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The third Benchmark Autonomous 
Robot Navigation (BARN) Challenge 
took place at the 2024 IEEE Internation-
al Conference on Robotics and Automa-
tion (ICRA 2024) in Yokohama, Japan 
and continued to evaluate the perfor-
mance of state-of-the-art autonomous 
ground navigation systems in highly con-
strained environments. Similar to the 
trend in the first and second BARN 
Challenges at ICRA 2022 and 2023 in 
Philadelphia (North America) and Lon-
don (Europe), the third BARN Chal-
lenge in Yokohama (Asia) became more 
regional, i.e., mostly Asian teams partici-
pated. The size of the competition has 
slightly shrunk (six simulation teams, 
four of which were invited to the physi-
cal competition). The competition 
results, compared to the last two years, 
suggest that the field has adopted new 
machine learning approaches, while at 
the same time slightly converged to a 
few common practices. However, the 
regional nature of the physical partici-
pants suggests a challenge to promote 
wider participation all over the world and 
provide more resources to travel to the 
venue. In this article, we discuss the 
challenge, the approaches used by the 
three winning teams, and lessons 
learned to direct future research  
and competitions.

THE THIRD BARN CHALLENGE 
OVERVIEW
The third BARN Challenge took place 
as a conference competition at ICRA 
2024 in Yokohama, Japan. As a contin-
uation of the first and second BARN 

Challenges at ICRA 2022 and 2023 in 
Philadelphia and London, respectively, 
the third challenge aimed to evaluate 
the capability of state-of-the-art naviga-
tion systems to move robots through 
static, highly constrained obstacle 
courses, an ostensibly simple problem 
even for many experienced robotics 
researchers, but in fact, as the results 
from the first two competitions sug-
gested, a problem far away from being 
solved [1], [2].

Each team needed to develop an 
entire navigation software stack for 
a standardized and provided mobile 
robot, i.e., a Clearpath Jackal with a 2D 
270° field-of-view Hokuyo lidar for per-
ception and a differential drive system 
with 2 m/s maximal speed for actua-
tion. The developed navigation software 
stack needed to autonomously drive 
the robot from a given starting location 
through a dense obstacle field and to a 
given goal without any collisions with 
obstacles or any human interventions. 
The team whose system could best 
accomplish this task within the least 
amount of time would win the compe-
tition. The third BARN Challenge had 
two phases: a qualifying phase evalu-
ated in simulation and a final phase 
evaluated in three physical obstacle 
courses. The qualifying phase took 
place before the ICRA 2024 conference 
using the BARN dataset [3] (with the 
recent addition of DynaBARN), which 
is composed of 300 obstacle courses 
in Gazebo simulation randomly gener-
ated by cellular automata. The top 
four teams from the simulation phase 
were then invited to compete in three 
different physical obstacle courses 
set up by the organizers at ICRA 

2024 in the PACIFICO Yokohama 
con  ference center.

In this article, we report on the simu-
lation qualifier and physical finals of the 
third BARN Challenge at ICRA 2024, 
present the approaches used by the top 
three teams, discuss lessons learned 
from the challenge compared to the first 
and second BARN Challenges at ICRA 
2022 and 2023, and point out future 
research directions to solve the problem 
of autonomous ground navigation in 
highly constrained spaces.

SIMULATION QUALIFIER
The simulation qualifier of the third 
BARN Challenge started on 1 January 
2024. The qualifier used the BARN 
dataset [3], which consists of 300 5-m × 
5-m obstacle environments randomly 
generated by cellular automata (see 
examples in Figure 1), each with a pre-
defined start and goal. These obstacle 
environments range from relatively 
open spaces, where the robot barely 
needs to turn, to highly dense fields, 
where the robot needs to squeeze 
between obstacles with minimal clear-
ance. The BARN environments are 
open to the public and were intended to 
be used by the participating teams to 
develop their navigation stack. Another 
50 unseen environments, which are not 
available to the public, were generated 
to evaluate the teams’ systems. A ran-
dom BARN environment generator was 
also provided to the teams so that they 
could generate their own unseen test 
environments (https://github.com/
dperille/jackal-map-creation).

In addition to the 300 BARN envi-
ronments, six baseline approaches were 
also provided for the participants’ 
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reference, ranging from classical sam-
pling-based [4] and optimization-based 
navigation systems [5], to end-to-end 
machine learning methods [6], [7], 
and hybrid approaches [8]. All base-
lines were implementations of different 
local planners used in conjunction with 
Dijkstra’s search as the global planner 
in the robotic operating system (ROS) 
move _ base navigation stack. Addi-
tionally, the winning teams’ navigation 
stacks from the last two competitions 
were also open sourced. To facilitate 
participation, a training pipeline capa-
ble of running the standardized Jackal 
robot in the Gazebo simulator with 
ROS Noetic (in Ubuntu 20.04), with the 
option of being containerized in Docker 
or Singularity containers for fast and 
standardized setup and evaluation, 
was also provided (https://github.com/ 
Daffan/ros_jackal).

RULES
Each participating team was required 
to submit their developed navigation 
system as a (collection of) launchable 
ROS node(s). The challenge utilized a 
standardized evaluation pipeline (https://
github.com/Daffan/nav-competition 
-icra2022) to run each team’s naviga-
tion system and compute a standard-
ized performance metric that considers 
navigation success rate (collision or not 
reaching the goal counts as failure), 
actual traversal time, and environment 
difficulty (measured by optimal tra-
versal time). Specially, the score s for 
navigating each environment i was 
computed as

( , , )
s 1

2 8clip AT OT OT
OT

i i
i i i

isuccess #=

where the indicator function 1success  
evaluates to 1 if the robot reaches the 

navigation goal without any collisions, 
and evaluates to 0 otherwise. AT 
denotes the actual traversal time, 
while OT denotes the optimal travers-
al time, as an indicator of the environ-
ment difficulty and measured by the 
shortest traversal time assuming the 
robot always travels at its maximal 
speed (2 m/s):

.OT
Maximal Speed

Path Length
i

i
=

The path length is provided by the 
BARN dataset based on Dijkstra’s 
search from the given start to goal. The 
clip function clips AT within 2 OT and 
8 OT to assure navigating extremely 
quickly or slowly in easy or difficult 
environments, respectively, won’t dis-
proportionally scale the score. Notice 
that the lower-bound 2 OT was reduced 
from the previous 4 OT used in the 
last two challenges, considering the 
performance upper bound, 0.25, has 
been closely approached by multiple 
teams. In the third BARN Challenge, 
the upper bound has been increased 
to 0.5 to encourage faster navigation 
speed. The overall score of each team 
is the score averaged over all 50 unseen 
test BARN environments, with 10 tri-
als in each environment. Higher scores 

indicate better navigation performance. 
The six baselines score between 0.1656 
and 0.4354.

RESULTS
The simulation qualifier started on 1 
January 2024 and lasted through a soft 
submission deadline (1 April 2024) and 
a hard submission deadline (1 May 
2024). Submitting by the soft deadline 
guaranteed an invitation to the final 
physical competition given good navi-
gation performance in simulation and 
left sufficient time for invited partici-
pants to make travel arrangements to 
Yokohama. The hard deadline was to 
encourage broader participation, but 
final physical competition eligibility 
depended on the available capacity and 
travel arrangements made beforehand. 
In total, six teams, five from Asia and 
one from Europe, submitted their navi-
gation systems. The performance of 
each submission was evaluated by the 
standard evaluation pipeline. The 
results are shown in Table 1, with the 
baselines shown in the fourth column as 
a reference.

The top two simulation teams,  
LiCS-KI from the Korea Advanced 
Institute of Science and Technology 
(KAIST) and AIMS from The Hong 
Kong Polytechnic University (HKPU), 

World 0 World 99 World 199 World 299

FIGURE 1. Four example BARN environments in the Gazebo simulator (ordered by ascending relative difficulty level).

RANK TEAM SCORE BASELINE

1 LiCS-KI 0.4762

2 AIMS 0.4723 LfLH [7], e2e [6] 

3 EIT-NUS 0.3795 APPLR-DWA [8], E-Band [5]

4 MLDA_EEE 0.2476 (Fast and default) DWA [4] 

5 Tartu Team NA 

6 CCWSS NA 

TABLE 1. Simulation results.

https://github.com/Daffan/ros_jackal
https://github.com/Daffan/ros_jackal
https://github.com/Daffan/nav-competition-icra2022
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https://github.com/Daffan/nav-competition-icra2022
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outperformed all of last year’s win-
ning teams (KUL+FM, INVENTEC, 
and University of Almeria). However, 
there is still a gap between the new 
performance upper bound (0.5) and the 
top performance (0.4762). The top four 
teams—LiCS-KI, AIMS, EIT-NUS 
from the Eastern Institute of Technol-
ogy, Ningbo, China, and MLDA_EEE 
from Nanyang Technological University 
(NTU)—were invited to the physical 
finals at ICRA 2024. The top simulation 
(and also final winning) team, LiCS-
KI, was the only team that submitted 
after the soft deadline but before the 
hard deadline.

PHYSICAL FINALS
The physical finals took place at ICRA 
2024 in the PACIFICO Yokohama con-
ference center on 15 and 16 May 2024 
(Figure 2). Two physical Jackal robots 
with the same sensors and actuators 
were provided by the competition spon-
sor, Clearpath Robotics.

RULES
Physical obstacle courses were set up 
using 120 cardboard boxes in the confer-
ence center. The organizers used the 
same guidelines to set up three obstacle 
courses as in the first two BARN Chal-
lenges, i.e., all courses aimed at testing a 

navigation system’s local planning and 
therefore had an obvious passage but 
with minimal clearance (a few centime-
ters around the robot) when traversing 
this passage. Considering that KUL+FM 
finished all three physical obstacle 
courses in the second BARN Challenge, 
the organizers intentionally increased the 
difficulty this year, i.e., introducing 
sharper turns and smaller clearances.

The organizers also used the same 
competition rules agreed upon by all 
of the physical competition partici-
pants: Each team has 20 min to set up 
their navigation system after each 
obstacle course was constructed. After 
the 20-min setup time, each team had 
the opportunity to run five timed tri-
als (after notifying the organizers to be 
timed) within another 20-min period. 
The fastest three of the five timed trials 
were counted, and the team that had the 
most successful trials (reaching the goal 
without any collision) would be the win-
ner. In the case of a tie, the team with 
the fastest average traversal time would 
be declared the winner.

RESULTS
The four teams’ navigation perfor-
mance is shown in Table 2. Due to the 
intentionally increased navigation diffi-
culty, the teams struggled more on 
obstacle avoidance, similar to the first 
BARN Challenge, and focused less on 
increasing speed, as the teams did dur-
ing the second BARN Challenge. The 
detailed results of all five timed trials 
(in seconds, only the top three were 
counted in the final score) are listed in 
the last three columns of Table 2, 
where “X” indicates failure.

The winner, LiCS-KI, successfully 
and quickly finished all 10 trials in the 
first two courses, but failed all five tri-
als in the third course, the extremely 

FIGURE 2. Final physical competition participants and organizers at the third BARN 
Challenge in Yokohama, Japan.

RANK. TEAM SUCCESS/TOTAL AVERAGE TIME COURSE 1 COURSE 2 COURSE 3 

1 LiCS-KI 6/9 30/35/NA 32/31/32/27/30 37/37/40/29/32 X/X/X/X/X 

2 MLDA_EEE 5/9 (79) 72/89/NA 68/X/77/X/70 X/X/X/85/93 X/X/X/X/X 

3 AIMS 5/9 (109) 90/NA/121 92/88/X/X/X X/X/X/X/X 119/118/126/X/X

4 EIT-NUS 0/9 NA/NA/NA X/X/X/X/X X/X/X/X/X X/X/X/X/X 

TABLE 2. Physical results.
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 difficult one. MLDA_EEE also com-
pletely failed in the last, most difficult 
course, but succeeded in three and two 
trials in the first two courses. AIMS was 
able to slowly but successfully finish 
three trials in the last course, but did not 
perform well in the first two, especially 
the second course, possibly due to a bug 
caused by sensor dimension mismatch. 
As a result, LiCS-KI won the competi-
tion by the most successful trials (six of 
nine), while the tie between MLDA_
EEE and AIMS was broken by the aver-
age traversal time (79 s versus 109 s).

TOP THREE TEAMS AND 
APPROACHES
In this section, we report the approach-
es used by the three winning teams.

LiCS-KI (KAIST)
The LiCS-KI team from KAIST intro-
duced an end-to-end local navigation 
method for indoor navigation and 
deployed their learned-imitation on 
cluttered space (LiCS) framework. The 
main innovation is the use of a trans-
former-based network trained using 
behavior cloning (BC) with robust 
expert demonstrations under controlled 

noise. This method enables the robot to 
navigate robustly and rapidly through 
highly cluttered spaces. Additionally, a 
safety-check layer is added to ensure 
safe navigation in untrained environ-
ments, particularly during real-world 
challenges.

NEURAL NETWORK
The neural network used by LiCS con-
sists of a transformer encoder and 
decoder, as depicted in Figure 3. The 
encoder employs a vision transformer 
(ViT) model with class token omitted, 
while the decoder is a standard trans-
former decoder without positional 
embedding and masked multihead atten-
tion. During the encoding process, the 
lidar input is segmented into N patches, 
projected through a linear network, and 
concatenated with learnable position 
embedding. The decoder processes the 
encoded lidar data alongside the nor-
malized local goal, provided by the 
global planner, to predict the optimal 
linear and angular velocities (v and ).~

BEHAVIOR CLONING 
The proposed network is trained using 
BC to replicate the expert algorithm 

from the previous year’s winning team, 
KUL+FM. To address the inherent per-
formance issues possessed by BC, a 
Gaussian noise ( , )0N 2v  is injected to 
the control inputs during expert demon-
strations. This noise augmentation 
allows the demonstrations to cover a 
variety of states for training, enhancing 
the policy network’s robustness.

SAFETY-CHECK LAYER
The safety-check layer uses geomet-
ric calculations based on combined 
lidar and costmap data to enhance 
mo del  safety. For linear motion 
( , ),v 0 02; ; ~ =  the robot travels along 
its x axis. Safety is assessed by ensuring 
no obstacles are within a predefined 
rectangular safety zone extending from 
the robot’s front [Figure 4(a)]. In radial 
motion scenarios ( , ),v 0 02 2; ; ;; ~  
where the robot follows a circular trajec-
tory, the safety check involves ensuring 
no obstacles are present within two 
polygons that represent the robot’s foot-
print at the start and end of a movement 
interval, connected by arcs defining the 
robot’s outer and inner turning radii 
[Figure 4(b)]. Imminent collisions 
detected from this safety-check layer 
trigger recovery actions, including speed 
reduction, in-place rotation, and back-
ward movement.

IMPLEMENTATION
The training dataset was collected by 
recording simulations of the KUL+FM 
approach with injected Gaussian noise 
( . )0 25v =  across various scenarios. 
The network, consisting of three layers 
each in the ViT encoder and transform-
er decoder, was trained in a supervised 
manner using the combined dataset over 
100 epochs. In both simulated and real-
world challenges, an A* algorithm was 
used as the global planner with dynamic 
obstacle inflation parameters that are 
adjusted based on velocity, r rinf minl = + 
( / ) ( ).v v r rmax max min# -  The safety layer 
was implemented solely in the real-world 
challenge, as the obstacle courses dif-
fered from the simulation environments. 
hector _ mapping simultaneous 
localization and mapping SLAM was 
also used during the real-world chal-
lenge to improve localization accuracy.
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FIGURE 3. Transformer-based neural network used in LiCS.
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MLDA_EEE (NTU)
Team MLDA_EEE tackled the chal-
lenge using a classical approach with 
model predictive control (MPC) with 
mode-switching logic for different sce-
narios. The various modes all use MPC 
formulation with different initialization 
and constraints to bias the solver 
toward a feasible solution.

FORMULATION
The optimization variables of the MPC 
problem include the robot’s coordi-
nates and headings as the state variables, 

[ , , ],x yx i=  and the velocity and accel-
eration of both left and right wheels as 
the control, [ , , , ].vr vl ar alu =  The 
MPC minimizes the objective function J 
over the horizon of N steps, subject to 
the constraints of the wheeled differen-
tial-drive model, the current odometry 
readings, and other additional con-
straints, to make the robot follow a ref-
erence trajectory:

( , ).argmin J x u
, k

N

0

1

x u
=

-

/

The objective function includes: 1) 
error to the reference trajectory taken 
from the global planner, 2) error refer-
ence velocity, and 3) acceleration:

( )

[( ) ( ) ]

( ) .

J w v v ef

w x x y y

w a a

v k r

x k ref k ref

a k k

2

2 2

1
2

k k

; ;= -

+ - + -

+ - +

IMPLEMENTATION
The global trajectory is given by the 
global planner from ROS move _
base package. The map _ server 
is updated using hector _ map-
ping to increase the reliability of the 
costmap. To reduce the computation 
time in the MPC, we minimized the 
number of obstacles considered in the 
optimization process. A ROS node is 
used to sample the raw lidar scan 
every 15 points. The local _
costmap occupancy grid is used to 
obtain obstacles in the blind spot of 
the lidar, similar to INVENTEC [2]. 
These are published as point clouds 
with (x, y) coordinates used in the 
MPC, as shown in Figure 5. The local 
plan is obtained from optimizing the 

MPC problem using the nonlinear 
solver CasADi.

BEHAVIOR OF DIFFERENT MODES
Different modes have different MPC 
parameters, such as the weights of the 
objective terms, control limits, and 
additional constraints on the reference 
global trajectory to allow safe maneu-
ver near obstacles. These parameters 
are also fine-tuned in the physical runs.

The various modes include: 1) “safe”: 
the robot has high velocity; 2) “obstacle 
present”: the obstacle is detected 1 m away 

from the robot; and 3) “close obstacle”: 
the obstacle is detected 0.5 m away. 
Within the “close obstacle” mode, there 
is a “reversing” mode, which is triggered 
when the heading along the reference 
trajectory is more than 90° from the 
current heading [Figure 6(a)]. This hap-
pens when the robot encounters a dead-
end and the global plan suggests a new 
trajectory. In this mode, the optimiza-
tion variables are initialized, such that 
the heading points away from the goal, 
priming the optimal solution to result 
in the robot backtracking, instead of 

(a) (b)
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FIGURE 4. (a) and (b) Safety zone illustration for the safety-check layer of LiCS during 
linear and radial movement.

FIGURE 5. Rviz visualization of obstacles in the MPC. White squares: obstacle 
coordinates sampled from raw lidar scan. Yellow squares: blind spot obstacle coordinates 
obtained from local_costmap.
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 performing a sudden  rotation, to prevent 
collision with nearby obstacles. When 
the robot backtracks to a safe space, the 
“obstacle present” parameters and the 
constraints on the final MPC horizon step 
allow the robot to regain the correct head-
ing toward the final goal [Figure 6(b)].

AIMS (HKPU)
To effectively address the highly con-
strained environments in the BARN 
Challenge, the AIMS team developed 
a local planner utilizing advanced 
dynamic window-based methods. This 
approach ensures collision-free naviga-
tion in narrow pathways by discretiz-
ing the sampling space into geometric 
elements for rapid determination in 
sensor space. It also incorporates back-
ward sampling to assist the vehicle in 

adjusting its pose and extricating itself 
from tight situations. Given the compe-
tition rules prohibiting premapping, the 
strategy focuses on real-time path 
planning rather than relying on real-
time mapping and localization. This 
means that the vehicle must continu-
ously explore unknown areas while in 
motion, with the global plan constantly 
adjusted as exploration progresses. The 
algorithm is designed to continuously 
adapt to environmental changes and 
respond quickly to maintain collision-
free navigation. The local planner 
operates without the need for global 
environmental data, allowing the vehi-
cle to navigate challenging courses 
safely and efficiently, even without 
comprehensive maps and detailed 
localization information.

EFFICIENT GEOMETRY-BASED 
OBSTACLE DETECTION
The method involves sampling poten-
tial trajectories with varying curvatures 
and applying geometric constraints to 
rapidly identify potential collision 
points among these predicted paths. 
This approach facilitates the selection 
of the optimal collision-free trajectory. 
Drawing inspiration from last year’s 
winning team (KUL+FM), the local 
planner is integrated directly with the 
sensor data, thereby bypassing poten-
tial inaccuracies in the costmap and 
accelerating obstacle detection.

Specifically, the anticipated driving 
area is discretized into rectangles and 
triangles, arranged by proximity. By 
scanning these shapes for lidar-detected 
points to identify obstacles, it quickly 
determines whether the sampled areas 
are collision-free. Before this scanning 
process, a crucial step involves filter-
ing the lidar points within each geomet-
ric shape based on their distance and 
angle relative to the sensor, significantly 
reducing the search space required for 
each geometric assessment. By leverag-
ing direct sensor integration and geo-
metric analysis, this enhanced method 
ensures real-time adjustments and pre-
cise obstacle detection, making the nav-
igation solution robust against highly 
constrained environments.

ADDITIONAL BACKWARD SAMPLING
A further enhancement to the tradition-
al sampling-based method is the imple-
mentation of sampling during both 
forward and backward driving. This 
backward sampling design assists the 
vehicle in effectively adjusting its pose 
to extricate itself when direct forward 
movement is not possible.

To be specific, both forward and 
backward driving involve sampling 
the potential trajectory curvatures of 
the vehicle. The difference lies in the 
judgment logic for backward sampling, 
which shifts from selecting samples that 
are closer to the local goal to selecting 
states that have more viable forward 
sampling points. This means that for 
each backward pose sampled, a second 
round of forward sampling is performed 
to find out those poses that have more 

Towards the Final Goal

Constrained the Final Step
of the MPC Horizon

“Obstacle Present” Mode

“Close Obstacle”  Mode With “Reversing”

(a)

(b)

Reference Positions from Global Planner
Initialized Headings
Positions and Headings from MPC

FIGURE 6. Different modes with different initialization and limits. (a) “Close obstacle” 
with “reversing” mode has the headings pointing away from the goal to allow safe 
backtracking. (b) “Obstacle present” mode has normal heading initialization and 
constraints allowing the robot to rotate to the correct heading.
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feasible forward driving paths. A back-
ward sampling result with more feasible 
forward paths typically indicates a supe-
rior vehicle pose in highly constrained 
environments, enabling better handling 
of complex situations when the vehicle 
reaches such a pose.

DISCUSSION
We discuss new findings and lessons 
from the third BARN Challenge, not 
only from the technical perspective, 
but also from the competition organi-
zation side.

FIRST PHYSICAL COMPETITION WIN 
OF END-TO-END LEARNING
In the first and second BARN Challeng-
es, the winning teams of the physical 
competition used classical approaches 
(UT AMRL and KUL+FM). However, 
the winning team this year, LiCS-KI, 
adopted an end-to-end imitation learning 
approach, which is the first physical win 
by end-to-end learning. One interesting 
fact is that the expert used to provide 
demonstration data are a classical 
approach used by last year’s winning 
team, KUL+FM, and LiCS-KI also 
added Gaussian noise to perturb the 
model input to achieve robustness, a clas-
sic data augmentation technique. Assist-
ed by a transformer architecture and 
safety-check layer, LiCS-KI’s approach 
outperformed its expert demonstrator, 
KUL+FM, in the simulation qualifier. It 
is worth noting that KUL+FM did not 
participate in the physical competition 
this year, so it is unclear whether the imi-
tator can outperform the demonstrator in 
the physical runs.

FIRST USAGE OF TRANSFORMERS 
IN THE CHALLENGE
LiCS-KI is the first team in the BARN 
Challenge to use a transformer archi-
tecture as the main local planner, com-
pared to classical neural architectures 
used in the past years. The power of 
transformers is one potential reason of 
LiCS-KI’s win in both the simulation 
qualifier and physical finals, along with 
the data augmentation technique and 
safety-check layer. The success of the 
transformer architecture suggests the 
potential of better neural architecture 

for robot navigation tasks, not only to 
address visual inputs, off-road condi-
tions, social contexts, kinodynamic 
constraints, or multirobot navigation, 
but also for purely geometric obstacle 
avoidance. The revolutionary success 
of transformers on computer vision and 
natural language processing tasks may 
also inspire future navigation research.

SUCCESSFUL SIM-TO-REAL 
TRANSFER OF LEARNING 
ALGORITHMS
Similar to the second BARN Challenge 
[2], the third year of the competition 
did not exhibit a significant sim-to-real 
gap. The first-place winner of both sim-
ulation and physical course challenges, 
the LiCS-KI team, utilized a learning-
based algorithm. Not only winning in 
terms of success rate during the physi-
cal finals, the team performed with the 
fastest average traversal time. This 
result highlights a small sim-to-real 
performance gap. It also suggests that 
learning-based models, particularly 
those trained in simulated environ-
ments, are becoming increasingly 
effective at handling the unpredictable 
nature of real-world settings when com-
bined with the strategic use of imitation 
learning, specifically through BC, cou-
pled with advanced data augmentation 
and neural architecture. This approach 
also contrasts with the more commonly 
used reinforcement learning in past 
competitions. By employing imitation 
learning, the team was able to quickly 
deploy behaviors mimicking or even 
surpassing expert demonstrations, 
reducing the need for the trial-and-
error learning phases typical of rein-
forcement learning. Additionally, the 
use of controlled noise during training 
helped the algorithm account for 
unforeseen variables and disturbanc-
es encountered.

STRONG CONNECTIONS TO 
PREVIOUS YEARS
While last year’s second place winner, 
INVENTEC, based their approach on 
the strongest baseline, LfLH [7] along 
the learning from hallucination (LfH) 
line of work, the approaches developed 
by this year’s teams started to show 

strong connections to previous years’ 
methods. LiCS-KI used the approach 
of last year’s KUL+FM as expert to 
generate demonstration data, while 
AIMS also leveraged KUL+FM’s idea 
of local planning directly in the sensor 
space, instead of using costmaps, which 
are susceptible to inaccuracies. Along 
with the point in the following “Impor-
tance of a Hybrid Paradigm” section, 
the community has started to form a 
few common practices to address the 
problem of navigation in highly con-
strained spaces, which also have real-
world implications when deploying 
autonomous mobile robots in natural 
obstacle-occupied spaces.

IMPORTANCE OF A HYBRID 
PARADIGM
All teams adopted a hybrid paradigm in 
terms of a finite-state machine setup, 
which requires different components to 
address different situations in the obsta-
cle courses, especially safety checking 
of the actions produced by a main plan-
ner, differently parameterized MPC 
planners, and specifically designed 
reversing motions to back up the robot 
from undesirable scenarios. Such a 
pragmatic practice suggests that a single 
stand-alone approach that is able to 
address all variety of obstacle configura-
tions all together is still out of our reach. 
Even for the end-to-end learning by 
LiCS-KI, a separate safety-check layer 
is still required during hardware imple-
mentation. Most teams also specifically 
designed reversing or backtracking 
behaviors to address situations where 
the robot got stuck. However, more 
complex systems may introduce extra 
complications at the same time, e.g., 
proper parameter tuning for each com-
ponent and appropriate transition condi-
tions between different components.

TIE-BREAKING BY AVERAGE TIME 
FOR SECOND AND THIRD PLACE
Qualitatively speaking, this year’s 
physical obstacle courses were slightly 
more difficult than last year’s. Unfortu-
nately, no team could finish all nine 
physical trials. LiCS-KI outperformed 
MLDA_EEE and AIMS by one more 
successful trial, while MLDA_EEE 
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and AIMS were tied in terms of suc-
cess rate. The tie was broken by aver-
age time. However, it is worth noting 
that due to the different length and dif-
ficulty of the three physical obstacle 
courses, it is difficult to make an abso-
lutely fair comparison using average 
time of successful trials to break the 
tie: AIMS succeeded in three trials in 
the longest third obstacle course, but 
didn’t finish one single trial in the 
shor ter second obstacle course. 
MLDA_EEE’s performance was the 
opposite, which presents an advantage. 
Such a situation increases AIMS’s aver-
age traversal t ime compared to 
MLDA_EEE, causing the rank of sec-
ond and third place.

MORE FINANCIAL SUPPORT FOR 
PARTICIPATION IS NEEDED
One unfortunate fact about the third 
BARN Challenge is that all four teams 
that participated in the physical finals 
are Asian teams. Considering that 
ICRA 2024 took place in Yokohama, 
Japan, not many teams from places far 
away from Japan submitted their navi-
gation stack to participate in the com-
petition. The regional participation of 
the competition is not ideal to evaluate 
the entire field’s progress and com-
pare  the performance of top teams all 
over the world. The organizers will try 
to reach out to more potential sponsors 
to provide more financial support to 
invite participants to travel from other 
continents. Another potential solution 
is to provide remote participation 

options, which was attempted last year. 
However, the need of fine-tuning the 
navigation systems for real-world 
deployment and to fit to every different 
obstacle course makes it impractical for 
the organizers to run the remote partic-
ipants’ systems and achieve reasonable 
performance out-of-the-box. How to 
remove the reliance on extensive sys-
tem tuning is still an open question for 
robust obstacle avoidance in a variety 
of real-world scenarios.

FUTURE PLANS
Based on the first three BARN chal-
lenges, the organizers plan to make the 
following changes in the next BARN 
challenge in ICRA 2025. First, dynam-
ic obstacles will be introduced to the 
currently static obstacle courses. For 
the first competition with dynamic 
obstacles, the organizers will allow col-
lisions with dynamic obstacles and 
only add a penalty, whereas collisions 
with static obstacles will still be count-
ed as a total failure. The addition of 
dynamic obstacles will stress-test the 
robustness of obstacle avoidance and 
also make the competition more inter-
esting to watch. Second, to further 
encourage the teams to reduce the need 
of on-site fine-tuning, the organizers 
also plan to add a few “cold trials” at 
the beginning of each obstacle course: 
All teams will be required to directly 
navigate through each obstacle course 
without any fine-tuning of the system 
first. Successful cold trials will be 
rewarded by bonus points before the 

teams are allowed to fine-tune their 
systems and start their regular trials. 
The organizers also plan on reducing 
the allowed time to fine-tune the sys-
tem to discourage extensive depen-
dence on manual trial and error before 
autonomous navigation.
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