object
rearrangement tasks. At the high level, LLM-GROP
generates object goal configurations (i.e., 2D positions)
of relevant objects using common sense knowledge
extracted from the LLM (LLM-Guided Goal Generation
subsection). At the low level, LLM-GROP computes
TAMP solutions for grounding the generated object
locations into the physical world (Task and Motion
Planning for Grounded Object Rearrangement
subsection).

LLM-guided goal generation

This subsection presents our approach that leverages LLMs
to compute both symbolic spatial relationships (e.g., a fork
should be placed to the left of a plate and a knife to the right)
and geometric spatial relationships (e.g., 2D coordinates of
the objects on a table).

Generating symbolic spatial relationships. LLMs are first used
to extract common sense knowledge regarding symbolic
spatial relationships among objects placed on a table. This is
accomplished through the utilization of a template-based
prompt:

Template 1: The goal is to set a dining table with
objects. The symbolic spatial relationship
between objects includes [spatial rela-
tionships). [examples]. What is a typical
way of positioning [objects]| on a table?
[notes].

where [spatial relationships] includes a few spatial
relationships, such as fo the left of and on top of. In
presence of [examples], the prompting becomes few-
shot; when no examples are provided, it is simplified to
zero-shot prompting. In practice, few-shot prompts can
ensure that the LLM’s response follows a predefined
format, though more prompt engineering efforts are
needed. [objects] refers to the objects to be placed on the
table, such as a plate, a fork, and knife. To control the
LLM’s output, [notes] can be added, such as the ex-
ample “Fach action should be on a separate line
starting with ‘Place’. The answer cannot include other
objects.”

LLMs are generally reliable in demonstrating com-
mon sense, but there may be times when they produce
contradictory results. To prevent logical errors, a logical
reasoning-based approach has been developed to
evaluate the consistency of generated candidates with
explicit symbolic constraints. This approach is im-
plemented on answer set programming (ASP), which is
a declarative programming language that expresses a
problem as a set of logical rules and constraints (Gebser
et al., 2008). In the event of a logical inconsistency, the
same template is repeatedly fed to the LLM in an attempt
to elicit a different, logically consistent output. ASP
enables recursive reasoning, where rules and constraints
can be defined in terms of other rules and constraints,
providing a modular approach to problem-solving
(Jiang et al., 2019b). ASP is particularly useful for
determining whether sets of rules and constraints are
true or false in a given context.

The approach involves defining spatial relationships,
their transitions, and rules for detecting conflicts. These
rules are created by human experts and serve to ensure
that the generated context is logical and feasible. One
such rule is: below (X,Y), right (X,Y), which states that
object X cannot be both “below” and “to the right of”
object Y at the same time. This rule ensures that the
resulting arrangement of objects is physically possible.
An instance of identifying a logical error is provided. For
example, an LLM may generate instructions for ar-
ranging objects as follows:
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Place fruit bowl in the center of table.

Place butter knife above and to the right of fruit bowl.
Place dinner fork to the left of butter knife.

Place dinner knife to the right of butter knife.
Place fruit bowl to the right of dinner fork.

Place water cup below and to the left of dinner knife.

A e

Objects and spatial relationships are explicitly listed in
the prompts used for querying LLMs, as shown in Template
1. We then use standard search methods to extract the
objects and spatial relationships from the LLM outputs. In
most cases, the LLMs are able to output instructions in the
desired format; otherwise, we re-prompt the LLMs until we
are able to extract the objects and spatial relationships.

There are logical inconsistencies in the italic lines: Steps
2 and 3 suggest placing the fiuit bowl below the dinner fork,
while Step 5 suggests placing the fruit bowl to the right of
the dinner fork. This contradicts the established rule and
results in no feasible solutions.

Generating geometric spatial relationships. After determining
the symbolic spatial relationships between objects, we move
on to generate their geometric configurations, where we use
the following LLM template.

Template 2: [object A] is placed [spatial relationship]
[object B]. How many centimeters [spatial
relationship] [object B] should [object A]
be placed?

For instance, when we use Template 2 to generate prompt
“A dinner plate is placed to the left of a knife. How many
centimeters to the left of the water cup should the bread plate
be placed?”’, GPT-3 produces the output “Generally, the
dinner knife should be placed about 5-7 centimeters to the
right of the dinner plate.” In practice, the exact distance is
extracted by searching for keyword “centimeter” to identify
the number preceding it.

To determine the positions of objects, we first choose a
coordinate origin. This origin could be an object that has a
clear spatial relationship to the tabletop and is located
centrally. A dinner plate is a good example of such an object.
We then use the recommended distances and the spatial
relationships between the objects to determine the coordi-
nates of the other objects. Specifically, we can calculate the
coordinates of an object by adding or subtracting the rec-
ommended distances in the horizontal and vertical direc-
tions, respectively, from the coordinates of the coordinate
origin. The LLM-guided position for the ith object is de-
noted as (x', ), where i € N.

However, relying solely on the response of the LLMs
is not practical as they do not account for object at-
tributes such as shape and size, including tables con-
straints. To address this limitation, we have designed an
adaptive sampling-based method that incorporates

object attributes after obtaining the recommended ob-
ject positions. Specifically, our approach involves se-
quencing the sampling of each object’s position using a
2D Gaussian sampling technique (Boor et al., 1999),
with (x', y') as the mean vector, and the covariance
matrix describing the probability density function’s
shape.

The resulting distribution is an ellipse centered at (x',
y") with the major and minor axes determined by the
covariance matrix. However, we do not blindly accept
all of the sampling results; instead, we apply multiple
rules to determine their acceptability, inspired by re-
jection sampling (Gilks and Wild, 1992). These rules
include verifying that the sampled geometric positions
adhere to symbolic relationships at a high level,
avoiding object overlap, and ensuring that objects re-
main within the table boundary. For example, if the
bounding box of an object position falls outside the
detected table bounds, we reject that sample. The
bounding box of objects and the table are computed
based on their respective properties, such as size or
shape. After multiple rounds of sampling, we can obtain
M object configuration sequences.

The output of our LLM-guided goal generation approach
is a 2D tabletop configuration of relevant objects. Next, we
describe our visually grounded TAMP approach for real-
izing the computed goal configurations.

Task and motion planning for grounded object
rearrangement

After identifying feasible object configurations on the
tabletop, the next step is to place the objects on the tabletop
based on one of object configuration sequences. At the task
level, the robot must decide the sequence of object
placement and how to approach the table. For example, ifa
bread is on top of a plate, the robot must first place the plate
and then the bread. The robot must also determine how to
approach the table, such as from which side of the table.
Once the task plan is determined, the robot must compute
2D navigation goals (denoted as /loc) at the motion level
that connect the task and motion levels. Subsequently, the
robot plans motion trajectories for navigation and ma-
nipulation behaviors.

In the presence of dynamic obstacles, not all navi-
gation goals (/oc) are equally preferred. For instance, it
might be preferable for the robot to position itself close
to an object for placement rather than standing at a
distance and extending its reach. As a result, we de-
veloped a novel TAMP component (namely GROP) in
our system for computing the optimal navigation goal
loc, which enabled the task-motion plan with the
maximal utility for placing each object in terms of
feasibility and efficiency given an object configuration
(x7,)%), where 0 <j < M.
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The GROP algorithm. Algorithm 1 presents the GROP al-
gorithm. Implementing GROP requires a task planner Plnr’,
amotion planner Pln’™ for planning base motions, a success
bonus R — R, and a cost function Cst that evaluates the cost
of any motion trajectory generated by Pln/". Inputs of
GROP include a rule-based task description 7, a robot initial
2D position x™, and a provided dataset D. GROP outputs a
task-motion plan p in the form of (p’, p™).

GROP starts with training an FCN-based feasibility
evaluator ¥ using provided dataset D in Line 1. Then it
initializes an empty set of task-motion plans P in Line 2.
PIny’ takes T as input and outputs a set of task-level sat-
isficing plans, denoted as P in Line 3. The outer for-loop
(Lines 4-21) iterates over each task-level satisficing
plan. In each iteration, GROP evaluates the utility value
of one task plan U(p), which incorporates both plan
feasibility F(p) and plan efficiency C(p). Aiming to
evaluate F(p) and C(p), each iteration in the first inner
for-loop (Lines 7—13) considers a pair of navigation and
manipulation actions in the task plan, and evaluates its
feasibility and cost. In the second inner for-loop of Lines
14-17, GROP calls Plnr™ to compute one motion plan for
each task-level action. While the generated motion plan
p™ only includes base motion, the feasibility of arm
motion (equation (4) and Line 10) is considered in our
motion plan generation. Line 18 puts together task plan
p'and motion plan p™ to form a task-motion plan p. In the
same line, p is added to task-motion plan set P. Lines 22—
23 are the final steps to select and return the optimal task-
motion plan from P given utility function U(p).

For different groups of object configurations, we use
GROP to compute the maximal utility value of task-

motion plans and select the best one for execution.
Figure 4 shows one task-motion plan generated using
LLM-GROP for a four-object rearrangement task.
Algorithm 1 GROP

Require: Task planner Plnrt, motion planner Plnr™, success
bonus R, and cost function Cst
Input: Task description 7', robot initial position ™", dataset D
1: Train a motion-level feasibility evaluator W using dataset D
(detailed in Figure 3)
2: Initialize a set of task-motion plans P < )
3: Compute a set of task-level satisficing plans: P* < Plnr*(T)
4: for each plan p* € P* do
5:  Initialize a motion-level position sequence: X*“/ + [z
6
7
8

"X“}
Initialize fmp’ < 0 and mp® < 0
for each action pair (aj';s, aj)’,) in p' do
: Capture IM of location I’
9: Predict heatmap h = W(IM), using Eqn. 3

10: tmp? « tmp’ + Fea'(a}", al',/), using Eqn. 4

11: 2’ Smp(l', h), and append z’ to X*¢

12: tmp®tmp® + Cst(Plnr™ (a}';)) + Cst(Plnr™(al",))
13:  end for

14:  for each (z;,zi+1) € X* do

15: Compute motion-level trajectory & <— Plnr™ (z;, xiy1)
16: Append £ to motion plan p™

17:  end for

18:  Generate task-motion plan p < (p’, p™), and append p to
the task-motion plan set P

f
19:  Update F(p) < tm—lzl
20 U(p) R - F(p) — C(p) (Eqn. 1)
21: end for
22: Compute optimal task-motion plan: p* = arg max,cp U (p)
23: return p*

and C(p) < mp®

Motion-level feasibility evaluation in GROP. In our mobile
manipulation domain, motion-level feasibility Fea™(x, y)
is a function of 2D positions x and y, and is the probability
of a robot successfully navigating to x and manipulating
an object that is in position y. Fea™(x, y) can be extracted
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Figure 4. An illustrative example of LLM-GROP showing the robot navigation trajectories (dashed lines) as applied to the task of “set the
table with a bread plate, a fork, a knife, and a bread.” LLM-GROP is able to adapt to complex environments, using common sense extracted
from an LLM to generate efficient (i.e., minimize the overall navigation cost) and feasible (i.e., select an available side of the table to unload)

pick-and-place motion plans for the robot.
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from gray-scale heatmap image /” that is centered around
y:
Fea"(x,y) = I'[x] )

We use a FCN-based feasibility evaluator ¥ to generate
heatmap /#, given a top-down view image IM captured right
above unloading position y (“Image Input” in Figure 2):

W =Y(IM) 3)

Data collection and learning ¥ with FCN. Here, we discuss
how to learn ¥ in equation (3). A task specifies an obstacle
configuration and a position y that a robot wants to unload
objects to. In each #rial of our data collection process, a robot
attempts to navigate to position x, and then unload an object
to position y. Such a trial produces a data point in the
following format:

(IM?,x):r

where IM” is a top-down view image captured right
above y, and r is either true or false depending on if the
robot succeeds in both navigation and manipulation
actions. The robot repeated the same process for N times
(N = 5 in our case), and we used the results (rg, 71, ...,
ry_1) to compute a success rate for positions x and y,
which determines a gray-scale color for one pixel of a
heatmap: & [x].

Iterating over all possible positions of x in an area of
Width x Height (24 pixels by 8 pixels in our case) in image
IM, we were able to generate one full heatmap /4 for the
current task. Here we assume this area is large enough to
cover all positions, from which the robot can unload objects
to y. To diversify the instances, we randomly placed ob-
stacles (chairs in our case) to generate 10 different “envi-
ronments,” and then randomly sampled unloading positions

Table I. Objects that are involved in our object rearrangement
tasks for evaluation, where tasks 1-5 include three objects, tasks
6 and 7 include four objects, and tasks 8 and 9 include five objects.

Task #ID  Objects

| Dinner Plate, Dinner Fork, Dinner Knife

2 Bread Plate, Water Cup, Bread

3 Mug, Bread Plate, Mug Mat

4 Fruit Bowl, Mug, Strawberry

5 Mug, Dinner plate, Mug Lid

6 Dinner Plate, Dinner Fork, Mug, Mug Lid

7 Dinner Plate, Dinner Fork, Dinner Knife, Strawberry
8 (Sim. Dinner Plate, Dinner Fork, Dinner Knife, Mug, Mug

Only) Lid
9 (Real Dinner Plate, Dinner Fork, Dinner Knife, Water Cup,
Only) Strawberry

to generate a total of 100 tasks. As a result, our dataset
contains 100 instances, each in the form of a top-down view
image (64 x 32). Each instance has a label that is in the form
of'a heatmap. The size of our dataset is 96,000, that is, 100 x
N x Width x Height. The data collection and learning
process is illustrated in Figure 3.

Our feasibility evaluator, ¥, is trained exclusively on
simulated data. We train the FCN as a N-class pixel-level
classifier using softmax and a standard cross-entropy loss on
the discrete success-level labels. At inference time, rather
than selecting the top class, we convert the logits into class
probabilities and take a weighted average over the N levels,
and this produces smooth, continuous heatmaps as shown in
Figure 3.

To deploy in the real world, we first estimate the poses of
obstacles (i.e., tables and chairs) and reconstruct a digital
twin of the workspace but using the same simulated assets
from our training phase. We then render top-down views as
the RGB observations and feed them directly into ¥,
sidestepping the sim-to-real gap. We train the FCN as a
N-class pixel-level classifier using softmax and a standard
cross-entropy loss on the discrete success-level labels. At
inference time, rather than selecting the top class, we convert
the logits into class probabilities and take a weighted av-
erage over the N levels, and this produces smooth, con-
tinuous heatmaps as shown in Figure 3.

For real-world experiments (e.g., the top-down view image
in Figure 2), the visual input can capture a large area with
multiple tables. We only consider feasibility evaluation on the
table for placing the objects. There are other tables from which
the robot needs to retrieve objects, where we assume there is
sufficient free space for picking up the objects and we do not
analyze motion feasibility for those tables.

The current training data was collected when the robot
moves objects between rectangle-shaped tables, and the
objects are distant from each other on the tables. If the table
is of irregular shape or the tabletop objects are close to each
other, the rearrangement tasks become more difficult and it
is likely LLM-GROP will not work well. Otherwise, we
expect that LLM-GROP’s performance will be robust to
object positions on the table and shapes of obstacles.
Manipulation behaviors other than grasping and un-
grasping, for example, pouring water and folding cloth, can
be equipped onto the robot as long as additional training
data is provided to guide the robot in selecting standing
positions.

Task-level feasibility evaluation in GROP. Fed'(aj,,al )
evaluates the feasibility (in the form of a probability) of a
robot successfully performing both task-level navigation
action aj , and task-level manipulation action ;) ;.

> Fea"(Smp;(I',h),y)
=0 N-1
N

Fed'(aj ,,a) ;) =

“)
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Table 2. Rating guidelines for human raters in the experiments. | point indicates the poorest tableware object arrangement as it suggests
that some objects are missing. Conversely, 5 points represent the best arrangement.

Points Rating guidelines

| (Poor) Missing critical items compared with the objects listed at the top of the interface (e.g., dinner plate, dinner fork, dinner knife),
making it hardly possible to complete a meal

2 All items are present, but the arrangement is poor and major adjustments are needed to improve the quality to a satisfactory
level

3 All items are present and arranged fairly well, but still there is significant room to improve its quality

4 All items are present and arranged neatly, though an experienced human waiter might want to make minor adjustments to
improve

5 (Strong) All items are present and arranged very neatly, meeting the aesthetic standards of an experienced human waiter

where function Smp; (I', h) samples the ith 2D position from
location /. The positions are weighted by heatmap 4 that is
centered around object o. Intuitively, positions of higher
motion-level feasibility are more likely to be sampled.

This section presents the two key components of LLM-
GROP for (1) computing semantically specified goal con-
figurations of objects using common sense extracted from
LLMs and (2) visually grounded planning at both task and
motion levels for realizing the goals.

Experiments

To evaluate the effectiveness of LLM-GROP, we conducted
a series of experiments focused on tableware object re-
arrangement tasks. In these tasks, a mobile manipulator is
assigned the job of setting a dinner table using a specific set
of objects. The experiments include nine distinct tasks in-
volving various objects, as detailed in Table 1. The robot
must retrieve multiple objects from different locations and
place them on a central table, with obstacles (e.g., a chair)
randomly positioned around the table. These tasks require
the robot to compute semantically valid tabletop arrange-
ments, plan efficient object rearrangement strategies, and
execute the plans through navigation and manipulation
behaviors.

Real robot experiment

We begin with a real-world demonstration to validate
the proposed approach. The mobile manipulator used in
this demonstration features a wheeled base for navi-
gation and a 6-DOF robotic arm for performing ma-
nipulation tasks.

Experimental setup. We designed our real-world experiment
to demonstrate that LLM-GROP can effectively handle a
variety of scenarios. Tasks 4, 7, and 9 from Table 1 were
selected for these demonstrations. The environment con-
sisted of three tables, with objects initially placed on the left

and right tables, and the robot positioned randomly. The
robot repeated each task 15 times: during the first five
repetitions, no obstacles were present; in the next five, a
chair was positioned on the upper side of the table; and in the
final five, a chair was positioned on the lower side of the
table.

In the tableware object rearrangement tasks, task
success was determined by whether the final positions of
the objects appeared natural. To evaluate this, we
captured an overhead image of the table at the end of
each trial and assessed whether the object arrangement
looked logically appropriate or exhibited any unnatural
placements. To assess the effectiveness of LLM-GROP,
we recruited 10 graduate students to evaluate the robot’s
performance by reviewing the captured images. We
implemented a five-point rating system, detailed in
Table 2, and asked the volunteers to score the tableware
arrangements in the images provided.

We use the Movelt software (Coleman et al., 2014) for
planning grasping and ungrasping behaviors on the real
robot, and there was no machine learning involved. To
further facilitate robot grasping, we used QR codes to help
the robot locate the objects of interest. For those objects
that are hard to pick up, such as forks and knives, we use a
utensil holder to improve the success rate of object
grasping.

For our real-robot experiments, we utilized OpenAl’s
GPT-3 engines as the LLM component. The specific

Table 3. Hypermeters of OpenAl’s GPT-3 engines in our
experiment.

Parameter Value

Model text-davinci-003
Top p 1.0

Frequency penalty 0.0
Temperature 0.1

Maximum length 512

Presence penalty 0.0




The International Journal of Robotics Research 0(0)

Easy Environment

Chair on Top

Chair on Bottom

Task 4

=iy
&)

7

&

L

Task 9

Figure 5. Example outcomes of the robot completing object rearrangement tasks. The “easy” environment did not include any
obstacles, while the other environments included a chair on one side of the table. Note that the “top” and “bottom” labels shown in the
columns were with respect to the robot’s view. There were three tasks (IDs 4, 7, and 9—see Table |) used for the real-robot
experiments covering different numbers of objects being rearranged. The robot dynamically computed the goal configurations of those
objects and (task and motion) plans for realizing those configurations.

hyperparameters used in the study are provided in
Table 3. While there exist newer LLMs, we decided to
use GPT-3 as the default LLM to be consistent to the
results reported in the two preceding conference papers
(Dingetal.,2023b; Zhang et al., 2022b). When we made
comparisons between LLM-GROP and baselines, it was
strictly enforced that the same LLM was used in all
methods to avoid the potential bias introduced by the
LLMs. In addition, we report results comparing multiple
versions of LLM-GROP implemented using different
LLMs in Section 5.3, to demonstrate that LLM-GROP is
capable of adapting to newer LLMs.

Demonstrations. Figure 5 presents samples of the im-
ages collected during the real-robot demonstrations.
The GROP algorithm enables the robot to adapt its
position based on variations in the chair’s placement,
ensuring correct object positioning regardless of the
chair’s location. Simultaneously, the LLM component
generates reasonable configurations for each task,

maintaining accurate object placement even under
changing conditions. The results of the user ratings are
summarized in Table 4. Performance decreases as the
number of objects increases, and in more complex
environments with obstacles, performance further de-
clines due to the additional challenges of navigating
around obstacles to reach the goal positions. These

Table 4. Average of user ratings score for three individual object
rearrangement tasks within 3 environments, an easy one without
any obstacles, and a hard one with the chair being placed to the top
of the table and to the bottom of the table.

Hard environment

Easy Hard environment  (chair to the
Task  environment (chair to the top)  bottom)
Task 4 3.80 3.60 3.73
Task 7 3.53 3.73 3.93
Task 9 3.73 3.13 3.06
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Figure 6. An overview of real robot experiment trials. There are 45 trials categorized in three tasks, and executed in two environments,
an easy environment where there are no obstacles, and a hard one with a chair (obstacle) placed on top or bottom of the table.
Successes total to 38 trials, while failure accounts to 7 trials, producing an overall 84.4% success rate. The failure trials are further
categorized based on the reason of failure, navigation failure (3 trials) and manipulation failure (4 trials). This graph highlights how task and

environment complexity impact the success of each trial.

results demonstrate the robustness of our approach in
enabling a robotic platform to effectively perform real-
world tasks. To provide a detailed view of the outcomes,
Figure 6 categorizes the 45 robot execution trials by
task, environment complexity, success rate, and failure
modes.

Performance assessment

To assess the overall performance of the method and gain
insights into the contributions of LLM-GROP, we con-
ducted performance evaluations in simulated scenarios.

Experimental setup. As with the real-robot experiment’s
configuration, we conducted eight different tasks in a
simulated environmentl, as detailed in Table 1. We
execute each task 20 times using the LLM-GROP
system with the same prompt templates described in
LLM-Guided Goal Generation subsection, and after
each task is completed, we capture an image of the table,
the chair, and the objects on the tabletop for later human
evaluation. We used the same LLM as the real-robot
demonstration to carry out the simulation experiment.

Baselines. LLM-GROP is evaluated by comparing its per-
formance to three baselines, where the first baseline is the
weakest.

¢ Task Planning with Random Arrangement (TPRA):
This baseline uses a task planner to sequence navi-
gation and manipulation behaviors, while it randomly

selects standing positions next to the target table and
randomly places objects in no-collision positions on
the table.

¢ LLM-based arrangement and task planning (LATP): It
can predict object arrangements using LLMs and
perform task planning. It uniformly samples standing
positions around the table for manipulating objects.

® GROP: It considers plan efficiency and feasibility for
task-motion planning, and lacks the capability of
computing semantically valid arrangements. Similar
to TPRA, GROP also randomly places objects in no-
collision positions on the table.

en -

Task 3
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)
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Task 2 Task 4

rr-: ",: rm y’ i
| ’ ? .. | Pl.
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Figure 7. Examples of tableware objects rearranged by our LLM-
GROP agent in eight tasks, where the objects used in these tasks
can be found in Table |. Our LLM-GROP enables the arrangement of
tableware objects to be both semantically valid.
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Figure 8. Overall performance of LLM-GROP as compared to three
baselines based on mean values and standard errors of user
ratings and robot execution time for all tableware object
arrangement tasks.

Rating criteria. We recruited five graduate students with
engineering backgrounds, three females and two males
between the ages of 22 and 30. We generated 640 images
from the four methods (three baselines and LLM-GROP) for
eight tasks and each image required evaluation from all
volunteers, resulting in a total sample size of 3200 images
(the examples are shown in Figure 7). The volunteers were
shown one image at a time on a website page that we
provided, and they scored each image from 1 to 5 based on
the rating rules. We ensured that the rating was rigorous by
using a website to collect rating results, thereby minimizing
any potential biases that could arise from further interaction
with the volunteers once they entered the website.

LLM-GROP versus baselines. Figure 8 shows the key
findings of our experiments, which compares the per-
formance of LLM-GROP to the three other baseline
approaches. The x-axis indicates the time each method

takes to complete a single task, while the y-axis indi-
cates the corresponding user rating. The results dem-
onstrate that our LLM-GROP achieves the highest user
rating and the shortest execution time compared to the
other approaches. While GROP proves to be as efficient
as our approach, it receives a significantly lower rating
score. By contrast, TPRA and LATP both receive lower
user ratings than our LLM-GROP. They also display
poor efficiency. This is because they lack the navigation
capabilities to efficiently navigate through complex
environments. For instance, when their navigation goals
are located within an obstacle area, they struggle to
adjust their trajectory, leading to longer task completion
times.

Figure 9 presents the individual comparison results
of each method for individual tasks. The x-axis corre-
sponds to Task #ID in Table 1, while the y-axis rep-
resents the average user rating for each method. Our
LLM-GROP demonstrates superior performance over
the baselines for each task. Specifically, tasks 1 to
5 receive slightly higher scores than tasks 6 and 8. This
is reasonable because the latter two tasks require the
robot to manipulate more objects, posing additional
challenges for the robot.

Implementations with different LLMs

An important component of LLM-GROP is an off-the-shelf
LLM. To evaluate the sensitivity of LLM-GROP to the
choice of LLMs, we conducted experiments by realizing
LLM-GROPs with four different LLMs.

Experimental setup. We evaluated four versions of our
system using different LLMs: GPT-3, GPT-4, Gemini,
and Claude. These models were selected for their di-
verse architectures and capabilities, enabling us to as-
sess their respective influences. Another group of

B LLM-GROP (ours)
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Figure 9. User ratings of individual object rearrangement tasks, with the x-axis representing the task and the y-axis representing the user
rating score. It can be observed that LLM-GROP consistently performs the best compared to baselines. Tasks |-5 involve three objects,
tasks 6 and 7 involve four objects, and task 8 involves five objects. The numerical value displayed on each bar indicates the mean rating for

the corresponding task.
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Table 5. Average of user ratings score for individual object rearrangement tasks. Tasks |5 involve three objects, tasks 6 and 7 involve
four objects, and task 8 involves five objects. Results of four different LLMs (including their model names) are reported in four different

columns.

GPT-3 (text-davinci-003) GPT-4 (gpt-4-0613 ) Gemini (gemini-1.5-flash-20240520) Claude (claude-3.5-sonnet-20240620)

Task | 4.06 £ 0.75 4.98 + 0.04 487 £0.18 4.50 £ 0.00
Task 2 3.99 + 0.30 448 + 042 4.70 £ 0.16 3.65 £ 0.85
Task 3 4.19 £ 0.30 4.60 + 0.40 295 + 0.05 2.83 + 0.00
Task 4 4.09 £ 0.22 3.5+ 1.27 4.83 + 0.00 4.65 + 0.04
Task 5 4.08 + 0.31 4.67 = 0.00 2.27 + 0.07 4.73 £ 0.04
Task 6 3.91 £ 0.60 4.92 + 0.00 2.36 + 0.07 4.90 £ 0.04
Task 7 4.33 £ 0.23 4.98 + 0.04 4.65 £ 0.14 372 + 1.34
Task 8 3.79 + 0.31 2.22 + 0.60 1.83 £ 0.34 1.00 £ 0.00

10 participants with engineering backgrounds, com-
prising four females and six males, was recruited to
evaluate the method. We applied the same rating criteria
used in the performance assessment.

Results. The results of this experiment, presented in
Table 5, revealed that GPT-4 outperformed other models
in four out of eight tasks, demonstrating robust per-
formance across varying task complexities. Notably,
GPT-4 achieved the highest average user rating scores
for Tasks 1, 3, 6, and 7, which involved object counts
ranging from three to four. This consistency indicates
that GPT-4 is well suited for managing both simpler and
moderately complex object rearrangement tasks with
reliable performance.

However, the results also highlight the strengths of other
models in specific tasks, underscoring their varied capa-
bilities depending on task characteristics. For instance,
Gemini achieved the highest scores in Tasks 2 and 4,
suggesting a particular aptitude for tasks with unique re-
lational or spatial requirements. Similarly, Claude out-
performed the other models in Task 5, indicating potential
advantages in handling intricate or nuanced task relation-
ships within a three-object setup.

Interestingly, in Task 8—the most complex task in-
volving five objects—GPT-3 received the highest score.
This variation in performance demonstrates that no
single model consistently excels across all task types.
As such, these findings emphasize the importance of
selecting the most appropriate model based on the
specific relational and structural demands of each task.

Conclusion and discussion

To summarize, we propose LLM-GROP, which dem-
onstrates how we can extract semantic information from
LLMs and use it as a way to make common sense,
semantically valid decisions about object placements as
a part of a task and motion planner—Iletting us execute

multi-step tasks in complex environments in response to
natural-language commands. Further, LLM-GROP le-
verages computer vision methods to visually ground
task and motion planning (TAMP) solutions for mobile
manipulation (MoMa) tasks, and enable the robot to
select standing positions to simultaneously facilitate
both navigation and manipulation actions. LLM-GROP
was evaluated through comparisons with existing
TAMP methods, both in simulation and on a real robot,
and results demonstrated its superiority in MoMa tasks.

End-to-end robot control

One important contribution of this research is the in-
troduction of a novel computer vision approach to help a
mobile manipulator select base positions. Such posi-
tions are not too close to the table, so the robot’s base
does not have physical contact with the table or other
obstacles; at the same time, the standing positions
should not be too far away from the table, so interaction
behaviors with the target object(s) on the table are se-
cured with high feasibility. Our discussion assumes
fixed motion controllers for the mobile base and the
manipulator, whereas in practice, one can customize
those controllers for different tasks and different robot
platforms. For one example, a biped humanoid robot
might be able to squeeze through the crowded to reach a
table, which is impossible for a chubby wheeled robot.
For another, grasping a heavy beer pitcher would re-
quire a robot to stand close to the table compared with
lighter objects such as forks and knives. Incorporating
such control-level capabilities into the framework for
LLM-GROP practitioners would be one step closer to
producing globally optimal TAMP solutions.

Open worlds

The real world is generally open and there can be in-
numerable situations that are unforeseen in the
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development of robot hardware and software. In MoMa
tasks, a robot needs to move around obstacles and re-
arrange objects into a goal configuration. The target
objects and obstacles can be novel, and the service
requests for specifying goal configurations can be novel
too. LLM-GROP assumes that complete 3D models
exist for every object in the scene. In practice, we pick
real-world objects whose geometry and appearance
closely match our simulation assets. Although one could
employ Real2Sim methods, such as 3D reconstruction
or image-to-3D generative models, to build accurate
object models, we leave those extensions for
future work.

TAMP methods frequently assume known objects and
known robot capabilities. As a result, finding TAMP so-
lutions at both task and motion levels in open-world sce-
narios is still an open question. Foundation models are
equipped with rich common sense information and can be
potentially useful for addressing those open-world ques-
tions. While this work demonstrated that LLMs are useful
for computing semantically specified object configurations,
future work can further look into the capability of foun-
dation models (LLMs and multimodal models) to better
embrace the openness of the real world.

Natural language input

Recent advancements in foundation models including LLMs
have made it possible for service robots to accurately interpret
open-vocabulary, potentially ambiguous natural language
inputs. In doing so, the robots need to process language and
non-language inputs at the same time, and reliably build
associations between them, for example, associating the to-
kens of “banana” to one physical object on a specific dining
table. Natural language often involves under-specified and
incomplete task specifications, as it is unrealistic to expect
people to specify every detail of a goal configuration. The
robot has at least the two options of asking clarification
questions to seek additional details of the service request and
using common sense to provide the service that makes the
best sense. Using common sense to make decisions, for
example, people like coffee in the morning, can lead to ef-
ficient user experience, while the downside is the halluci-
nations of user preferences or even risks to people and
environments. The robot needs to make such decisions based
on its Al alignment, utility functions and value systems.

We used commercially available LLMs in this
research including GPTs, Claude, and Gemini, so the
expenses go beyond time and energy, while further
extending to monetary costs of querying the LLMs.
Such costs are not discussed in the experiments. One
future work direction can be in the minimization of costs
in the usage of LLMs.

Ego-centric vision

To compute the standing positions for optimally supporting
the navigation and manipulation actions, the robot needs an
estimation of the world configurations. In this paper, we use
top-down view images for perceiving the object locations
and the world configurations. There is rich literature in pose
estimation of objects in 3D worlds. One future work di-
rection is to incorporate ego-centric vision for estimating
world configurations, and active perception would even
further enhance the robot’s state estimation capability.
Recent vision-language models (such as LLaVA and GPT-
40) can potentially be used as navigation goal selectors, and
their performance can potentially be improved by multi-
modal prompting techniques like set-of-mark (SoM) (Yang
et al., 2023).

Simultaneous manipulation and navigation. In this
research, manipulation and navigation behaviors are
temporally interleaved, and they are connected through
the selection of standing positions. In general case,
mobile manipulators can choose to do both at the same
time leveraging whole-body control methods. Simul-
taneous manipulation and navigation is an open problem
to robotics researchers, where the main challenge is the
curse of dimensionality in control space. While inter-
leaving manipulation and navigation is sufficient for
MoMa robots to complete most object rearrangement
tasks, there are scenarios where doing both is a must.
For instance, when a robot and a human move an object
together, the robot needs to adjust its grasping strategy
while co-navigating with the human. Another example
is to push a plate from one end of a long banquet table to
the other. Those behaviors are still uncommon for
current service robots in household environments, but
generally can be useful for MoMa tasks.

Movable objects

Many objects in the real worlds are movable and their
movability depends on the robot’s MoMa skills. Among
those movable objects, humans are special because their
locations are changed through interaction actions such as
language and gestures, instead of contact-rich behaviors
such as grasping and pushing. This research assumes objects
are stationary except for those target objects that are in-
volved in the rearrangement tasks. For generalization, future
work can incorporate interaction behaviors, such as saying
“excuse me,” for encouraging people movements. In ad-
dition, there is existing research on TAMP methods for
domains with movable objects, where a robot can do
second-order reasoning to move obstacle objects to facilitate
the manipulation of target objects.
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